Spectroscopic investigation of the reaction product of tetrathiazyldihydridofluoride (S₄N₄H₂F₂) with Cd(II) Chloride

Abstract

The reaction of tetrathiazyldihydridofluoride $(S_4N_4H_2F_2)$ with Cd(II) Chloride was carried out in organic medium the product obtained was characterized on the basis of IR, UV, EPR, Mass and 1H NMR Spectra and is formulated as $(S_3N_4H_2F_2CdCl)_x$ where x=2.32

Keywords: Tetrathiazyldihydrofluoride, hydrogen-bonding, semiconductor

Ishanki Sharma¹ Hemant Kumar Sharma^{2*}

Author Affiliations

¹Department of chemistry, Jawaharlal Nehru Rajkeeya Mahavidyalaya (J.N.R.M), Port Blair - 744104, Andaman and Nicobar Islands, India E-mail: ishanki013@gmail.com

²Associate Professor and Head, Department of chemistry, Jawaharlal Nehru Rajkeeya Mahavidyalaya (J.N.R.M), Port Blair -744104, Andaman and Nicobar Islands, India E-mail: hemantsharmapb@gmail.com

*Corresponding Author

Hemant Kumar Sharma, Associate Professor and Head, Department of chemistry, Jawaharlal Nehru Rajkeeya Mahavidyalaya (J.N.R.M), Port Blair -744104, Andaman and Nicobar Islands, India.

E-mail: hemantsharmapb@gmail.com

Received on 20.02.2019 Accepted on 18.03.2019

1. Introduction

The synthesis of halocyclothiazeneslike (NSCl)₃, $S_4N_3Cl_3$, $S_3N_2Cl_2$, S_3N_2Br (Zborilova, 1979; Glemser, 1976; Goehring 1960) have been described. Synthesis and characterization of tetrathiazyltetrafluoride and tetrathiazyldifluoride ($N_4S_4F_2$) (Banister, 1975; Glemser, 1976; and Mewsetal, 1975) have been investigated. Chelating behavior of $N_4S_4F_4$ with BF_3 and AsF_5 (Glemser, 1972; and Mews, 1976) tetrathiazyldihydridofluoride with Ti(III), Zr(IV), Si(IV), Sn(II), Ni(II), Hg(II) and Cu(II) (sharmaetal. 1986, 1994, 1989, 2009, 2016) have been reported. In view of this the reaction of tetrathiazyldihydrofluoride ($S_4N_4H_2F_2$) with $CdCl_2$ in non-aqueous solvent leading to the formation of metal complex and spectroscopic investigation are being presented here. The structure of tetrathiazyldihydrofluoride is depicted in Fig.1

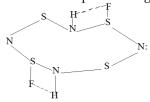


Figure 1: Structure of tetrathiazyldihydrofluoride

2. Materials and Methods

Tetrasulphurtetranitride (S₄N₄) was prepared (Goehring, 1960) by passing dry ammonia gas through Sulphurmonochloride (S2Cl2) in CCl4. The ratio 1:10 of S2Cl2 and CCl4 was taken for carrying out the reaction. The various steps of reaction are as under:

```
2 S_2 Cl_2 + 4 NH_3 \rightarrow NSCl + 3NH_4Cl + 3S
2 NSCl + S_2Cl_2→[S_3N_2Cl]+ Cl- + SCl<sub>2</sub>
3 [S_3N_2C1]+Cl-+S_2Cl_2 \rightarrow 2[S_4N_3]+Cl-+3SCl_2
[S_4N_3]^+Cl^- + 2SCl_2 + 4NH_3 \rightarrow S_4N_4 + 3NH_4Cl + S_2Cl_2
```

The orange yellow mass formed was separated followed by washing with H₂O, CCl₄ and CS₂ to remove unreacted NH₄Cl, S₂Cl₂ and S. The formed product was extracted from 1, 4-dioxane and fractionally crystallized from benzene. The orange needle type crystal melted at 178°C.

Tetrathiazyldihydrofluoride (Jadon,1986) was prepared by passing dry hydrogen fluoride gas to benzene solution of S₄N₄ at 298K with constant mechanical stirring for about 5h till a reddish yellow precipitate was obtained. The reddish yellow mass was separated by filtration and successively washed with ethanol and ether. It was dried and stored in vacuo.

1m. mol. (0.224g) of S₄N₄H₂F₂ with 1m. mol. (0.183g) of CdCl₂were dissolved separately in 50mL ethanol. The two solutions were mixed and the reaction mixture was refluxed for about 24h. The white precipitate formed was separated by filtration and washed with ethanol to remove unreacted reactants, if any and then dried in vacuo. The complex was analyzed qualitatively and quantitatively using gravimetric technique (Vogel, 1978). The molecular weight was determined by Rast method using camphor as solvent.IR (400-4000 cm⁻¹), UV (200-800 nm), 1^H NMR and mass spectrum of the complex was recorded subsequently on IFS-66, VFT-IR, UV-VIS-NIR, Jeol SX 102 (FAB) and Bruker DRX-300 spectrometer respectively. EPR spectrum of the complex was recorded on EPR X/Q band spectrometer at room temperature.

