

Pharmaceutical Excipients and Their Potential Adverse Effects on Human Health

¹Akshata M. Girase, ²Bhupendra M. Mahale*

Author's Affiliations:

¹Pharmaceutical Quality Assurance, Dr. Babasaheb Ambedkar Technological University, Lonere, SVS's Dadasaheb Rawal Pharmacy College Dondaicha, Dist- Dhule, Maharashtra, India

²Pharmaceutics, Dr. Babasaheb Ambedkar Technological University, Lonere, SVS's Dadasaheb Rawal Pharmacy College Dondaicha, Dist- Dhule, Maharashtra, India

***Corresponding Author:** **Bhupendra M. Mahale**, Pharmaceutics, Dr. Babasaheb Ambedkar Technological University, Lonere, SVS's Dadasaheb Rawal Pharmacy College Dondaicha, Dist- Dhule, Maharashtra, India

E-mail: bhupendramahale999@gmail.com

ABSTRACT

Pharmaceutical excipients are integral, non-therapeutic components in drug formulations, essential for ensuring the safety, efficacy, and stability of pharmaceutical products. These substances, far from being mere fillers, facilitate manufacturing processes, enhance stability, improve bioavailability, and significantly influence a drug's appearance, taste, and ultimately, patient adherence. In modern formulations, excipients can constitute a substantial portion, sometimes 80-90%, of the finished product, underscoring their critical role in contemporary drug delivery systems. Historically, excipients were assumed to be inert, a perception that has been increasingly challenged by accumulating evidence of their potential to cause adverse effects. These concerns encompass a range of issues, including immunological reactions, organ-specific toxicities, and complex interactions with active pharmaceutical ingredients (APIs). The vulnerability of certain populations, such as neonates and infants, is particularly pronounced due to their immature metabolic and clearance functions, which can lead to excipient accumulation and toxicity. Specific excipients like propylene glycol, benzoic acid, parabens, benzalkonium chloride, and certain flavoring agents have been directly implicated in adverse reactions or toxicological concerns. This review comprehensively examines the multifaceted roles of excipients, their classification, and the spectrum of reported adverse effects. It delves into the underlying mechanisms of these adverse reactions, discusses current regulatory frameworks and safety considerations, highlights significant historical and contemporary case studies, and outlines crucial future directions for research and development. The overarching emphasis is on achieving a critical balance between excipient functionality and patient safety in drug formulation.

Keywords: Pharmaceutical excipients, Safety, Stability, Adverse Effects, Toxicity

Received on 15.09.2025, Revised on 11.10.2025, Accepted on 30.11.2025

How to cite this article: Girase A.M., Mahale B.M. Pharmaceutical Excipients and Their Potential Adverse Effects on Human Health. *Bulletin of Pure and Applied Sciences-Chemistry*, 2025;44C (2):121-143.

1. INTRODUCTION

1.1 Definition and Role of Pharmaceutical Excipients

Pharmaceutical excipients are defined as substances intentionally formulated alongside the active pharmaceutical ingredient (API) of a drug, but which do not possess therapeutic effects themselves. Their inclusion is pivotal for the successful creation and production of pharmaceutical products, ensuring their quality, safety, and efficacy throughout their shelf life and during administration. The roles of excipients are remarkably diverse and extend beyond simple bulk provision. They are instrumental in facilitating drug manufacturing processes, enhancing the chemical and physical stability of the API, improving drug bioavailability, and influencing the drugs sensory attributes such as appearance and taste, which are critical for patient adherence. Functionally, excipients can serve as binders that hold tablet components together, disintegrants that ensure rapid tablet breakdown, fillers or diluents that provide necessary bulk, lubricants that prevent manufacturing issues, and preservatives that protect against microbial contamination. Each category contributes a specific function, collectively ensuring that the active component of a drug is delivered safely and efficiently to the body.

Importance in Formulation Science (Stability, Bioavailability, Palatability, etc.)

Excipients are indispensable in formulation science due to their profound impact on critical drug characteristics. They play a primary role in maintaining drug stability, both chemically and physically. APIs can degrade over time when exposed to environmental factors such as humidity, temperature, or light. Excipients, including antioxidants, buffering agents, and preservatives, counteract these degradation pathways by preventing oxidation, controlling pH changes, and inhibiting microbial growth, thereby ensuring the drug remains effective throughout its designated shelf life. For instance, hygroscopic excipients like silica can absorb moisture, safeguarding moisture-sensitive APIs.

Beyond stability, excipients are crucial for improving drug bioavailability, which refers to the rate and extent to which an active drug ingredient is absorbed and becomes available at its site of action. For poorly water-soluble drugs, excipients enhance solubility or modify drug release mechanisms, thereby optimizing therapeutic effects. Polyethylene glycol (PEG), for example, is frequently employed as a solubilizing agent to ensure efficient drug dissolution in the gastrointestinal tract. Excipients also meticulously control drug release profiles; disintegrants like starch facilitate rapid tablet breakdown for immediate absorption, while polymers such as Hydroxypropyl Methylcellulose (HPMC) enable sustained release, extending therapeutic effects over longer periods. This controlled release is particularly valuable for drugs requiring consistent plasma concentrations or targeted delivery. Furthermore, excipients significantly enhance patient acceptability and compliance. They can mask unpleasant tastes or odors and modify the texture of formulations, which is especially vital for ensuring medication adherence in pediatric and geriatric populations.

1.2 Historical Assumption of Inertness

Historically, pharmaceutical excipients have been widely considered inert substances, devoid of any medicinal effect or biological influence within the human body. This long-held assumption led to a perception that excipients were merely passive carriers or manufacturing aids, resulting in less rigorous safety scrutiny compared to active pharmaceutical ingredients. The primary focus during drug development was on the API, with excipients often viewed as secondary components. This perspective, however, has been increasingly challenged by accumulating evidence. It is now understood that this historical underestimation may have led to unforeseen consequences, including the premature abandonment of promising drug candidates. In some instances, the limited efficacy observed in early drug development might have been a direct result of inappropriate excipients interacting with or masking the active substance's intended activity, a problem whose

full extent is difficult to quantify retrospectively. The evolving understanding of excipients thus necessitates a fundamental shift from assuming inertness to actively evaluating their potential biological impacts.

1.3 Rising Concerns about Safety and Side Effects

Despite their indispensable roles, there are escalating concerns regarding the safety and potential side effects of pharmaceutical excipients. New evidence consistently demonstrates that many excipients are not truly inert and can indeed pose significant safety risks, particularly to vulnerable patient populations such as neonates and infants. This heightened susceptibility in younger age groups is largely attributable to their immature metabolic and clearance functions, which can lead to the accumulation of excipients like propylene glycol, benzoic acid, and benzoates to toxic levels. For instance, propylene glycol, while generally considered safe, has been linked to hyperosmolality, lactic acidosis, and neurological disturbances in neonates due to their prolonged elimination half-life. [1, 2]

A significant challenge in drug development, especially for pediatric formulations, is the pervasive lack of comprehensive safety and toxicity data for many commonly used excipients. While maximum oral safe doses for numerous excipients are established for adult populations, comparable acceptable levels for pediatric patients, including preterm neonates, often remain undetermined due to insufficient evidence-based information. This gap means that many pediatric formulations may carry unquantified risks, necessitating a reactive approach to safety concerns rather than a proactive one. The current situation, where issues are often addressed after they arise, underscores a critical ethical and scientific deficiency in pharmaceutical development. This situation implies that dedicated research, age-specific safety limits, and harmonized regulatory guidelines tailored to these vulnerable populations are urgently needed to move towards a more proactive and preventative safety paradigm.

The historical assumption that excipients are inert is directly contradicted by these rising

concerns and the growing body of evidence detailing their adverse effects. This contradiction highlights that excipients, even in seemingly small quantities, can possess intrinsic bioactivity or interact in ways that compromise therapeutic outcomes or patient safety. The Levothyrox controversy in France, where a change in excipients led to widespread reports of side effects, and the P140/trehalose clinical trial, where trehalose counteracted the beneficial effects of the active peptide, vividly illustrate that excipients can interfere with a drug's intended mechanism of action or cause direct adverse effects. This growing understanding of "hidden" bioactivity means that drug development must evolve beyond simply assessing excipients as manufacturing aids. It requires a rigorous evaluation of their pharmacological and toxicological profiles, recognizing that the complexity of drug formulations extends beyond the API and demands a systems-level understanding of all components and their interactions within the biological system. [3]

1.4 Aim and objective of the Review

This review article aims to provide a comprehensive and critical overview of pharmaceutical excipients. It will detail their diverse classifications and essential functional roles within drug formulations, while critically examining their potential adverse effects on human health. The review will explore the various mechanisms underlying these adverse reactions, discuss the current landscape of regulatory and safety considerations, and highlight significant historical and contemporary case studies that underscore the importance of excipient safety. Finally, it will outline crucial challenges and propose future directions for research and development in the field, emphasizing the imperative to balance excipient functionality with patient safety in the design and production of pharmaceutical products.

2. CLASSIFICATION OF PHARMACEUTICAL EXCIPIENTS

Pharmaceutical excipients are categorized based on their specific functional roles within drug formulations, as well as, to a lesser extent, by their intended route of administration. These classifications are fundamental to understanding

how excipients contribute to the overall properties and performance of a medicinal product.

2.1 Based on Functionality

Excipients are broadly classified by the particular function they perform in a dosage form, ensuring the active pharmaceutical ingredient (API) is delivered effectively and safely. The primary functional categories include:

Binders: These agents are crucial for holding the constituents of a tablet together, providing the necessary mechanical strength to tablets and granules. They ensure that tablets can be formed with desired hardness and size. Common examples include gelatin, cellulose and its derivatives, starch, and sucrose.

Fillers/Diluents: Utilized primarily in solid dosage forms like capsules and tablets, fillers or diluents increase the volume and bulk of the pharmacological component. This makes it easier to meter and handle the drug precisely during the manufacturing process, ensuring accurate dosing. Examples include lactose, mannitol, dibasic calcium phosphate, and plant cellulose.

