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1. INTRODUCTION 

 
Cell cycles are regulated by different types of Cyclins and Cyclin Dependent Kinases. Of these, 

the holoenzyme [1] formed by the complexation of G1/S-Specific Cyclin D1 and Cyclin Dependent 
Kinase 4 and 6 (CDK4/6) are of particular interest because the mutation in its genome level [2–5] or 
over expression of either the proteins (Cyclin D1 and CDK4) or the holoenzyme is very significant in 
the proliferation of different types of cancers.  

 
ATP competitive CDK4 inhibitors have shown to cause apoptosis at the G1/S level and thus 

promote cancer cell death. In the present study, we performed 2D and 3D QSAR studies on 43 ATP 
competitive CDK4 inhibitors founded on their structures and biological activities to get understanding 
into the vital structural aspects that influence selective inhibition. 2D QSAR models were generated 
following a best-practices methodology like generation of descriptors, validate, generate a large 
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2D and 3D QSAR studies were applied on a set of CDK4 inhibitors which were assayed by 
same method to model and understand inhibitory activities. Among the various 2D QSAR models 
generated, ten models created by Kernel-Based Partial Least Square (kpls) regression method had 
high scores with an average value 0.8561. Top ranked model kpls_ linear_15 has a score value of 
0.8804, R2 0.8947 and Q2 0.8909. This model considers linear fragments and ring closures. 
Bioactive conformation of the ligand molecules were identified by docking analysis of highly 
active molecule 2 (pIC50 =8.796) in the Extra Precision mode with CDK4 homology model and 
the binding affinity was obtained as XP GScore of –8.072 which is the total contribution of 
coulomic interactions, binding interactions  and van der Waals interations. All optimized structures 
were aligned and an atom based 3D QSAR model was established (R2=0.9651, R2

cv=0.8191 and 
Q2=0.7368). This model was assigned large contribution of hydrophobic/ nonpolar features, 
electron withdrawing features and hydrogen bond donor features to the biological activity. The 
influences of these structural features were validated by analyzing the docking results. These 
outcomes will direct advance structural alteration and prediction of new CDK4 inhibitors.  
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number of QSAR models and apply models for prediction [6]. Atom based 3D QSAR study was 
employed for finding out the significance of electrostatic features, steric factors, non-bonding 
interactions etc of the same data set. For finding out the bioactive conformation of the ligand 
molecule, several structure-based designing strategies including homology modeling of CDK4 and 
docking analysis of highest biologically active molecule (2) were carried out. Assuming the docked 
form of the molecule 2 as the active conformation, all the prepared molecules were aligned on it and 
went for Atom based 3D QSAR modeling. 
 
2. EXPERIMENTAL 
 
2.1. Data Set 

3D structures of 43molecules having inhibitory activity towards CDK4 in terms of IC50 [7–10] 
were drawn and prepared by using the ligprep module of Schrodinger software suits. The molecules 
were randomly divided into training sets (33 molecules 75%) and test sets (11 molecules, 25%) for 
developing the robust 2D and 3D QSAR models (Figure 1). 
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Fig. 1: Structure of molecules with CDK4 inhibitory activity 

 
2.2. 2D QSAR study 

 
AutoQSAR is a fully automated QSAR model generator from Schrodinger Software suit. By 

considering all the 1D, 2D and 3D structural data as input and computed descriptors and fingerprints 
and best suitable QSAR modelsare also generated using CANVAS module of Schrodinger Software 
suit. It adopts different approaches like Kernal- based partial least squares, Naïve Bayes and 
ensemble-based recursive partitioning for model generations. Different QSAR models are ranked 
basedon their performance. Diverse machine learning approaches were executed for training 
individualistically using these descriptors and fingerprints. Those descriptors were eliminated which 
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were having the same value for all compounds since they do not provide any significant data. Various 
descriptors with substantial collinearities were also eliminated since they do not provide any useful 
contributions to the development of QSAR. The maximum allowed correlations between any pair of 
independent variables were adjusted to 0.80.Reduction was achieved by performing hierarchical, 
agglomerative clustering on the absolute Pearson correlation matrix of the descriptors, which is a 
proper similarity matrix. 50 different random splits of learning set into 75% training set and 25% test 
set and went for QSAR model generations. A total of 400 models are generated.A quality score is 
assigned to each model based on its performance on both its training set and test sets and are sorted by 
decreasing score and the top ten retained. 
 
