

Hydrothermal synthesis of BiOCl photocatalyst for photocatalytic degradation of Rhodamine B dye

Gandharve Kumar*

Author's Affiliations:

Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida- 203201, India.

***Corresponding Author:** Gandharve Kumar, Department of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida- 203201, India.

E-mail: gandharve.kumar@galgotiasuniversity.edu.in

ABSTRACT

Bismuth oxychloride photocatalysts were successfully synthesized through a simple hydrothermal process carried out at 160 °C and subsequently characterized using powder XRD, FESEM, and UV-Vis DRS techniques. Their photocatalytic efficiency was evaluated for the degradation of RhB under natural sunlight. The BiOCl nanoparticles achieved approximately 90% removal of RhB within 100 minutes of irradiation.

Keywords: BiOCl, Photocatalyst, Rhodamine B

Received on 25.08.2025, Revised on 15.10.2025, Accepted on 30.11.2025

How to cite this article: Kumar G. Hydrothermal synthesis of BiOCl photocatalyst for photocatalytic degradation of Rhodamine B dye. *Bulletin of Pure and Applied Sciences-Chemistry*, 2025;44C(2):101-104.

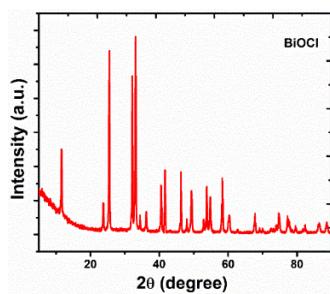
INTRODUCTION

The rapid growth of industrial activities worldwide has intensified numerous environmental issues, particularly water pollution and energy scarcity. Among the various sources of aquatic contamination, untreated textile effluents have drawn significant concern due to their adverse effects on ecosystems and human health [1-3]. Cationic dyes especially Rhodamine B are extensively utilized in textile and allied sectors for their vivid coloration and high stability [4,5]. Yet, their strong solubility in water and resistance to natural degradation render them persistent environmental pollutants with notable ecological and toxicological impacts [6-8]. To address these challenges, researchers have explored various wastewater treatment approaches, among which semiconductor-based

heterogeneous photocatalysis has gained prominence for its capability to mineralize organic contaminants. Nevertheless, traditional photocatalysts often suffer from limited redox capability, intrinsic structural defects, and rapid recombination of photogenerated charge carriers, all of which hinder their overall efficiency [9-11]. This has driven the search for durable, efficient, and solar-active materials capable of degrading dyes under natural sunlight. Recently, bismuth-containing photocatalysts have emerged as attractive candidates due to their distinctive layered architectures and strong visible-light absorption [12-14]. Compounds such as Bi₂WO₆, BiVO₄, Bi₂MoO₆, and Bi₂S₃ have been widely examined, benefiting from the advantageous electronic structure of Bi³⁺ (6s²). Among these, bismuth oxychloride (BiOCl) has gained particular interest owing to its unique tetragonal

layered structure, environmental compatibility, non-toxicity, and remarkable chemical stability [15–17].

METHODOLOGY


Synthesis of BiOCl nanoparticles

First, 2 mmol of KCl and 2 mmol of bismuth nitrate pentahydrate were dissolved in 50 mL of deionized water and stirred for 30 minutes. The pH of the mixture was then adjusted to 6 using 10 M NaOH. The prepared solution was transferred to a 100 mL Teflon-lined autoclave and subjected to hydrothermal treatment at 100 °C for 12 hours. After the reaction, the resulting BiOCl photocatalyst was collected, washed, and dried overnight at 60 °C.

RESULTS AND DISCUSSIONS

Crystal Study

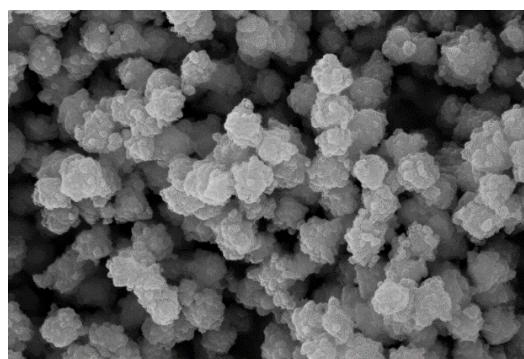

The crystalline structure of the synthesized BiOCl was examined using X-ray diffraction (XRD), and the corresponding patterns are shown in Figure 1. The obtained BiOCl sample displays diffraction peaks characteristic of the monoclinic scheelite phase, in agreement with the standard JCPDS card No. 14-0688.