Disintegrants: These compounds are incorporated into tablet and capsule formulations to facilitate their breakdown into smaller particles upon contact with water in the gastrointestinal tract. This rapid disintegration is essential for quicker dissolution and subsequent absorption of the API. Polyvinylpyrrolidone (PVP) and carboxymethyl cellulose are widely used disintegrants.

Lubricants: Lubricants prevent ingredients from adhering to the surfaces of manufacturing equipment, such as tablet punches and dies, or capsule filling machines. They also minimize friction between the solid material and the die wall during tablet compression and ejection, ensuring smooth production. Stearic acid and magnesium stearate are common examples.

Preservatives: Added to extend the shelf life of pharmaceutical products, preservatives inhibit or prevent microbial contamination, ensuring the product remains safe and effective over time. Examples include parabens (methylparaben, propylparaben) and sorbic acid.

Colorants: These agents are used to impart a unique and appealing visual appearance to pharmaceutical dosage forms. Their primary purpose is aesthetic and for product

identification, helping to differentiate medications and prevent errors. Common colorants include titanium dioxide (white), tartrazine (yellow FD&C No. 5), and amaranth carmine (red).

Sweeteners and Flavoring Agents: Particularly important for oral liquid formulations, these excipients improve palatability and mask unpleasant tastes or odors of APIs, thereby enhancing patient acceptability and promoting adherence to treatment regimens. Examples of sweeteners include sucrose, saccharin, aspartame, and sorbitol, while various fruit flavors are commonly used as flavoring agents.

Solubilizers and Surfactants: These excipients are crucial for increasing the solubility of poorly water-soluble drugs, a common challenge in pharmaceutical formulation. They also help stabilize emulsions and suspensions. Polyethylene glycol (PEG) and polysorbates are frequently used solubilizers and surfactants.

Other functional roles include glidants (improve powder flow), antiadherents (prevent sticking to equipment), coatings (for protection, taste masking, or controlled release), antioxidants (protect from oxidation), sorbents (absorb moisture or oil), solvents and co-solvents (dissolve APIs), buffering agents (maintain pH), chelating agents (bind metal ions), and viscosity-imparting agents (thickeners).

The classification of excipients by their primary function is well-established, but a notable trend in pharmaceutical technology is the development of "high-functionality" or "multifunctional" excipients. These advanced materials are engineered to perform multiple tasks simultaneously, such as acting as both a binder and a direct-compressible filler, or enhancing flow while also serving as a disintegrant. This evolution from single-function components to multi-tasking agents suggests a drive towards streamlining formulation and potentially reducing the total number of excipients in a product. However, this increased complexity also means that predicting their interactions and potential adverse effects becomes more intricate, as a single multifunctional excipient could influence multiple aspects of drug performance and safety. This necessitates a deeper understanding of their multifaceted roles and potential impacts. [4]

2.2 Based on Route of Administration

While a comprehensive, universally adopted classification system for excipients based solely on the route of administration (e.g., oral, parenteral, topical) is not as explicitly detailed as functional classifications, the selection of excipients is inherently and critically tied to the intended route of drug delivery. The physiological environment and absorption mechanisms vary significantly across different routes, necessitating excipients with specific properties to ensure optimal drug performance and safety. For oral formulations, excipients are chosen to facilitate dissolution and absorption in the gastrointestinal tract, enhance palatability to ensure patient compliance, and maintain stability against gastric pH and enzymes. Examples include sweeteners, flavoring agents, and disintegrants that promote rapid release in the stomach or intestine. For parenteral (injectable) formulations, excipients must ensure sterility, maintain solution tonicity and pH, prevent API degradation, and be non-irritating or non-toxic when administered intravenously,

intramuscularly, or subcutaneously. Solvents, solubilizers, and buffering agents are critical in these preparations. [5,6] Topical formulations require excipients that facilitate drug penetration through the skin, provide appropriate texture and spreadability, and minimize skin irritation or sensitization. Emulsifying agents, thickeners, and preservatives are commonly employed [7]. The choice of excipients is thus highly dependent on the route of administration, and an excipient considered safe for one route may be toxic or ineffective for another. This highlights a critical aspect of excipient safety assessment: a "safe" excipient is not universally safe; its safety is context-dependent, tied to the specific dosage form and route of administration. This underscores the necessity for route-specific toxicological data and regulatory considerations, rather than a blanket "Generally Recognized as Safe" (GRAS) or general "approved" status. The implications are profound, suggesting that a rigorous evaluation of excipient safety must always consider the precise manner in which the drug will be administered to the patient.

Table 1: Functional Classification of Pharmaceutical Excipients and Examples

Excipient Type	Primary Purpose/Function	Representative Examples
Binders	Keep tablet constituents together, provide mechanical strength	Gelatin, Starch, Cellulose derivatives, Sucrose
Fillers/Diluents	Increase volume/bulk, aid precise metering, ensure dose uniformity	Lactose, Mannitol, Dibasic calcium phosphate, Plant cellulose
Disintegrants	Break down tablets/capsules into smaller pieces for quicker dissolution	Polyvinylpyrrolidone, Carboxymethyl cellulose, Sodium starch glycolate
Lubricants	Prevent adhesion to manufacturing equipment, reduce friction during tablet formation	Stearic acid, Magnesium stearate, Polyethylene glycol
Preservatives	Extend shelf life by preventing microbial contamination	Methylparaben, Propylparaben, Sorbic acid
Colorants	Provide unique visual appearance for identification and aesthetics	Titanium dioxide, Tartrazine, Amaranth carmine, Saffron
Sweeteners	Improve palatability, mask unpleasant tastes in oral liquid formulations	Sucrose, Saccharin, Aspartame, Sorbitol
Flavoring Agents	Enhance patient acceptability by masking unpleasant tastes/odors	Menthol, Rose oil, Fruit flavors, Syrup
Solubilizers/Surfactants	Increase solubility of poorly water-soluble drugs, stabilize formulations	Polyethylene glycol (PEG), Polysorbates, Sodium lauryl sulfate

Glidants	Improve powder flow by minimizing inter-particular friction	Talc, Fumed silica, Magnesium carbonate
Antiadherents	Prevent adhesion of tablet surface to die walls and punches	Magnesium stearates, Talc, Starch
Coatings	Apply protective layer for identification, masking, protection, ease of swallowing	HPMC, MC, HPC
Antioxidants	Protect active ingredients from oxidation	Ascorbic acid, Sodium bisulphite
Sorbents	Absorb oil or moisture from water	Peat moss, Sawdust, Nylon, Polyethylene-based
Solvents & Co-solvents	Dissolve solutes to produce a solution	Water, Alcohol, Ethanol, Sorbitol, Oils
Buffering Agents	Allow a solution to withstand pH changes	Carbonate, Citrates, Gluconates, Lactates, Tartrates
Chelating Agents	Form complexes with metal ions, inactivating catalytic activity	Ethylene diamine tetraacetate (EDTA)
Viscosity Imparting Agents	Increase or reduce liquid viscosity for flavor or pourability	Hydroxyethylcellulose, Methylcellulose

3. COMMONLY USED EXCIPIENTS AND THEIR REPORTED ADVERSE EFFECTS

While pharmaceutical excipients are essential for drug formulation, a growing body of evidence indicates that many commonly used excipients can elicit adverse effects in susceptible individuals. These reactions often depend on the specific excipient, its concentration, the route of administration, and the patient's physiological profile.

3.1 Diluents and Fillers

Lactose: A ubiquitous diluent and filler in solid dosage forms, lactose is a disaccharide found in animal milk. Its primary adverse effect stems from lactose intolerance, a condition caused by the absence or deficiency of the enzyme lactase, which is responsible for breaking down lactose in the small bowel. When undigested lactose reaches the colon, it draws in fluid and is fermented by enteric bacteria, leading to a range of gastrointestinal (GI) symptoms such as abdominal bloating, flatulence, diarrhea, nausea, and abdominal cramps. While the amount of lactose in most medicines is generally small (typically less than 2g per day, compared to a symptom threshold of approximately 12g), severe GI symptoms are unlikely to be solely due to medicinal lactose, except in cases of severe

intolerance. Nevertheless, caution is advised for individuals with severe cow's milk allergy due to rare reports of milk protein contamination in lactose-containing medicines. [8,9]

Mannitol: Frequently used as a diluent, bulking agent, and sweetener, mannitol is a sugar alcohol known for its low hygroscopicity and cooling sensation. When administered orally, mannitol can act as an osmotic laxative in doses exceeding 20g, causing bloating and diarrhea. It increases the osmolarity within the gut lumen, drawing water into the bowel and promoting the excretion of its contents. From a pharmacological perspective, polyols like mannitol can reduce the absorption of APIs by increasing intraluminal fluid volume and diluting the API, thereby potentially compromising treatment efficacy. Furthermore, intravenous mannitol has been reported to cause non-specific hypersensitivity reactions, including urticaria and angioedema. These reactions are attributed to its hyperosmolar properties, which can trigger the degranulation of mast cells and basophils in a non-immunologic manner [10,11,12,13]

3.2 Preservatives

Benzalkonium Chloride (BAC): This quaternary ammonium compound is a widely used preservative, particularly in inhaled medications (e.g., nebulizer solutions) and ophthalmic preparations (eye drops). BAC has been

associated with dose-related bronchoconstriction, especially in pediatric patients with asthma, and has been linked to severe respiratory events, including respiratory arrest. Beyond respiratory effects, BAC is recognized as a human skin and severe eye irritant. It also exhibits systemic toxicity, acting as a respiratory toxicant, immunotoxicant, gastrointestinal toxicant, and neurotoxicant. Concentrated solutions are corrosive to skin and mucosa and can be fatal if ingested in sufficient volumes. Its biocidal mechanism involves the disruption of cellular membrane lipid bilayers [14,15,16].