2.3. Modeling and 3D QSAR studies 

 
Conformations of ligands in the bioactive form, its orientation in the lattice and alignments 

are the main contributing factors for the 3DQSAR analysis [11]. Since no inhibitor bound CDK4 
protein crystal structure was reported, a homology model of CDK4 was constructed using the crystal 
structure of CDK2 (1GIH; 2.8Å resolution) complexed with CDK4 inhibitor, 10 [12]. Knowledge 
based model building method was adopted by which insertions were constructed and gaps were closed 
with segments from known structures and returned to a single model of the structure. The inhibitor 
molecule bound with the template protein structure was also selected while building the model. 

 

 
Fig. 2: (a) Homology model of CDK4 with natural ligand, 10 (b) Ligand interaction diagram of 
modeled CDK4 and natural  ligand,10  (c) Homology model of CDK4 with compound 2 and (d) 

ligand interaction diagram of modelled CDK4 and compound 2. 
 

Molecular alignment is crucial for the construction of reliable 3D QSAR models. The sensitivity 
of alignment based 3D-QSAR was determined by the superimposition of bioactive conformations of 
molecules on each other [13]. In this study, docking based alignment was adopted since this method is 
comparatively accurate without much subjective influence. Docked conformation of 2 was selected as 
a template for alignment since it had a high biological activity (Figure 2). Docking was performed in 
extra precision mode. Receptor Grid was generated around the centroid of workspace ligand by 
selecting the molecule. The scaling factor corresponding to van der Waals radii of non-polar receptor 
atoms was adjusted to 1.0 and the partial atomic charge cut off was specified below 0.25. All other 
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prepared molecules were aligned on the bioactive conformation of the template molecule, 2. Figure 3 
represents the alignment of molecules on the bioactive conformation of 2. 

 
Fig. 3: The alignment of molecules on the bioactive conformation of 2. 

 
Both internal and external cross validation techniques were used for developing model since 

the consistency of the model and prediction of biological activity of those molecules which were not 
included in the training set were dependent on its statistical implication. Same molecules were 
considered for training and test set as that of 2D QSAR model. An atom based QSAR model was 
developed based on these molecules.  

 
The 3D grid covering the space occupied by the ligands was specified as 1Å .maximum number 

of partial least square factors was chosen as 3. With an aim to get better predictions of test set 
molecules, we have to avoid unproductive variables.  This had to be achieved by eliminating variables 
with ǀt levelǀ less than 2. Since the number of training molecules was 33, leave one out (LOO) cross 
validation statistics was used for internal validation the QSAR model. 

 
3. RESULTS AND DISCUSSIONS 
 
3.1. 2D QSAR study 

 
Based on 2D structural information and biological activity of 43 structurally prepared molecules, 

497 physiochemical and topological descriptors along with a variety of Canvas fingerprints were 
generated and based on these independent variables, models were built. A large number of models 
were built and validated using different random training and test sets. The quality of the model was 
evaluated by analyzing the score. Top ranked ten models were listed in Table 1. From the analysis, it 
was found that Kernel-Based Partial Least Square (kpls) regression method using both descriptors and 
fingerprints generates high scored model. 

 
The robustness of the model can be assessed by its score value. As the accuracy level 

approaches to 1, corresponds to perfect predictions. The score value can be calculated as 
 
ScoreM = accuracytest (1.0–|accuracytrain–accuracytest|)  
 

In the present study, all the top ranked ten models have score values greater than 0.82 and has an 
average value of 0.8561. Scatter plot of top scored model is presented in Figure 4. 

 
The correlation coefficients R2of the models between the observed and predicted activity of the 

training set have an average greater than 0.85 and that of the test sets also have an average Q2 value 
0.8675.The average RMSE and standard deviations of all these models were 0.4897 and 0.5222 
respectively. And all these statistical results were largely established for high performance. Top 
ranked model, kpls_linear_15shows the highest score (0.8804), R2(0.8947) and Q2 (0.8909)and does 
considerably better than all other fingerprint types. This finding advocates that this model is a robust 
fingerprint method that has utmost chance of perfect execution with any settings. 
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Table 1: Statistical parameters of 2D QSAR models 
 