Figure 1: XRD of as-synthesized BiOCl

Surface Morphology of BiOCl

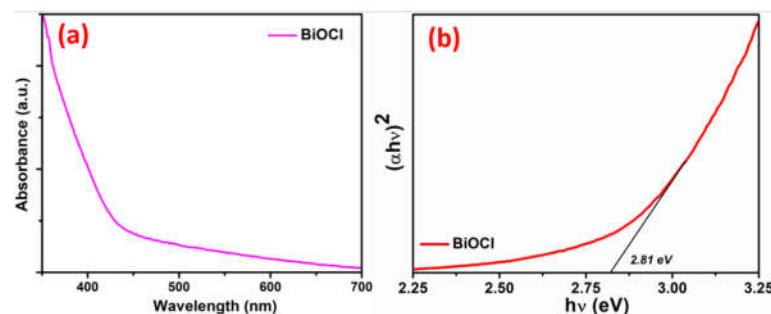

The surface morphology of the BiOCl nanoparticles was examined using FE-SEM, and the obtained micrographs reveal that the particles tend to form aggregated clusters (Figure 2). The observed aggregation of BiOCl nanoparticles suggests an increased number of active sites, which can enhance the adsorption of dye molecules and thereby improve their removal from wastewater.

Figure 2: FE-SEM images of BiOCl

Band Gap analysis

The UV-vis DRS spectrum of pristine BiOCl nanoparticles (Figure 3a) indicates their ability to absorb light in the visible region. The diffuse reflectance data were converted to absorption spectra using the Kubelka-Munk (K-M) function, and the band gap energy was calculated from the corresponding Tauc plot (Figure 3b). Based on this analysis, the optical band gap of the BiOCl photocatalyst was found to be approximately 2.81 eV.

Figure 3: a) Absorbance Spectra of pure BiOCl, b) Tauc's plot

Photocatalytic Test

The photocatalytic degradation of RhB dye (5 mg/L) using BiOCl nanoparticles is illustrated in Figure 4. Under sunlight irradiation for 100 minutes, the BiOCl photocatalyst achieved approximately 90% removal of RhB, demonstrating its effective photocatalytic activity. The UV-vis absorption spectra presented in Figure 4 depict the progressive decline in RhB concentration during the degradation process. A noticeable reduction in the characteristic absorption peak of RhB was observed throughout the 100-minute irradiation period, confirming the dye's photodegradation.

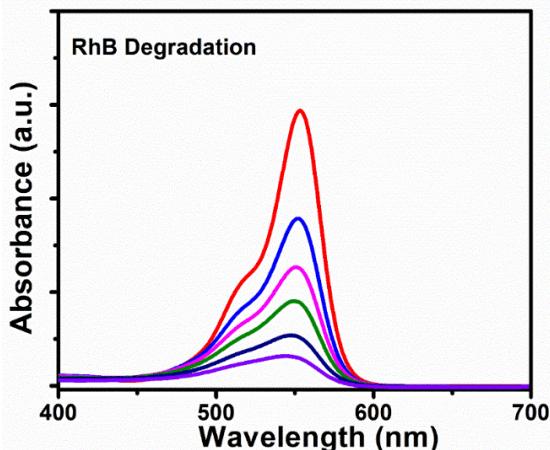


Figure 4: UV-vis absorbance spectra of RhB dye solution.

CONCLUSIONS

BiOCl was successfully prepared through a straightforward hydrothermal method. The resulting photocatalyst demonstrated excellent activity, achieving nearly 90% degradation of RhB under natural sunlight. Owing to its strong photoactivity, BiOCl nanoparticles represent a promising sunlight-responsive photocatalyst for the efficient removal of a wide range of organic dyes from aqueous solutions.