Parabens (e.g., Methylparaben, Propylparaben): Parabens are a group of alkyl esters of para-hydroxybenzoic acid, extensively employed as broad-spectrum antimicrobial preservatives in pharmaceuticals, cosmetics, and food products due to their chemical stability, colorless, odorless, and insipid properties. However, they are classified as endocrine-disrupting chemicals (EDCs) due to their structural similarity to estrogen and their ability to interfere with nuclear receptors for androgens, estrogens, progesterone, and glucocorticosteroids. Studies in both human and animal models have established the role of parabens in altering steroidogenesis and the activity of enzymes that metabolize endogenous hormones. Exposure to parabens has been associated with a range of adverse health outcomes, including reproductive, developmental, and neurological disorders, thyroid dysfunction (e.g., increased thyroid-stimulating hormone levels in humans), skin allergies, and certain cancers [17,18].

3.3 Colorants and Dyes

Tartrazine (FD&C Yellow No. 5): This synthetic azo dye is commonly used in pharmaceuticals and foods to impart a yellow color. Tartrazine has been a subject of considerable debate regarding its potential adverse effects, particularly hypersensitivity reactions and behavioral changes in children. Studies have indicated that tartrazine can induce a reduction in serum and saliva zinc concentrations and an increase in urinary zinc content in hyperactive children, which correlates with a deterioration in their behavioral and emotional responses. Reported adverse reactions include increased overactivity, aggression, poor speech, poor coordination, and

the exacerbation of asthma and/or eczema. While some studies emphasize the need for objective verification to prevent overdiagnosis of additive-related behavioral effects, the association remains a concern, particularly for sensitive individuals. Beyond hyperactivity, tartrazine has been implicated in intolerances in adults and cases of contact dermatitis. [19,20,21]

3.4 Sweeteners

Aspartame: A widely used artificial sweetener, aspartame is a dipeptide ester that is rapidly and completely hydrolyzed in the gastrointestinal tract into its constituent components: methanol, aspartic acid, and phenylalanine. Concerns regarding aspartame primarily revolve around individuals with phenylketonuria (PKU), a rare genetic metabolic disorder characterized by the inability to metabolize phenylalanine. In PKU patients, excessive phenylalanine accumulation can lead to severe neurotoxicity. Regulatory bodies, such as the European Food Safety Authority (EFSA), have assessed that aspartame intakes up to the Acceptable Daily Intake (ADI) of 40 mg/kg body weight per day, even when combined with phenylalanine from a typical meal, are unlikely to result in peak plasma phenylalanine concentrations exceeding clinical guidelines for preventing adverse effects in fetuses of PKU mothers. However, products containing aspartame must carry warnings for PKU patients. Other reported adverse symptoms associated with aspartame, though less commonly confirmed in large-scale studies, include headaches, dizziness, seizures, nausea, and general neurological disturbances. [22,23,24]

Sorbitol: This sugar alcohol serves as a sweetener and a pharmaceutical vehicle, particularly in liquid oral dosage forms. Sorbitol is known for its laxative properties. Ingestion can cause a range of gastrointestinal symptoms, including gas, urgency, bloating, and abdominal cramps, in a dose-dependent manner (typically 5 to 20 grams per day). Doses exceeding 20 grams per day can lead to diarrhea, and sorbitol has been identified as an underappreciated cause of chronic osmotic diarrhea. The mechanism involves sorbitol increasing osmotic pressure in the intestine, which draws water into the lumen and accelerates small intestine transit time. This accelerated transit can, in turn, decrease the absorption and bioavailability of certain co-

administered drugs that are sensitive to changes in gastrointestinal motility. [25,26,27]

3.5 Solubilizers and Surfactants

Polysorbates (e.g., Polysorbate 80): These hydrophilic, nonionic surfactants are widely utilized in pharmaceutical formulations as solubilizers, emulsifiers, and stabilizers. Despite their common use, polysorbates have been increasingly recognized as culprits in immediate hypersensitivity reactions, including severe anaphylaxis. These reactions can be particularly challenging to diagnose as they may be cross-reactive with polyethylene glycols (PEGs). Proposed mechanisms include IgE-mediated Type I hypersensitivity and complement activation-related pseudoallergy (CARPA). Beyond systemic reactions, excessive oral doses of polysorbate 20 have been reported to induce mild and temporary eye and skin irritation, and can adversely affect the gastrointestinal tract, potentially leading to severe outcomes. [28,29,30]

Propylene Glycol (PG): Propylene glycol is a versatile diluent and solvent used in numerous pharmaceutical, cosmetic, and food preparations. While generally regarded as safe, PG can cause serious side effects, especially in vulnerable populations such as neonates and premature babies. This heightened susceptibility is due to their immature metabolic and clearance functions, which result in a reduced ability to eliminate PG effectively. Consequently, PG can accumulate in their systems, leading to toxicity manifested as hyperosmolality, lactic acidosis, hemolysis, hemoglobinuria, skin irritation, and various neurological disturbances. Prolonged elimination half-lives (10.8-30.5 hours in preterm neonates compared to 2-5 hours in adults) significantly increase the risk of toxic effects upon repeated administration. Adverse events such as cardiac, renal, and respiratory problems have been reported in premature neonates, often linked to their decreased capacity to eliminate PG or co-administered ethanol. [31,32,33,34]

3.6 Others

Polyethylene Glycols (PEGs): PEGs are a family of polyether compounds widely employed across pharmaceutical, medical, industrial, cosmetic, and food products due to their low toxicity and biological inertness. However, despite this general perception, immediate-type

hypersensitivity reactions, often severe and including anaphylaxis, have been increasingly reported, particularly with higher molecular weight PEGs and parenteral administration. These reactions can also exhibit cross-reactivity with polysorbates. Research indicates that long-term ingestion of PEG 400 can significantly alter gut microbiota composition, reduce flora diversity, and induce disorders in lipid and energy metabolism in animal models, leading to symptoms like diarrhea, weight loss, and intestinal inflammation. Furthermore, PEGs can influence drug-metabolizing enzymes and transporters, thereby impacting the absorption, distribution, metabolism, and excretion of co-administered drugs. [35,36,37]

Titanium Dioxide (TiO₂): Used as a white colorant and opacifier in various pharmaceutical formulations, TiO₂ has traditionally been considered inert and safe. However, the increasing use of titanium dioxide nanoparticles (TiO₂ NPs) in diverse applications has raised new safety concerns. Mechanistic toxicological studies demonstrate that TiO₂ nanoparticles can induce adverse effects primarily through the induction of oxidative stress, leading to cell damage, genotoxicity, inflammation, and immune responses. Inhalation exposure to TiO₂ nanoparticles has been shown to cause pulmonary inflammation, dysfunction of the immune system, and genotoxicity. Studies in mice revealed dose-dependent effects on both innate and adaptive immunity, including suppressed secretory function of monocytes and a decrease in T-cells, potentially indicating immunosuppression. [38,39,40]

Sodium Lauryl Sulfate (SLS): An anionic surfactant commonly found in various pharmaceutical formulations, cosmetics, and household cleaning products, SLS is a well-documented skin irritant. Topical application of SLS can induce skin irritation, characterized by stinging, itching, and redness, particularly in individuals with compromised skin barriers, such as children with eczema. While SLS is frequently used as a positive control irritant in patch testing for allergic contact dermatitis, the precise pathophysiological basis of SLS reactions is still being elucidated. Research suggests that SLS-induced contact dermatitis may involve less pronounced immune alterations compared to classical allergic contact dermatitis, but both

innate and adaptive immune components are involved in the skin reactions. [41,42]

The spectrum of adverse effects associated with these commonly used excipients highlights a critical point: excipient safety is not a binary "safe/unsafe" characteristic but rather a spectrum influenced by concentration, duration of exposure, and the specific route of administration. For instance, while mannitol and sorbitol are generally well-tolerated at low doses, their osmotic effects become problematic at higher concentrations, leading to gastrointestinal distress. Similarly, PEGs, largely considered inert, can trigger severe hypersensitivity reactions, especially when administered parenterally. This reality underscores that regulatory guidelines and risk assessments must evolve beyond simple qualitative statements to embrace quantitative, context-specific evaluations. Such evaluations should consider

the total daily exposure to an excipient from all potential sources, including food, cosmetics, and multiple medications, and meticulously assess the impact on specific patient populations. [25,32,35,42]

Furthermore, the adverse effects observed with excipients like mannitol (osmotic action), parabens (endocrine disruption), and TiO₂ nanoparticles (oxidative stress and inflammation) demonstrate that their "inactive" designation is often a misnomer. Their inherent physical and chemical properties directly interact with and modulate biological systems. This understanding emphasizes that excipient selection is not merely a formulation aid but a complex biochemical and biophysical challenge. A comprehensive approach, perhaps akin to "systems toxicology," is required to predict and mitigate adverse effects by understanding these fundamental interactions at molecular and cellular levels. [18,38,39,44]

Table 2: Overview of Common Excipients and Associated Adverse Effects [8,9,12,43]

Excipient Name	Primary Functional Role(s)	Reported Adverse Effect(s)	Key Affected Population(s)
Lactose	Diluent, Filler, Sweetener	Lactose intolerance symptoms (bloating, gas, diarrhea, cramps)	Lactose-intolerant individuals, severe cow's milk allergy
Mannitol	Diluent, Filler, Sweetener	Osmotic diarrhea, bloating (oral); non-specific hypersensitivity (IV)	General population (high oral doses), sensitive individuals (IV)
Benzalkonium Chloride	Preservative	Respiratory irritation, bronchoconstriction, respiratory arrest, skin/eye irritant, systemic toxicity	Asthmatic pediatric patients, general population (concentrated forms)
Parabens	Preservative	Endocrine disruption, reproductive/developmental/neurological disorders, thyroid problems, skin allergy, cancers	Susceptible individuals, pregnant women, children