3. Results and Discussion

The white colored product obtained by the reaction of S₄N₄H₂F₂ with CdCl₂ is insoluble in water, ethanol, benzene, carbon tetrachloride but soluble in highly polar solvents like CHCl₃, acetone, and DMSO. It melts at 298°C. Analytical data % found S 28.24, N 16.48, H 0.59, F 11.18, Cd 33.07, Cl 10.44 and molecular weight 789 g/mol. reveals the molecular formula as [S₃N₄H₂F₂CdCl] 2.32 . The mass spectrum shows prominent lines at m/z 89, 102, 107, 136, 157 due to (S-N)H₂F₂, S₂F₂, (S-N)Cl₂, S₃N₃ (M+2) and S₃N₃F (base peak) fragments respectively along with other peaks at m/z 209, 225, 227, 267, 279, 303, 305,391,796 for the fragments of complex presented in table1.

Table 1: Mass spectral data of the complex

m/z	Bands Assigned
89	$(S-N)H_2F_2$
102	S_2F_2
107	(S-N)Cl ₂
136	S_3N_3 (M+2)
157	S ₃ N ₃ F (Base peak)
192	$S_3N_4H_2F_2$
209	$(S_3N_4H_2)$ (NH_2F) (HF)
225	(S ₃ N ₄ H ₂) (NH ₂ F) (HF) (NH ₂)
227	(S ₃ N ₄ H ₂) (NH ₂ F) (HF) (NH ₂) H ₂
267	$(S_3N_4H_2) (NH_2F)_2 (HF)_2 (H_2) (M+1)$
279	$(S_3N_4H_2) (NH_2F)_2 (NHF) (HF)(H)$

Ishanki Sharma& Hemant Kumar Sharma / Spectroscopic investigation of the reaction product of tetrathiazyldihydridofluoride (S₄N₄H₂F₂) with Cd(II) Chloride

303	S ₃ N ₄ F ₂ Cd
305	S ₃ N ₄ H ₂ F ₂ Cd
391	$(S_3N_4H_2F_2CdCl)$ $(S-F)$
680	$(S_3N_4H_2F_2CdCl)_2$
782	$(S_3N_4H_2F_2CdCl)_2 (S-F)_2$
796	(S ₃ N ₄ H ₂ F ₂ CdCl) ₂ (N-S-F) (S-F)

The mechanism for the formation of the complex may be explained on the basis of mass fragmentation of the complex as:

```
S_4N_4H_2F_2CdCl_2 \rightarrow S_3N_4H_2F_2CdCl + SCl
S_3N_4H_2F_2CdCl \rightarrow S_3N_4H_2F_2 + CdCl
m/z 192
S_3N_4H_2F_2 {\rightarrow} \ S_3N_3F \quad + \quad NH_2F
m/z 157
S_{3}N_{4}H_{2}F_{2}CdC1 + (S-N)H_{2}F_{2} \rightarrow (S_{3}N_{4}H_{2}F_{2}CdC1)(S-F) + NH_{2}F
m/z 391
(S_3N_4H_2F_2CdCl)(S-F) \rightarrow (S_3N_4H_2F_2CdCl)_2(S-F)_2
m/z 391
                             m/z782
(S_3N_4H_2F_2CdCl)_2(S\text{-}F)_2 \ \to \ (S_3N_4H_2F_2CdCl)_2 + S_2F_2
                                   m/z 680
(S_3N_4H_2F_2CdCl)_2 + NH_2F + S_2F_2 \rightarrow (S_3N_4H_2F_2CdCl)_2 (N-S-F) (S-F) + HF + H
m/z 680
                                            m/z796
```

The formation of $(S_3N_4H_2F_2CdCl)_{2,32}$ is also supported by the I.R spectrum presented in Table 2 and it is found that frequencies 618 and 704 cm⁻¹ are assigned for two S-N→Cd bands. The vibrations 1119 and 1366 cm⁻¹ correspond to two S-coordinated S-N-F groups. The assignments at 1582 and 1622 cm⁻¹ are due to two N-H groups. I.R spectrum clearly indicates that S₃N₄H₂F₂ has quadridentately coordinated to CdCl via. antipodal N and S atom of S₃N₄H₂F₂ ring as shown in Fig. 2.

Table 2: I.R spectral data of the complex

ν cm ⁻¹		Assignment
Ligand	Complex	
$S_4N_4H_2F_2$	$(S_3N_4H_2F_2CdCl)_2$	
-	480	Cd-CN
640(bs)	618(s)	S-N→Cd
719(s)	704(s)	S-N→Cd
920(s)	_	S-N
930(s)	_	S-N
940(s)	_	S-N
1220(bs)	1119(s)	N-S→Cd
		F
1392(s)	1366(ws)	N-S→Cd
		F
1655(s)	1582(s)	N-H
_	1622(s)	N-H
2010(s)	1946(ws)	N-H
_	3544(s)	N-H
3180-	3629(b)	N-H(hydrogen
3500(b)		bonded)

The electronic spectrum of the complex shows two peaks at 229 and 261 nm having molar extinction coefficient 3.9. The former peak is due to charge transfer transition explaining the ionic form of CdCl and $S_3N_4H_2F_2$ while latter peak is due to $p\pi$ - $p\pi$ transition of $S_3N_4H_2F_2$ ring which is coordinated to CdCl. This view is also supported by the value of frequency ratio $v_1/v_2<1$. The value of oscillator strength f, $4.50x10^{-5}$ expresses the presence of spin allowed laporte forbidden transition inferring the spin orbital coupling that is formation of L \rightarrow M coordinated complex. The value of band gap energy (ΔE , 0.66eV) calculated from electronic spectrum indicate the semi conductive nature of the complex.