REFERENCES

1. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere [Internet]. 2013;93(7):1268-87. Available from: <http://dx.doi.org/10.1016/j.chemosphere.2013.07.059>
2. Qin K, Zhao Q, Yu H, Xia X, Li J, He S, et al. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ Res [Internet]. 2021;199(March):111360. Available from: <https://doi.org/10.1016/j.envres.2021.111360>
3. Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matrices - A review. J Environ Manage [Internet]. 2011;92(10):2304-47. Available from: <http://dx.doi.org/10.1016/j.jenvman.2011.05.023>
4. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res [Internet]. 2013;47(3):957-95. Available from: <http://dx.doi.org/10.1016/j.watres.2012.11.027>
5. Dinh QT, Moreau-Guigou E, Labadie P, Alliot F, Teil MJ, Blanchard M, et al. Occurrence of antibiotics in rural catchments. Chemosphere [Internet]. 2017;168:483-90. Available from: <http://dx.doi.org/10.1016/j.chemosphere.2016.10.106>
6. Chowdhury AP, Shambharkar BH. Fabrication and characterization of BiOBr-SnWO₄ heterojunction nanocomposites with boosted photodegradation capability. Chem Eng J Adv [Internet]. 2020;4(August):100040. Available from: <https://doi.org/10.1016/j.cej.2020.100040>
7. Kowalkińska M, Głuchowski P, Swebocki T, Ossowski T, Ostrowski A, Bednarski W, et al. Scheelite-Type Wide-Bandgap ABO₄Compounds (A = Ca, Sr, and Ba; B = Mo and W) as Potential Photocatalysts for Water Treatment. J Phys Chem C. 2021;125(46):25497-513.
8. Hayyan M, Hashim MA, Alnashef IM. Superoxide Ion: Generation and Chemical Implications. Chem Rev. 2016;116(5):3029-85.

9. Ge M, Liu L, Zhou Z. CrystEngComm Sunlight-driven degradation of Rhodamine B by peanut-shaped porous BiVO₄. 2012;1038-44.
10. Zhang L, Tan G, Wei S, Ren H, Xia A, Luo Y. Microwave hydrothermal synthesis and photocatalytic properties of TiO₂ / BiVO₄ composite photocatalysts. 2013;39:8597-604.
11. Soltani T, Tayyebi A, Lee B. Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO₄ / reduced graphene oxide under visible-light irradiation. J Environ Manage [Internet]. 2019;232(September 2017):713-21. Available from: <https://doi.org/10.1016/j.jenvman.2018.11.133>
12. Akbari MZ, Xu Y, Lu Z, Peng L. Review of antibiotics treatment by advance oxidation processes. Environ Adv [Internet]. 2021;5:100111. Available from: <https://doi.org/10.1016/j.envadv.2021.100111>
13. Calvete MJF, Piccirillo G, Vinagreiro CS, Pereira MM. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coord Chem Rev. 2019;395:63-85.
14. Durán-Álvarez JC, Avella E, Ramírez-Zamora RM, Zanella R. Photocatalytic degradation of ciprofloxacin using mono-(Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO₂ under UV-C and simulated sunlight. Catal Today [Internet]. 2016;266:175-87. Available from: <http://dx.doi.org/10.1016/j.cattod.2015.07.033>
15. Meng X, Jiang L, Wang W, Zhang Z. Enhanced Photocatalytic Activity of BiOBr / ZnO Heterojunction Semiconductors Prepared by Facile Hydrothermal Method. 2015;2015.
16. Zhang Z, Zada A, Cui N, Liu N, Liu M, Yang Y, et al. Synthesis of Ag Loaded ZnO / BiOCl with High Photocatalytic Performance for the Removal of Antibiotic Pollutants. 2021;1-12.
17. Heterojunctions MB, Grilla E, Kagialari MN, Petala A, Frontistis Z, Mantzavinos D. Photocatalytic Degradation of Valsartan by. 2021;1-14.