Tartrazine	Colorant	Hypersensitivity, behavioral effects (hyperactivity), zinc status alteration, eczema, asthma	Children, sensitive individuals
Aspartame	Sweetener	Concerns in phenylketonuria (PKU) patients (phenylalanine accumulation); headaches, dizziness, seizures	Individuals with PKU
Sorbitol	Sweetener, Vehicle	Gastrointestinal discomfort (gas, bloating, cramps), osmotic diarrhea, reduced drug absorption	General population (dose-dependent)
Polysorbates	Solubilizer, Surfactant, Stabilizer	Hypersensitivity reactions (anaphylaxis), cross-reactivity with PEGs, GI irritation (high oral doses)	Sensitive individuals
Propylene Glycol	Solubilizer, Surfactant, Stabilizer	Toxicity (hyperosmolality, lactic acidosis, neurological disturbances, organ damage)	Neonates, premature babies (due to immature metabolism)
Polyethylene Glycols (PEGs)	Solubilizer, Vehicle	Hypersensitivity reactions (anaphylaxis), cross-reactivity with polysorbates, gut microbiota alteration, inflammation	Sensitive individuals
Titanium Dioxide	Colorant, Opacifier	Oxidative stress, cell damage, genotoxicity, inflammation, immune response (nanoparticles)	General population (nanoparticle exposure)
Sodium Lauryl Sulfate (SLS)	Surfactant	Skin irritation (stinging, itching, redness), contact dermatitis	Individuals with compromised skin barriers (e.g., eczema), sensitive individuals

4. MECHANISMS OF ADVERSE EFFECTS

The adverse effects associated with pharmaceutical excipients arise from a complex interplay of immunological reactions, toxicological pathways, interactions with active pharmaceutical ingredients (APIs), and population-specific vulnerabilities. Understanding these mechanisms is crucial for predicting and mitigating risks in drug development and clinical practice.

Immunological Reactions (Allergy, Hypersensitivity)

Excipients can act as haptens or antigens, triggering a range of immunological reactions, most notably immediate hypersensitivity reactions (IHRs). These reactions can vary in

severity from localized skin disorders to life-threatening systemic responses, often presenting a diagnostic challenge as they can be mistakenly attributed to the API itself. [21,45]

4.1 Mechanisms of excipient-induced immunological reactions include:

IgE-mediated Type I Hypersensitivity: This classic allergic reaction involves the production of IgE antibodies against the excipient. Upon re-exposure, these IgE antibodies, bound to mast cells and basophils, trigger the release of inflammatory mediators like histamine, leading to rapid onset symptoms. Evidence suggests an IgE-mediated mechanism for some reactions to polyethylene glycols (PEGs) and polysorbate 80, where specific IgE and IgG antibodies have been detected. Similarly, specific IgE has been

demonstrated for reactions to povidone/polyvinylpyrrolidone (PVP), carboxymethylcellulose (CMC), carrageenan, and even lactose (due to galabiose impurities). Clinical manifestations can include urticaria, angioedema, pruritus, flushing, hypotension, and bronchospasm. [28,35,45]

Non-IgE Mediated Mechanisms: Some excipients can trigger mast cell and basophil degranulation directly, without the involvement of IgE antibodies. For example, intravenous mannitol can cause non-specific hypersensitivity reactions due to its hyperosmolar properties, which directly trigger mast cell and basophil degranulation. These reactions are often considered non-immunologic in nature. [45]

Complement-System Mediated Mechanisms (CARPA): Complement activation-related pseudoallergy (CARPA) is another suspected pathway for IHRs to excipients. This mechanism involves the direct activation of the complement system by certain excipients, leading to the release of anaphylatoxins and subsequent mast cell degranulation and systemic reactions. [30]

4.2 Toxicological Pathways (Organ-Specific Toxicity, Accumulation)

Excipients can exert direct toxic effects on biological systems through various toxicological pathways, often influenced by their physicochemical characteristics such as particle size, shape, concentration, and surface charge. [46]

Oxidative Stress: A prominent mechanism of toxicity, particularly for nanoparticles (e.g., titanium dioxide, TiO₂), is the generation of reactive oxygen species (ROS). When ROS production overwhelms the cellular antioxidant defenses, it leads to oxidative stress, which can cause lipid peroxidation, DNA damage, and programmed cell death (apoptosis). Smaller nanoparticles, with their higher surface area-to-volume ratio, tend to exhibit greater reactivity and enhanced membrane permeability, leading to increased cellular uptake and ROS generation. [38,46]

Inflammation: Excipients can trigger inflammatory responses through direct interactions with biological molecules, activation of immune cells (e.g., macrophages, dendritic cells), and the subsequent production of pro-inflammatory cytokines. This inflammation can result in tissue damage. For instance, inhaled

nanoparticles can lead to pulmonary inflammation and injury in the respiratory system. Nanoparticle shape and charge can also influence the intensity of inflammatory responses

Genotoxicity: Certain excipients, particularly nanoparticles, can induce DNA damage, a form of genotoxicity that threatens genetic stability. Examples include silver and carbon-based nanoparticles.

Mitochondrial Damage: Some excipients can directly interact with biological molecules, inhibiting mitochondrial functions, which contributes to cellular dysfunction and apoptosis.

Organ-Specific Toxicity: Exposure to excipients can negatively impact various organ systems:

Respiratory System: Inhalation of excipients can cause acute airway irritation and coughing, and chronic exposure can lead to conditions like chronic obstructive pulmonary disease (COPD) or asthma exacerbations due to persistent inflammation.

Nervous System: Some nanoparticles can cross the blood-brain barrier, resulting in neurotoxic effects such as oxidative stress, neuroinflammation, and neuronal apoptosis, potentially contributing to neurodegenerative disorders. [46]

Immune System: Excipients can interact with both innate and adaptive immune cells, leading to either immune activation (e.g., hyperactivation, chronic inflammation, autoimmune reactions) or immunosuppression (increased vulnerability to infections) [39,46]

Accumulation: In vulnerable populations, particularly neonates and infants, immature metabolic and clearance functions can lead to the reduced elimination and subsequent accumulation of certain excipients (e.g., propylene glycol, benzyl alcohol). This accumulation can result in systemic toxicity, as observed in "gasping syndrome" caused by benzyl alcohol in premature neonates. [32,33,34]

4.3 Interaction with Active Pharmaceutical Ingredients (APIs)

Despite being considered pharmacologically inert, excipients can initiate, propagate, or participate in complex chemical and physical interactions with APIs, potentially compromising the medication's quality, performance, and stability. These interactions are often subtle and can lead to a "silent" impact on efficacy and

safety, where the patient may be receiving a drug that is no longer fully effective or is generating toxic byproducts, without immediate obvious signs. This highlights the critical need for comprehensive pre-formulation studies and stability testing that specifically investigate drug-excipient compatibility. [47,48,49]

4.3.1 Chemical Interactions: These involve reactions between drugs and excipients or their impurities, leading to the formation of new molecules or degradation products.

Degradation: Excipients can directly cause the degradation of the API, reducing its therapeutic concentration and potentially forming harmful byproducts.

Hydrolysis: This is a common decomposition pathway for drugs with susceptible functional groups (e.g., esters, amides). Excipients, particularly those contributing water or altering pH, can accelerate hydrolytic degradation.

Oxidation: Catalyzed by oxygen, metal ions, and light, oxidation reactions can lead to free radical formation and subsequent API degradation and discoloration. Excipients containing peroxides (e.g., povidones) can induce API oxidation (e.g., Raloxifene hydrochloride forming N-oxide).

Isomerization (Racemization): Excipients can influence the conversion of a chemical into its optical or geometric isomer, which may have different pharmacological or toxicological properties.

Photolysis: Light-induced degradation (e.g., oxidation, reduction, polymerization) can be accelerated or catalyzed by excipients.

Polymerization: Excipients can facilitate or promote intermolecular reactions leading to higher molecular weight species, especially if they possess reactive functional groups or residues.

Acid-base character and pH: Ionized excipients can interact ionically with ionized drugs, forming precipitates or complexes. Excipients can also alter the microenvironmental pH, affecting drug ionization, solubility, and stability.

Aldehyde Reactions: Trace aldehydes present in excipients (e.g., from flavors, polysorbates) can react with amine-containing APIs to form impurities (e.g., famotidine with benzaldehyde, BMS-204352 with formaldehyde).

Transesterification: Exchange reactions can occur between excipients and APIs (e.g.,

parabens with sugar alcohols, cetirizine with sorbitol/glycerol).

Maillard Reaction: This non-enzymatic browning reaction can occur between amines in APIs and reducing sugars (e.g., lactose) in excipients, forming degradation products (e.g., fluoxetine with lactose, pregabalin with lactose). [47,48,49]

4.3.2 Physical Interactions: These do not involve chemical changes but can significantly affect drug performance.

Adsorption: Drug molecules can adsorb onto excipient surfaces. While this can sometimes be beneficial, strong adsorption forces, especially with hydrophobic excipients, can retard dissolution rate and reduce bioavailability. [48,49]

Complexation: Excipient complexing agents can reversibly bind drugs, affecting dissolution until the drug dissociates from the complex. [48,49]

Water-based reactions: Process stresses (e.g., grinding, drying) can release bound water from excipients, which can then participate in hydrolytic reactions with moisture-sensitive drugs. [49]

Impact of Impurities/Residues: Excipients are not perfectly pure and may contain residues or impurities from their manufacturing process. Even at low levels, these residues (e.g., pH-modifying residues, volatile impurities) can destabilize drugs or accelerate degradation, posing a significant risk to product quality and patient safety. This implies that merely ensuring API stability in isolation is insufficient; the entire formulation, including excipient impurities and potential reaction pathways, must be rigorously characterized to guarantee long-term efficacy and safety. [49]

4.4 Population-Specific Vulnerabilities (Pediatrics, Geriatrics, Pregnant Women)

The impact of excipients is not uniform across all individuals; certain patient populations exhibit heightened susceptibility to adverse effects due to unique physiological profiles, metabolic differences, and specific health conditions.