EPR spectrum of the complex shows a symmetric broad peak of high intensity, indicating presence of unpaired electron. The value of g $_{\parallel}(1.9668){<}2$ supports the coordination while value of g $_{\perp}(2.0895)$ is for free electron present on N and S atom of the complex. The values of magnetic moment 1.74 B.M and magnetic susceptibility χ_A 2.04x 10^{-3} confirmed the presence of unpaired electron and supports Hydrogen bonding and semi conductivity of the complex as already evidenced by I.R and electronic spectral data.

To confirm the geometrical structure of the reaction product of $S_4N_4H_2F_2$ with CdCl₂ its 1H N.M.R spectrum is recorded in CDCl₃. It has two signals at chemical shift $\delta 1.251$ -1.561 (multiplet) and 3.730-3.731 ppm (doublet) for antipodal NH proton of $S_3N_4H_2F_2$ ring indicating coordination of CdCl through antipodal N atoms. The signals at $\delta 7.726$ -7.277 ppm (multiplet) is due to hydrogen bonded N-H protons.

On the basis of aforesaid studies the geometrical array of the complex may be proposed to be shown in Fig. 2.

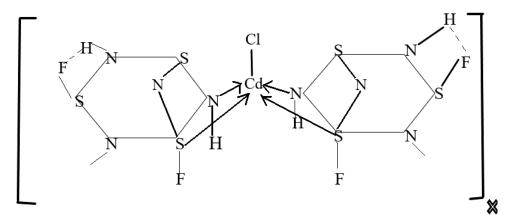


Fig 2: Proposed structure of $(S_3N_4H_2F_2CdC1)_x$, where x=2.32

4. References

- 1. Zborilova, Vonl and Gebauer (1979) Einneuer Typ Von Thiazylhalogenierung Von schwefeltetranitrid., P.Z.anorg.allg. Chem. 4485-10
- 2. Glemser O. (1976) Recent Investigation on cyclic Sulfur Nitrogen halogen compounds. Z. Naturforsch B31b 610-619
- 3. Goehring M.B(1960) Inorganic Synthesis Vol.6, Interscience New York pp 124
- 4. Banister A, (1975) Inorganic Chemistry vol. 2 MTP International Review of Science pp41.
- 5. Glemser O. and Mews R. (1972) Sulfur Nitrogen Fluorine compounds Adv. Inorg. Chem, Radio Chem. 14: 333-390
- 6. Mews R, Wagner D. L. and Glemser O. (1975) Uber Reaktianen Von cyclo Thiazylhalogeniden nut Lewis Säuren. Z. Anorg. Allg. Chem. 412: 148-154
- 7. Mews R (1976) Nitrogen Sulfur Fluorine ions. Adv. Inorg. Chem. Radio Chem. 19: 185-237

Ishanki Sharma& Hemant Kumar Sharma / Spectroscopic investigation of the reaction product of tetrathiazyldihydridofluoride (S₄N₄H₂F₂) with Cd(II) Chloride

- 8. Sharma H.K, Yadav A.K and Jadon S.P.S (1986) Characterization of the complexes of Ti (III) and Zr (IV) with Tetrathiazylhydrofluoride by U.V, E.P.R and XRD spectra. Rev. Roum. dechim31(3): 305-308
- 9. Sharma H.K (1994) Synthesis and Characterization of polymeric complexes of Si (IV) with tetrathiazyldihydrofluoride by I.R, U.V, EPR, and XRD spectroscopy. Bangladesh J. Sciind. Res. 29(1): 34-40
- 10. Sharma H.K (1989) Characterization of polymeric complexes of Sn(II) with tetrathiazyldihydrofluoride by I.R, U.V, EPR, and XRD spectroscopy. Curr. Sci, 58(12)679
- (2009) Spectroscopic Characterization of reaction product H.K tetrathiazyldihydrofluoride (S₄N₄H₂F₂) with Ni(II) Chloride Bangladesh J. Sciind. Res. 44(4) 485-487.
- 12. Sharma H.K and Kumar Pramod (2016) Spectroscopic Investigation of the reaction product of Tetrathiazyldihydrofluoride (S₄N₄H₂F₂) with Cu(II) Chloride. J. Chem. & Cheml. Sci. 6(9): 817-
- 13. Jadon S.P.S (1986) Synthesis and Investigations of the new adduct of S₄N₄Curr. Sci. 55: 781-782