Model Code Score S.D R2 RMSE Q2 MW(Null 
Hypothesis) 

kpls_linear_15 0.8804 0.4693 0.8947 0.4693 0.8909 0.5264 
kpls_molprint_2D_50 0.8801 0.5216 0.8762 0.3431 0.9342 0.4234 
kpls_dentritic_17 0.8691 0.5231 0.8767 0.4985 0.8546 0.515 
kpls_dentritic_49 0.866 0.5522 0.8632 0.4673 0.8701 0.5475 
kpls_molprint_2D_15 0.8609 0.5455 0.8577 0.4728 0.8892 0.5264 
kpls_linear_49 0.8532 0.5136 0.8816 0.5105 0.8439 0.5475 
kpls_dentritic_20 0.852 0.4882 0.8885 0.5056 0.869 0.1848 
kpls_molprint_2D_49 0.8394 0.5614 0.8586 0.5432 0.8238 0.5475 
kpls_dentritic_15 0.839 0.5082 0.8765 0.5295 0.861 0.5264 
kpls_molprint_2D_24 0.8206 0.5384 0.8671 0.5554 0.8371 0.2262 

 

 
 

Fig. 4: kpls linear 2D QSAR model 
 

 
3.2. Modelling and 3D QSAR studies 

 
Homology model of CDK4 was constructed in the ligand bound form considering CDK2 as a 

template using the Prime module of Schrodinger software suitIle12, Val 20, Ala 33, Val 77, Phe 93, 
Glu 94, His 45, Val 96, Gln 98, Asp 99, Thr 102, Glu 143, Leu 147, Ala 157 and Asp158 are the 
binding region residues [14].  

 
Both Intrinsic forces and extrinsic forces considerably stimulate the bioactive conformation of 

the molecule [15–16]. Consistency of 3D QSAR model was governed by the determination of 
bioactive conformations. In order to find out the bioactive conformation of the ligands, docking 
procedure was adopted. The molecule, 2 with highest biological activity in terms of pIC50 (8.796) 
was selected for flexible docking with CDK4 in its active site in which the natural ligand 10 was 
bound. Figure 2(a) and (b) represents the bound conformation and the ligand interaction diagram of 
natural ligand 10 (pIC50=7.00) and the modelled CDK4. The bound molecule formed two hydrogen 
bonds with Val 96 of CDK4 and another hydrogen bond with Lys 35. The natural ligand is a diaryl 
urea derivative, 10 with specific inhibition towards CDK4. Figure 2(c) and (d) characterizes the 
docked conformation of ligand, 2 (pIC50=8.7959) which had a high biological activity in terms of 
pIC50 with modelled CDK4. Compound 2 forms two hydrogen bonds with CDK4 at residues Asp99 
and Asp158; both were in the hinge region. A salt bridge was also formed between Asp158 and the 
ligand molecule. These two hydrogen bonding connections together with salt bridge contributes 
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positively towards its high XPGScore of –8.072,  docking score of –7.826 with glide energy of –
58.781. Glide XP GScore is the total contribution of Coulombic interactions, binding interactions and 
van der Waals interactions [17]. Desolvation energy as well as strain energy caused by either ligand 
molecule or the protein obstructs binding. These penalties were also considered for calculating the XP 
GScore. It is symbolized as follows:  

 
 XP GScore =  Ecoul+EvdW+Ebind+Epenalty 
 Ebind  = Ehyd_enclosure+Ehb_nn_motif+Ehb_cc_motif+EPI+Ehb_pair+Ephobic_pair 
 Epenalty  = Edesolv+Eligand_strain. 

 
Observed biological activity and predicted biological activities predicted by both 2D QSAR and 

3D QSAR methodology are summarized in Table 2 and the scatter plot is shown in Figure 5. 
 

 
 

Fig. 5: Scatter plot of Atom Based 3D QSAR model 
 

Predictiveness of the model can be assessed by foretelling the activity of an internal test set and 
external test set of molecules. The robustness of the model was depend on the R2

cv and R2
cv=(PRESS0-

PRESS)/(PRESS0) where PRESS0 is the mean of the observed biological activity while PRESS is the 
sum of the squares of the differences between the predicted and the observed activity values [18]. Q2 
is the Predictive correlation coefficient is a measure of predictive ability of the derived QSAR model 
and is calculated by Q2 [19]. Q2= (SD – PRESS) / SD where SD is the sum of squared deviations 
between the biological activities of the test set molecules and the mean activity of the training set 
molecules, while PRESS is the sum of squared deviations between the observed and the predicted 
activities of the test set molecules. A greater F value (Fischer Statistic value) infers that a more 
noteworthy correlation has been reached. This value can be considered as a degree of the statistical 
implication of the regression model [20]. It is counted as a norm to define whether a more complex 
model is significantly better than the other. 
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Table 2:  Experimental and predicted inhibitory activities of CDK4 inhibitors 
  