Pediatrics: Neonates, infants, and young children are particularly vulnerable to excipient-related harm. Their immature metabolic and clearance functions mean they may not be able to eliminate excipients as efficiently as adults, leading to

accumulation and toxicity. For example, propylene glycol and benzoic acid can accumulate to toxic levels in neonates due to their limited renal and metabolic clearances. The "gasping syndrome," a severe adverse reaction including metabolic acidosis and neurological problems, was linked to benzyl alcohol accumulation in premature neonates due to their immature detoxification pathways. A major challenge in pediatric formulation is the pervasive lack of evidence-based safety data for excipient doses, often necessitating extrapolation from adult data, which is insufficient. [14,33,50,51]

Geriatrics: Elderly patients often present with polypharmacy (taking multiple medications simultaneously), which increases the potential for cumulative excipient exposure and drug-excipient interactions. Age-related physiological changes, such as impaired renal or hepatic function, can affect excipient clearance, potentially increasing susceptibility to adverse effects. Additionally, common issues like swallowing difficulties in the elderly necessitate specific formulation considerations, such as taste and texture modifications, which in turn rely on appropriate excipient selection. [52,53]

Pregnant Women: Exposure to certain excipients during pregnancy raises significant concerns due to the potential for developmental and reproductive toxicity in the fetus. Phthalates, such as dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), used as plasticizers in enteric coatings, are classified as endocrine-disrupting chemicals. Animal studies have shown that DBP and DEHP can cause decreased sperm counts, reduced fertility, fetal skeletal malformations, and altered development of reproductive organs in offspring. Human

observational studies, while limited, suggest associations between maternal phthalate exposure and adverse reproductive and developmental outcomes, with evidence of in utero and breast milk exposure. The ubiquitous presence of phthalates in the environment, including in pharmaceutical excipients, raises particular concerns for this vulnerable population. [54]

Beyond these broad demographic groups, individuals with specific allergies (e.g., polyethylene glycol allergy), pre-existing medical conditions (e.g., phenylketonuria, lactose intolerance), or those adhering to strict dietary regimens (e.g., ketogenic diet) also exhibit unique vulnerabilities to certain excipients. [21,54,55,56] The cumulative exposure risk across various products is a significant public health challenge. While individual drug products might contain excipients within "safe" limits, the widespread presence of these substances in multiple pharmaceuticals, as well as in food, cosmetics, and other consumer products, means that the total daily exposure to certain excipients could be substantial. For instance, propylene glycol is present in many products, and its accumulation is a recognized concern in neonates. This scenario points to a systemic issue that extends beyond individual drug formulations. Regulatory bodies and healthcare providers must consider the total body burden of excipients from all sources, especially for vulnerable populations or patients on multiple medications. This necessitates improved transparency in labeling across all industries and potentially the development of a "cumulative exposure" risk assessment framework. [32,33,35,42,57]

Table 3: Excipient-Related Vulnerabilities Across Patient Populations [14,33,51,58]

Patient Population	Reasons for Vulnerability	Excipients of Concern & Associated Adverse Effects
Pediatrics (Neonates, Infants, Children)	Immature metabolic and clearance functions, reduced ability to eliminate excipients, lack of age-specific safety data	Propylene Glycol: Accumulation, hyperosmolality, lactic acidosis, neurological disturbances, organ damage. Benzyl Alcohol: "Gasping Syndrome" (metabolic acidosis, neurological problems, deaths). Benzalkonium Chloride:

		Bronchoconstriction, respiratory arrest (asthmatics). Ethanol: Acute and chronic adverse effects. Parabens: Contraindicated in jaundiced newborns. Flavoring Agents: Genotoxicity, allergy, sensitization.
Geriatrics	Polypharmacy, age-related physiological changes (e.g., impaired renal function), swallowing difficulties	Polyethylene Glycol (PEG): Concerns in patients with impaired renal function. General increased susceptibility to adverse effects due to altered clearance.
Pregnant Women	Fetal developmental sensitivity, potential for in utero and breast milk exposure	Phthalates (DBP, DEHP): Endocrine disruption, decreased sperm counts, reduced fertility, fetal skeletal malformations, altered reproductive organ development in offspring. Propylene Glycol: Susceptible to reach fetus and found in milk.
Individuals with Specific Allergies/Conditions	Specific enzyme deficiencies, immune hypersensitivities, dietary restrictions	Lactose: Lactose intolerance symptoms. Aspartame: Phenylalanine accumulation in Phenylketonuria (PKU). PEGs/Polysorbates: Anaphylaxis, hypersensitivity reactions. Tartrazine: Hypersensitivity, behavioral effects. Sodium Benzoate: Allergy.

4.5 GRAS (Generally Recognized As Safe) Status and Its Limitations

The "Generally Recognized As Safe" (GRAS) status is a designation primarily applied to food additives in the United States, indicating that a substance is considered safe by experts for its intended use in food. However, this status does not automatically translate to or guarantee the safety of an excipient for pharmaceutical use and has significant limitations when applied to drug products. [59,60,61]

Limitations:

Context-Specific Application: GRAS applies to a specific *food use* of a substance, not the substance

itself. There are often substantial differences between food and drug uses in terms of dose, frequency, duration of administration, and route of exposure. For example, a substance considered safe in food at a certain daily intake might be problematic as a pharmaceutical excipient at higher doses or via a different route (e.g., intravenous).

Insufficient Safety Data: GRAS status does not guarantee that sufficient safety information is available to support an excipient's use in a drug product. Regulatory agencies frequently require additional nonclinical or even clinical data to substantiate the safety of a proposed drug

formulation, even if its excipients hold GRAS status.

Historical Misapplication: Historically, the term "GRAS" for drugs referred to active ingredients approved between 1938 and 1962 based solely on safety, not excipients. This historical context is often misunderstood, leading to a false sense of security regarding excipient safety. [61]

The GRAS status, when misapplied to pharmaceutical excipients, represents a significant regulatory lag. While API regulation is stringent, excipients have historically faced less rigorous scrutiny. This situation, where GRAS status is often mistakenly deemed sufficient, does not guarantee pharmaceutical safety and creates potential patient safety risks and hinders innovation by not pushing for more comprehensive safety data. This highlights the need for a more harmonized, proactive, and comprehensive global regulatory framework for excipients that mirrors the rigor applied to APIs, including mandatory disclosure of excipient composition and quantitative safety data. [59,62]

4.6 Risk Assessment and Toxicological Studies

A growing understanding of the critical role excipients play in drug safety and clinical performance has intensified focus on the risks they can pose, necessitating robust risk assessment and comprehensive toxicological studies.

Methodologies:

Formalized Risk Assessment: Regulatory bodies, such as the EU's Falsified Medicines Directive, now mandate formalized risk assessments to determine appropriate Good Manufacturing Practices (GMPs) for excipient suitability.

ICH Q9 Principles: Risk assessments should be grounded in scientific knowledge, directly linked to patient protection, and proportionate to the level of risk posed by the excipient. Excipient risk is evaluated based on microbiological, chemical (toxicological, pathological effects), or physical hazards, with considerations for the route of administration and excipient function. [63]

Preclinical Guidance: There is an acknowledged need for specific preclinical guidance to assist companies in the development of excipients, particularly for novel materials or new applications of established excipients. [64]

Impurity Qualification: Impurities present in excipients, which are often overlooked, require thorough toxicity qualification. Justification for the levels of these impurities must be provided on a case-by-case basis during product development.[7]

Comparative Safety Evaluation: For generic drugs, a scientific, evidence-based comparative safety evaluation procedure is crucial. This ensures that any formulation differences, including changes in excipients, do not compromise the safety or efficacy compared to the reference listed drug. [65]

Challenges: Obtaining comprehensive toxicological data for excipients is a significant challenge due to the vast number and diversity of available excipients, many of which are not manufactured exclusively for pharmaceutical use. Furthermore, there is a general lack of robust non-clinical and clinical data to support formulation changes, and bridging the gap between *in vitro* models and *in vivo* human situations in toxicology remains a complex hurdle.[63,62,65,66]

The paradox of "inactive" ingredients, which are ideally inert but can cause significant harm, underscores the necessity of a risk-based approach to excipient safety. The shift by regulatory bodies towards risk-based assessments is a crucial recognition that not all excipients pose the same level of risk, and that the risk varies based on factors like function, route of administration, and patient population. This implies that future regulatory efforts will likely focus on identifying "excipients of concern" (as already observed in pediatric contexts) and tailoring safety data requirements based on a comprehensive understanding of their potential interactions and patient exposure, moving away from a uniform, one-size-fits-all approach. [3,59,67,63,51]

Table 4: Key Regulatory Frameworks and Their Approach to Excipient Safety [61,23,68,69]

Regulatory Body/Guideline	Key Excipient-Related Focus/Requirement	Limitations/Challenges Addressed
U.S. Food and Drug Administration (FDA)	<ul style="list-style-type: none"> - Inactive Ingredient Database (IID): Lists excipients in approved drugs as a reference. - Nonclinical Safety Data: Recommends types of toxicity data for new excipient development. - Phthalates: Recommends avoiding DBP/DEHP as excipients due to developmental/reproductive toxicity. 	<ul style="list-style-type: none"> - GRAS Status: Not sufficient for drug product safety; additional data often required. - Transparency: Issues with complete disclosure of excipient information.
European Medicines Agency (EMA)	<ul style="list-style-type: none"> Functional Attributes: Considers functional related attributes, potentially requiring additional tests based on intended use. - Risk Assessment: Mandates formalized risk assessment for excipient suitability. - Pediatric Focus: Addresses lack of safety data for pediatric populations, ongoing efforts to build databases and improve regulation. 	<ul style="list-style-type: none"> - Regulatory Gaps: Lack of information and insufficient regulation process in some regions. - Global Disparities: Differences in excipient approval processes complicate international manufacturing.
International Council for Harmonisation (ICH)	<ul style="list-style-type: none"> - Common Technical Document (CTD): Harmonized format for submitting excipient information (e.g., Module 3.2.P.4, 3.2.A.3 for novel excipients). - Quality Risk Management (ICH Q9): Guidance for risk assessments based on scientific knowledge and patient protection. - Supplier Evaluation: Requirements for evaluating critical suppliers and incoming raw material testing. 	<ul style="list-style-type: none"> - Harmonization Incompleteness: Gaps remain in information and regulation across regions, particularly for pediatric populations. - Scope: Primarily focuses on organization of information, not specific safety guidelines in detail.

5. CASE STUDIES AND REPORTED INCIDENTS

Historical and contemporary incidents involving pharmaceutical excipients serve as stark reminders of their potential to cause significant adverse effects, highlighting critical lessons for drug formulation and public health. These cases underscore that excipients are far from inert and demand rigorous safety evaluation.

5.1 Literature-Based Examples or Case Reports

Sulfanilamide Elixir Tragedy (1937): This pivotal event in pharmaceutical history involved

an elixir of sulfanilamide formulated with diethylene glycol as a solvent. The highly toxic solvent led to over 100 deaths in the United States, primarily children. This tragedy was a catalyst for the passage of the 1938 Federal Food, Drug, and Cosmetic Act, which mandated safety testing for new drugs before marketing, including their excipient components.

Contaminated Glycerin Incidents (1990s): A series of tragic incidents occurred in Nigeria and India (1990), Bangladesh (1992), and Haiti (1996), where glycerin, a common pharmaceutical solvent, was contaminated with highly toxic ethylene glycol. These contaminations led to

numerous fatalities, including eighty children in one instance due to acute anuric renal failure. These cases exposed severe quality control failures and a lack of traceability within the global excipient supply chain, demonstrating how poor quality or outright toxicity of excipients can arise if not properly controlled.[69,59]

"Gasping Syndrome" from Benzyl Alcohol (Premature Neonates): In the 1980s, benzyl alcohol, commonly used as a preservative in parenteral solutions, caused a severe adverse reaction known as "gasping syndrome" in premature neonates. This syndrome, characterized by metabolic acidosis, neurological problems (including seizures), and intraventricular hemorrhage, led to numerous neonatal deaths. The toxicity was attributed to the accumulation of benzyl alcohol due to the immature metabolic pathways in neonates, which are unable to effectively clear the excipient. This incident prompted the FDA to recommend against using fluids preserved with benzyl alcohol in premature babies. [33,70]

Levothyrox Controversy (France, 2017): A change in the formulation of Levothyrox tablets, where lactose was replaced with mannitol and citric acid was added, led to widespread reports of side effects among patients. The public outcry was significant, ultimately forcing the manufacturer to reintroduce the original formulation. This incident dramatically raised public and regulatory awareness about the non-inert nature of excipients and the profound impact that seemingly minor formulation changes can have on patient health and perception.

P140 (Lupuzor™) Clinical Trial with Trehalose: In a phase IIb clinical trial for systemic lupus erythematosus (SLE), the excipient trehalose, typically used as a freeze-drying agent, was found to actively counteract the beneficial effects of the P140 peptide. P140 was designed to reduce excessive autophagy in lupus immune cells, but trehalose intrinsically stimulates the autophagy process, thereby negating the drug's intended mechanism of action. This led to an unsuccessful trial, demonstrating that excipients can significantly interfere with drug efficacy by altering the drug's mechanism, resulting in substantial R&D investment loss. [71]

Sodium Benzoate Allergy in Pediatric Patients: A clinical study involving pediatric patients indicated that some allergic reactions, presenting as skin eruptions, were attributable to sodium benzoate (a preservative) in amoxicillin-clavulanic acid suspensions, rather than the antibiotic itself. The reactions occurred sooner with the excipient, suggesting a distinct pathogenic mechanism and highlighting the diagnostic challenge of differentiating excipient-related adverse drug reactions (ADRs) from API allergies. [21]

Tartrazine-Related Issues: The synthetic colorant tartrazine has been linked to behavioral problems and hyperactivity in children, as well as other adverse reactions such as increased overactivity, aggression, and exacerbation of eczema. These cases underscore the potential for seemingly innocuous cosmetic additives to have significant biological effects. [72,21]

Drug-Excipient Interactions Leading to Degradation: Numerous examples of chemical interactions leading to API degradation have been documented. For instance, famotidine has been shown to react with benzaldehyde impurities present in cherry flavor excipients, forming undesirable adducts. Raloxifene hydrochloride can form an N-oxide derivative due to residual peroxides in povidone excipients. Magnesium stearate, a common lubricant, has been implicated in the degradation of tacrolimus and norfloxacin. Furthermore, reducing sugars like lactose can participate in Maillard reactions with amine-containing drugs such as fluoxetine and pregabalin, leading to the formation of degradation products that compromise drug stability and efficacy.[6]

5.2 Impact on Public Health

These incidents collectively demonstrate that excipient-related adverse events can have severe and far-reaching public health consequences. These range from individual patient harm, including direct toxicity, severe allergic reactions, and reduced drug efficacy due to degradation or interaction, to widespread fatalities in cases of excipient contamination. The cases highlight that excipients, even when present in seemingly low concentrations, can trigger undesirable effects due to intolerance, allergies, or unintended interactions. Critically, these reactions are often misattributed to the active principle of the

medication, leading to diagnostic confusion and potentially inappropriate patient management. [14,21,70,59]

6. CHALLENGES AND FUTURE DIRECTIONS

The complex landscape of pharmaceutical excipients presents several ongoing challenges that necessitate a concerted effort from researchers, industry, and regulatory bodies to ensure patient safety and optimize drug performance. Addressing these challenges is crucial for the future of pharmaceutical development.

6.1 Need for Improved Toxicological Data on Excipients

A fundamental challenge in pharmaceutical development is the pervasive lack of comprehensive safety and toxicity data for many commonly used excipients. This gap is particularly pronounced for vulnerable populations, such as pediatrics, where acceptable excipient levels are often not established due to insufficient evidence-based data. Existing data often lack crucial details on long-term toxicity, especially concerning cumulative exposures from multiple sources (e.g., drugs, food, cosmetics), and the impact of impurities within excipient batches. There is a recognized need for specific preclinical guidance to assess excipient safety outside the context of new drug application processes, which traditionally focus on the API. [14,62,72,64,73]

The challenges in obtaining this data are multifaceted. The sheer number and chemical diversity of excipients, many of which are not exclusively manufactured for pharmaceutical use, complicate systematic data collection. Furthermore, bridging the gap between *in vitro* models and *in vivo* human situations in toxicology remains a significant hurdle, as current testing methods may not fully replicate complex biological interactions. This circular problem, where insufficient data perpetuates less stringent regulation, which in turn doesn't strongly incentivize the generation of more comprehensive data, creates a critical barrier to advancing excipient safety. Breaking this cycle requires a concerted, multi-stakeholder effort, potentially through collaborative industry-

academia initiatives, to build comprehensive excipient databases that inform future guidelines and accelerate safer drug development. [62,63,66]

6.2 Development of Safer or Natural Alternatives

Growing concerns regarding the safety, biocompatibility, and environmental sustainability of synthetic excipients are driving a significant interest in the development and adoption of natural and plant-based alternatives. Herbal excipients, derived from natural sources, are increasingly seen as viable replacements for synthetic materials due to their inherent biocompatibility, biodegradability, non-toxicity, and often, additional therapeutic benefits such as antimicrobial or antioxidant properties. This shift aligns with the broader industry demand for more natural and "green" formulations, reflecting a commitment to sustainable practices. However, the transition is not without its challenges, including the inherent variability in content and quality of natural sources, which can impact batch-to-batch consistency and regulatory acceptance. Future efforts must focus on standardizing the production and characterization of these natural alternatives to ensure their consistent quality and safety. [66,62,63,74,75,76]

6.3 Role of AI and Predictive Toxicology in Excipient Screening

The field of toxicology is undergoing a profound transformation with the accelerating integration of artificial intelligence (AI). AI-powered predictive toxicology offers a promising path to significantly enhance the accuracy, efficiency, and breadth of toxicological assessments, moving beyond traditional empirical studies and extensive animal testing. [77]

Applications: AI methodologies, including machine learning, deep learning, and neural networks, can be applied to predict various toxicological endpoints. This encompasses predicting the biological activity of compounds, their physicochemical properties, and their pharmacokinetic characteristics. Quantitative Structure-Activity Relationship (QSAR) models, for instance, are valuable for early-stage screening, as they can rapidly predict toxicity without the need for physical substances. AI systems are capable of handling and integrating

large, heterogeneous toxicological datasets, accelerating quantitative risk assessment, and assisting in unraveling the complex mechanisms of adverse effects. [77,78]

Future Impact: The current approach to excipient safety is often reactive, learning from past incidents. The challenges in obtaining comprehensive toxicological data are significant. AI and predictive toxicology offer a transformative path to a more proactive safety assessment. By predicting toxicity and interactions *before* extensive physical testing, AI can significantly accelerate the identification of potentially problematic excipients and streamline the development of safer alternatives. Judiciously used, AI has immense potential to advance toxicology into a more predictive, mechanism-based, and evidence-integrated scientific discipline, thereby better safeguarding human and environmental well-being. This implies a future where excipient selection is guided by sophisticated predictive models, enabling a shift from a "test-and-react" to a "predict-and-prevent" paradigm in pharmaceutical formulation, which can significantly enhance patient safety while simultaneously reducing development costs and timelines. [21,59,62,66,77]

7. CONCLUSION

Pharmaceutical excipients are indispensable components of drug formulations, having evolved far beyond their historical assumption of inertness to critically influence drug stability, bioavailability, and patient acceptability. This comprehensive review has illuminated a growing body of evidence demonstrating their significant potential for adverse effects on human health, ranging from immunological reactions and organ-specific toxicities to complex interactions with active pharmaceutical ingredients. Vulnerable populations, particularly neonates, infants, and pregnant women, exhibit heightened susceptibility due to unique physiological profiles and a critical lack of age-specific safety data.