Title Set Y(Obs) 
2D QSAR 3D QSAR 

Y(Pred) Error Y(Pred) Error 
1 test 6.6383 6.9581 0.3198 6.6423 0.004 
2 train 8.7959 7.7489 –1.047 8.357 –0.4389 
3 train 8.1549 7.6977 –0.4572 7.2029 –0.9520 
4 train 7.6778 7.2336 –0.4342 7.1773 –0.5005 
5 test 7.6383 7.7489 0.1106 8.2422 0.6039 
6 train 7.5376 7.2336 –0.304 6.7842 –0.7534 
7 train 7.3768 7.4071 0.0303 6.8681 –0.5087 
8 train 7.2518 6.8874 –0.3643 6.8692 –0.3826 
9 test 7.1871 6.6438 –0.5433 6.9593 –0.2278 

10 train 7 6.716 –0.284 7.1362 0.1362 
11 train 6.9586 6.8466 –0.112 6.7248 –0.2338 
12 test 6.8861 6.8536 –0.0324 7.0125 0.1264 
13 train 6.7959 6.8946 0.0987 6.534 –0.1884 
14 train 6.7959 6.7073 –0.0886 7.0568 0.2609 
15 train 6.6778 6.6646 –0.0132 6.8627 0.1849 
16 train 6.6576 6.6646 0.007 6.7753 0.1177 
17 train 6.6021 6.2655 –0.3366 6.4314 –0.1607 
18 train 6.5376 6.7453 0.2077 6.6921 0.1545 
19 test 6.3665 6.7073 0.3407 6.4845 0.1180 
20 train 6.3279 6.2884 –0.0395 6.3393 0.0114 
21 train 6.1938 6.9522 0.7583 6.2408 0.0469 
22 train 6.1739 5.8557 –0.3182 6.2738 0.0999 
23 train 6.1427 6.381 0.2383 7.0082 0.8655 
24 train 6.0506 6.4888 0.4382 6.1108 0.0602 
25 train 5.6198 5.6885 0.0687 5.2709 –0.3489 
26 test 5.6198 6.4599 0.8401 5.7231 0.1033 
27 train 5.4337 6.5224 1.0787 5.9143 0.4706 
28 test 5.4202 6.1872 0.767 5.7141 0.2939 
29 train 5.3979 6.4291 1.0312 5.7598 0.3618 
30 train 5.1192 5.2328 0.1136 4.8807 –0.2385 
31 train 5.1192 5.2328 0.1136 4.8807 –0.2385 
32 train 4.6383 4.6038 –0.0343 4.5532 –0.0851 
33 train 4.4337 4.197 –0.2467 4.3804 –0.0633 
34 test 4.3979 4.8321 0.4341 4.8762 0.4783 
35 train 4.3565 3.9429 –0.4137 3.9519 –0.4046 
36 train 4.1135 4.5766 0.4631 4.2018 0.0883 
37 test 4.0458 3.9236 –0.1222 4.3203 0.2745 
38 train 4 4.8517 0.8517 5.5669 1.5669 
39 train 3.9586 3.7166 –0.242 3.5797 –0.3789 
40 train 3.9208 3.647 –0.2738 3.8295 –0.0913 
41 train 3.8239 3.5352 –0.2887 3.8021 –0.0218 
42 test 3.6576 3.5555 –0.1021 3.9973 0.3397 
43 train 3.4685 4.0912 0.6227 3.7151 0.2466 
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Table 3: Results of Atom based 3D QSAR 
 

# Factors 4 
Standard Deviation 0.3052 
R2 0.9651 
R2

CV 0.8191 
R2 Scramble 0.6922 
Stability 0.91 
F 145.2 
P 5.55E–15 
RMSE 0.75 
Q2 0.7368 
Pearson R 0.8696 
Hydrogen bond donor 0.090997 
Hydrophobic/non-polar 0.577229 
Positive ionic 0.02014 
Electron withdrawing 0.31158 

 
From the analysis it is found that R2 for regression is 0.9651and cross validated R2 computed 

from predictions obtained by a leave one out (LOO) procedure is 0.8191. High values of both R2 and 
R2

cv are indicators of the high predictive ability of the model. Stability nearer to one (0.91) indicates 
the model predictions should be stable. Greater value of variance ratio (F=145.2) specifies high 
statistical significance. Greater degree of the confidence of the model was indicated by smaller value 
of P (5.55E–15).Q2 is the Predictive correlation coefficient is a measure of predictive ability of the 
derived QSAR model and in the present study; it is found that Q2 is 0.7368. This result was pointing 
to fact that the proposed model has best predictive ability. 