The selection of excipients represents a delicate balance, demanding careful consideration of their functional necessity for optimal drug performance against their potential safety risks. While excipients are vital for creating effective and patient-friendly medications, their "hidden"

bioactivity and potential for interaction or direct toxicity necessitate a fundamental paradigm shift in their evaluation. The historical underestimation of excipient activity has led to a regulatory lag, where current frameworks, including the often-misapplied GRAS status, do not fully guarantee pharmaceutical safety. This situation creates potential patient safety risks and impedes innovation.

Addressing the current challenges demands a multi-faceted and collaborative approach:

Enhanced Research: There is a critical need for improved and comprehensive toxicological data on excipients, particularly for long-term exposures, cumulative effects, and the impact of impurities, especially in vulnerable populations. This requires dedicated funding and collaborative initiatives to build robust, accessible databases.

Development of Safer Alternatives: Continued research and development into safer, and where appropriate, natural and biodegradable excipient alternatives is essential to mitigate identified risks and align with sustainability goals.

Regulatory Harmonization and Stricter Evaluation: Global regulatory harmonization is crucial to ensure consistent quality and safety standards for excipients across international markets. This must include stricter pre-approval evaluation processes for all excipients, mirroring the rigor applied to APIs, and mandating greater transparency in labeling regarding excipient composition and potential allergens.

Leveraging Advanced Technologies: The integration of artificial intelligence and predictive toxicology tools offers a transformative opportunity to accelerate excipient screening, predict potential toxicities and interactions *in silico*, and thereby shift from a reactive "test-and-react" paradigm to a proactive "predict-and-prevent" approach in pharmaceutical formulation.

Increased Awareness and Education: Greater awareness among healthcare professionals and the public regarding the potential adverse effects of excipients is vital. Enhanced education can improve the diagnosis of excipient-related adverse drug reactions, prevent misattribution to APIs, and enable more informed prescribing and patient choices.

Ultimately, ensuring the safe and effective use of pharmaceutical excipients requires a holistic perspective that recognizes their dynamic role within drug formulations and their complex interactions with human physiology. This necessitates a continuous commitment to research, robust regulatory oversight, and transparent communication to safeguard public health.

ACKNOWLEDGMENT

I appreciated and wish thank to principal of SVS's Dadasaheb Rawal Pharmacy College Dondaicha, for guidance in preparing this review.

REFERENCES

1. O'Donnell J, Mertl SL, Kelly WN. Propylene glycol toxicity in a pediatric patient: the dangers of diluents. *J Pharm Pract.* 2000;13(3):214-225. doi:10.1177/089719000001300310.
2. De Cock RF, Knibbe CA, Kulo A, de Hoon J, Verbesselt R, Danhof M, et al. Developmental pharmacokinetics of propylene glycol in preterm and term neonates. *Br J Clin Pharmacol.* 2013;75(1):162-171. doi:10.1111/j.1365-2125.2012.04312.x.
3. Muller S. Excipients: not so inert? When the excipient plays the role of an active substance, as exemplified by systemic lupus. *Swiss Med Wkly.* 2018;148:w14631. Available from: <https://smw.ch/index.php/smw/article/view/2484>
4. Makkad S, Sheikh M, Shende S, Jirvankar P. Pharmaceutical excipients: functions, selection criteria, and emerging trends. *Int J Pharm Investig.* 2025;15(2):361-376. doi:10.5530/ijpi.20251676.
5. Jadav M, Patel J, Upadhyay U. Pharmaceutical excipients. *Natl J Pharm Sci.* 2022;2(2):24-36.
6. Hotha K, Roychowdhury S, Subramanian V. Drug-excipient interactions: case studies and overview of drug degradation pathways. *Am J Anal Chem.* 2016;7:107-140. doi:10.4236/ajac.2016.71011.
7. Boonen J, Veryser L, Taevernier L, Roche N, Peremans K, Burvenich C, et al. Risk evaluation of impurities in topical excipients: the acetol case. *J Pharm Anal.* 2014;4(5):303-315. doi:10.1016/j.jpha.2013.12.006.
8. Specialist Pharmacy Service. Assessing the clinical impact of lactose in medicines. 2025. Available from: <https://www.sps.nhs.uk/articles/assessing-the-clinical-impact-of-lactose-in-medicines/>
9. Chintapalli S, Allarakha S. Lactose monohydrate: uses, side effects, and more. *MedicineNet.* Available from: https://www.medicinenet.com/lactose_monohydrate_uses_side_effects_and_more/article.htm
10. Shrivastava A, Sharma S, Kaurav M, Sharma A. Characteristics and analytical methods of mannitol: an update. *Int J Appl Pharm.* 2021;13(5):20-32. doi:10.22159/ijap.2021v13i5.42068.
11. PharmaExcipients. Mannitol as pharmaceutical excipient. Available from: <https://www.pharmaexcipients.com/mannitol-pharmaceutical-excipient/>
12. Wikipedia. Mannitol. Available from: <https://en.wikipedia.org/wiki/Mannitol>
13. Spada C, Fiori G, Uebel P, Tontini GE, Cesaro P, Grazioli LM, et al. Oral mannitol for bowel preparation: a dose-finding phase II study. *Eur J Clin Pharmacol.* 2022;78(12):1991-2002. doi:10.1007/s00228-022-03405-z.
14. Saito J, Agrawal A, Patravale V, Pandya A, Orubu S, Zhao M, et al. Pharmaceutical excipients in pediatric patients: current status and future perspectives. *Children (Basel).* 2022;9(4):453. doi:10.3390/children9040453.
15. Wikipedia. Benzalkonium chloride. Available from: https://en.wikipedia.org/wiki/Benzalkonium_chloride
16. Kusonić DZ, et al. Excipients of inhaled medications with potential to cause adverse reactions. *Hosp Pharmacol Int Multidiscip J.* 2021;8(3):1109-1117. doi:10.5937/hpimj2103109K.
17. Mitra P, Chatterjee S, Paul N, Ghosh S, Das M. Endocrine-disrupting chemical parabens: an overview and search for alternatives. *Proc Zool Soc.* 2021;74(4):479-493.
18. Azeredo DBC, de Sousa Anselmo D, Soares P, Graceli JB, Magliano DC, Miranda-Alves L. Parabens and hypothalamic-pituitary-

thyroid axis disruption. *Int J Mol Sci.* 2023;24:15246. doi:10.3390/ijms242015246.

19. David TJ. Reactions to dietary tartrazine. *Arch Dis Child.* 1987;62(2):119–122. doi:10.1136/adc.62.2.119.
20. Ward NI, et al. Influence of tartrazine on zinc status of hyperactive children. *J Nutr Environ Med.* 2009;18:51–57.
21. Greeff OBW. Excipient-related adverse drug reactions: a clinical approach. *Curr Allergy Clin Immunol.* 2015;28(1):–.
22. Rycerz K, Jaworska-Adamu J. Effects of aspartame metabolites on astrocytes and neurons. *Folia Neuropathol.* 2013;51(1):10–17. doi:10.5114/fn.2013.34191.
23. Balbani AP, Stelzer LB, Montovani JC. Pharmaceutical excipients and drug label information. *Braz J Otorhinolaryngol.* 2006;72(3):400–406.
24. EFSA ANS Panel. Re-evaluation of aspartame (E 951) as a food additive. *EFSA J.* 2013;11(12):3496. doi:10.2903/j.efsa.2013.3496.
25. Liauw S, Saibil F. Sorbitol: often forgotten cause of osmotic diarrhea. *Can Fam Physician.* 2019;65(8):557–558.
26. Johnston KR, Govel LA, Andritz MH. Gastrointestinal effects of sorbitol in liquid medications. *Am J Med.* 1994;97(2):185–191. doi:10.1016/0002-9343(94)90029-9.
27. Adkison K, Wolstenholme A, Lou Y, Zhang Z, Eld A, Perger T, et al. Effect of sorbitol on lamivudine pharmacokinetics. *Clin Pharmacol Ther.* 2018;103(3):402–408. doi:10.1002/cpt.943.
28. Stone CA Jr, Liu Y, Relling MV, Krantz MS, Pratt AL, Abreo A, et al. Immediate hypersensitivity to polyethylene glycols and polysorbates. *J Allergy Clin Immunol Pract.* 2019;7(5):1533–1540.e8. doi:10.1016/j.jaip.2018.12.003.
29. Kim J, Kwak S, Park MS, Rhee CH, Yang GH, et al. Safety verification for polysorbate 20. *PLoS One.* 2022;17(4):e0267238. doi:10.1371/journal.pone.0267238.
30. Caballero ML, Krantz MS, Quirce S, Phillips EJ, Stone CA Jr. Hidden dangers of excipients in drug hypersensitivity. *J Allergy Clin Immunol Pract.* 2021;9(8):2968–2982. doi:10.1016/j.jaip.2021.03.002.
31. O'Donnell J, Mertl SL, Kelly WN. Propylene glycol toxicity in a pediatric patient. *J Pharm Pract.* 2000;13(3):214–225. doi:10.1177/089719000001300310.
32. De Cock RF, Knibbe CA, Kulo A, de Hoon J, Verbesselt R, Danhof M, et al. Developmental pharmacokinetics of propylene glycol. *Br J Clin Pharmacol.* 2013;75(1):162–171.
33. Valeur KS, Holst H, Allegaert K. Excipients in neonatal medicinal products. *Pharmaceut Med.* 2018;32(4):251–258. doi:10.1007/s40290-018-0243-9.
34. Saito J, Agrawal A, Patravale V, Pandya A, Orubu S, Zhao M, et al. Pharmaceutical excipients in pediatric patients. *Children (Basel).* 2022;9(4):453.
35. Bianchi A, Bottau P, Calamelli E, Caimmi S, Crisafulli G, Franceschini F, et al. Hypersensitivity to polyethylene glycol. *Acta Biomed.* 2021;92(S7):e2021519. doi:10.23750/abm.v92iS7.12384.
36. Stone CA Jr, Liu Y, Relling MV, Krantz MS, Pratt AL, Abreo A, et al. Immediate hypersensitivity to polyethylene glycols and polysorbates. *J Allergy Clin Immunol Pract.* 2019;7(5):1533–1540.e8.
37. Zhao M, Wang P, Sun X, Yang D, Zhang S, Meng X, et al. Impact of PEG400 on gut microbiota in mice. *Molecules.* 2023;28:7562. doi:10.3390/molecules28227562.
38. Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in everyday life: is it safe? *Radiol Oncol.* 2011;45(4):227–247.
39. Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, et al. Titanium dioxide nanoparticles and immune response. *Nanomaterials.* 2023;13:767. doi:10.3390/nano13040767.
40. Schanen BC, Karakoti AS, Seal S, Drake DR 3rd, Warren WL, Self WT. Titanium dioxide nanomaterial-induced inflammation. *ACS Nano.* 2009;3(9):2523–2532.
41. Nüsken M, Heinemeier F, Matzke SS, Porebski P, Forkel S, Dasari P, et al. Immune response to sodium lauryl sulfate. *Eur J Immunol.* 2024;54(12):e2350798. doi:10.1002/eji.202350798.
42. Bondi CA, Marks JL, Wroblewski LB, Raatikainen HS, Lenox SR, Gebhardt KE. Toxicity of sodium lauryl sulfate. *Environ Health Insights.* 2015;9:27–32. doi:10.4137/EHI.S31765.
43. Spada C, Fiori G, Uebel P, Tontini GE, Cesaro P, Grazioli LM, et al. Oral mannitol for bowel

preparation. *Eur J Clin Pharmacol.* 2022;78(12):1991–2002.

44. Thomazini VC, Ramalho LX, Dias MS, Vieira RC, Reis JJP, Raggi IBM, et al. Excipients of concern in veterinary pharmacotherapy. *An Acad Bras Cienc.* 2024;96:e20240656. doi:10.1590/0001-3765202420240656.

45. Caballero ML, Quirce S. Immediate hypersensitivity reactions caused by drug excipients. *J Investig Allergol Clin Immunol.* 2020;30(2):86–100. doi:10.18176/jiaci.0476.

46. Muhamin M, Chaerunisa AY, Dewi MK, Khatib A, Hazrina A. The toxicological profile of active pharmaceutical ingredients-containing nanoparticles: classification, mechanistic pathways, and health implications. *Pharmaceuticals (Basel).* 2025 May 9;18(5):703. doi:10.3390/ph18050703.

47. Hotha KK, Roychowdhury S, Subramanian V. Drug-excipient interactions: case studies and overview of drug degradation pathways. *Am J Anal Chem.* 2016;7(1):107–140. doi:10.4236/ajac.2016.71011.

48. Gawari SD, Kambale HV, Satpute VM, Waghmare SA, Jadhav SB. A review: drug-excipient interactions study. *Int J Novel Res Dev.* 2023;8(2):Feb. ISSN:2456-4184.

49. Vranić E. Basic principles of drug-excipients interactions. *Bosn J Basic Med Sci.* 2004 May;4(2):56–58. doi:10.17305/bjbms.2004.3421.

50. Specialist Pharmacy Service. Understanding excipients in medicines [Internet]. London: SPS; c2025 [cited 2025 Jun 10]. Available from: <https://www.sps.nhs.uk/articles/understanding-excipients-in-medicines/>

51. Bobillot M, Delannoy V, Trouillard A, Kinowski JM, Sanchez-Ballester NM, Soulairol I. Potentially harmful excipients: state of the art for oral liquid forms used in neonatology and pediatrics units. *Pharmaceutics.* 2024 Jan 17;16(1):119. doi:10.3390/pharmaceutics16010119.

52. Comoglu T, Ozyilmaz ED. Pharmaceutical excipients in pediatric and geriatric drug formulations: safety, efficacy, and regulatory perspectives. *Pharm Dev Technol.* 2025 Jan;30(1):1–9. doi:10.1080/10837450.2024.2441181.

53. American Pharmaceutical Review. The future of pharmaceutical excipients: a \$14 billion market driven by global demand [Internet]. 2025 Mar 19 [cited 2025 Jun 10]. Available from: <https://www.americanpharmaceuticalreview.com/Featured-Articles/618347>

54. United States Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. **Limiting the use of certain phthalates as excipients in CDER-regulated products.** Silver Spring (MD): CDER; 2012.

55. Specialist Pharmacy Service. Understanding excipients in medicines [Internet]. London: SPS; c2025 [cited 2025 Jun 10]. Available from: <https://www.sps.nhs.uk/articles/understanding-excipients-in-medicines/>

56. Specialist Pharmacy Service. Assessing the clinical impact of lactose in medicines [Internet]. London: SPS; 2025 [cited 2025 Jun 10]. Available from: <https://www.sps.nhs.uk/articles/assessing-the-clinical-impact-of-lactose-in-medicines/>

57. Mitra P, Chatterjee S, Paul N, Ghosh S, Das M. An overview of endocrine disrupting chemical paraben and search for an alternative – a review. *Proc Zool Soc.* 2021;74(4):479–493. doi:10.1007/s12595-021-00418-x.

58. O'Donnell J, Mertl SL, Kelly WN. Propylene glycol toxicity in a pediatric patient: the dangers of diluents. *J Pharm Pract.* 2000;13(3):214–225. doi:10.1177/089719000001300310.

59. Pifferi G, Restani P. The safety of pharmaceutical excipients. *Farmaco.* 2003 Aug;58(8):541–550. doi:10.1016/S0014-827X(03)00079-X.

60. Harrison R. How a legal loophole allows unsafe ingredients in U.S. foods [Internet]. New York: New York University; 2024 Aug 8 [cited 2025 Jun 10]. Available from: <https://www.nyu.edu/about/news-publications/news/2024/august/legal-loophole-unsafe-ingredients.html>

61. Premier Consulting. The GRAS is not always greener: why GRAS status does not guarantee excipient safety [Internet]. 2016 Jun 21 [cited 2025 Jun 10]. Available from:

<https://premierconsulting.com/resources/blog/the-gras-is-not-always-greener/>

- 62. Latham T. Excipients limitations: challenges in drug formulation and delivery. *Ann Clin Trials Vaccines Res.* 2024;14(6):290–291. doi:10.37532/ACTVR.2024.14(6).290.
- 63. Holtz F. Formalizing a risk assessment for excipients [Internet]. Parenteral Drug Association; 2018 Jan 29 [cited 2025 Jun 10]. Available from: <https://www.pda.org/pda-letter-portal/home/full-article/formalizing-a-risk-assessment-for-excipients>
- 64. Baldrick P. Pharmaceutical excipient development: the need for preclinical guidance. *Regul Toxicol Pharmacol.* 2000 Oct;32(2):210–218. doi:10.1006/rtpb.2000.1421.
- 65. Rayavarapu S, Braithwaite E, Dorsam R, Osterhout J, Furlong LA, Shetty D, et al. Comparative risk assessment of formulation changes in generic drug products: a pharmacology/toxicology perspective. *Toxicol Sci.* 2015 Jul;146(1):2–10. doi:10.1093/toxsci/kfv074.
- 66. Fadeel B, Alexander J, Antunes SC, Dalhoff K, Fritsche E, Hogberg HT, et al. Editorial: five grand challenges in toxicology. *Front Toxicol.* 2025;6:1533238. doi:10.3389/ftox.2024.1533238.
- 67. Maharaj S, Pandey S, Maharaj K, Sheik MS, Dhingra S. Significance of pharmaceutical excipients in prescribed medicines: a case report. *Clin Case Rep.* 2014 Dec;2(6):258–259. doi:10.1002/ccr3.106.
- 68. Kan AKC, Chiang V, Saha C, Au EYL, Li PH. Feasibility of a drug allergy registry-based excipient allergy database and call for universal mandatory drug ingredient disclosure: the case of PEG. *Front Allergy.* 2024 Jan 16;4:1331036. doi:10.3389/falgy.2023.1331036.
- 69. United States Department of Health and Human Services, Food and Drug Administration. *Guidance for industry: nonclinical studies for the safety evaluation of pharmaceutical excipients* [Internet]. Silver Spring (MD): FDA; 2005 May [cited 2025 Jun 10]. Available from: <https://www.fda.gov/media/72260/downl oad>
- 70. Hall CM, Milligan DW, Berrington J. Probable adverse reaction to a pharmaceutical excipient. *Arch Dis Child Fetal Neonatal Ed.* 2004 Mar;89(2):F184. doi:10.1136/adc.2002.024927.
- 71. Muller S. Excipients: not so inert? When the excipient plays the role of an active substance, as exemplified by systemic lupus. *Swiss Med Wkly.* 2018 Jul 1;148:w14631. doi:10.4414/smw.2018.14631.
- 72. Gabrić A, Hodnik Ž, Pajk S. Oxidation of drugs during drug product development: problems and solutions. *Pharmaceutics.* 2022;14:325. doi:10.3390/pharmaceutics14020325.
- 73. European Medicines Agency. Questions and answers on propylene glycol used as an excipient in medicinal products for human use [Internet]. EMA/CHMP/704195/2013 [cited 2025 Jun 10]. Available from: <https://www.ema.europa.eu>
- 74. Tiwari N, et al. A review on herbal excipients in pharmaceutical formulations. *IASR J Med Pharm Sci.* 2024;4(4):18–26.
- 75. Kumar SR, et al. Pharmaceutical excipient development from natural source. *Asian J Pharm Health Sci.* 2013;3(1):620–626.
- 76. Auerbach M, et al. The future of pharmaceutical excipients: a \$14 billion market driven by global demand. *Am Pharm Rev.* 2025 Mar 19.
- 77. Yingngam B. AI in predictive toxicology. In: *IGI Global Scientific Publishing Research.* doi:10.4018/979-8-3693-3212-2.ch005.
- 78. Wu Y, Ma L, Li X, Yang J, Rao X, Hu Y, et al. The role of artificial intelligence in drug screening, drug design, and clinical trials. *Front Pharmacol.* 2024 Nov 29;15:1459954. doi:10.3389/fphar.2024.1459954.