 
The field contributions of factors of Hydrophobic or nonpolar influence were 57.7% and 31.1% 

respectively signifying that the hydrophobic or nonpolar fields have greater impact on the model. 
 

 
Fig. 6: Contour maps of atom based QSAR model in combination with compound 2 and 43 (a) 

and (b) hydrophobic/ nonpolar feature,  (c) and (d) Electron withdrawing effect and (e) and (f) 
hydrogen bond donor feature 

 
In atom based QSAR, a molecule is treated as a set of overlapping van der Waals spheres [21]. 

The consequence of spatial arrangement of structural features on CDK4 can be visualized in the 
Contour plot analysis. Figure 6 (a) and (c) represents the contour maps of atom based QSAR model of 
compound 2 of highest activity (pIC50=8.7959) and Figure 6(b) and (d) represent that of compound 
43(pIC50=3.4685). Here, blue cubes represent positive coefficient towards the inhibition and the red 
cubes represent negative coefficient towards inhibition of CDK4. From Figure 6(a) which represents 
the hydrophobic or non-polar feature, the blue cubes around benzopyrrolizin–5–one and the pyrazole 
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moiety contribute positively towards its hydrophobic nature whereas the carbonyl group in the 5th 
position of benzopyrrolizine contributes negatively. Influence of chlorine is remarkable towards 
inhibitory activity as it is covered with blue contours. Blue contours which favor better activity were 
absent in the case of 43 and this is supported by its low pIC50. Introduction of carbons, halogens and 
C–H in the regions favouring hydrophophic/ nonpolar regions may enhance the inhibitory activity of 
the molecule. Other significant component that impacts on the activity is the electron withdrawing 
character which includes different types of hybridization, hydrogen bond acceptor features, л-electron 
donation features etc and is shown in Figure.6 (c) and (d). Presence of diamide linkage, pyrazole 
moiety and benzopyrrolizin–5–one contribute positively towards the biological activity of the 
compound 2whereas the presence of hydroxyl group in the naphthyl ring of 43 has a negative electron 
withdrawing effect and thus it has a lower bioactivity. Insertion of non-ionic nitrogens and oxygens 
may intensify pIC50 value. Hydrogens attached to polar atoms which are categorized as hydrogen 
bond donor attributes also contribute significantly towards the inhibitory activity (Figure 6(e) and (f)). 
High activity of 2 is also supported by the presence of hydrogen bonding groups as it is specified by 
the blue contour areas. Compound 43 lacks hydrogen bonding feature at certain specific areas. 
Nitrogen in the pyrrazole ring forms a hydrogen bond with Asp158 as per the docking analysis. Also, 
hydroxyl group (–OH) at the 7th position of the naphthyl ring reduces the inhibitory effect.  
 
4. CONCLUSIONS 

 
A set of molecules with CDK4 specific inhibition was examined to relate pIC50 values against 

CDK4 to the molecular structure. High predictive ability of 2D and 3D QSAR models was 
substantiated by leave one out (LOO) and internal and external validation procedures. The 
performance of KPLS approach was resulted in 10 best predictive models with an average score value 
of 0.8561. 3D QSAR results proved that electron withdrawing, hydrogen bonding as well as 
hydrophobic non-polar interactions affects considerably the biological activity. The scrutiny of the 3D 
contour maps permitted us to spot areas of identified inhibitors that require a physiochemical features 
to increase activity. Docking study of compound 2 support these results.  

 
The biologically active conformation of the inhibitor molecules was provided by the docking 

study of the homology model of CDK4. This helped in the substantiation of QSAR models with 
respect to the protein environment and give exquisite perceptions for the structure activity 
explanations. With the aid of this information, we can design new active molecules with enhanced 
pharmacological properties. 
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