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Abstract 

  Software Anamoly Prediction (SBP) is a vital process in software development,designed to identify potential 
software defects early in the development lifecycle. Early detection not only enhances software quality and 
performance but also significantly reduces development costs. The advent of Machine Learning (ML) algorithms 
has markedly improved the accuracy of bug prediction, leading to more efficient resource allocation and cost 
management. However, traditional ML models often struggle with managing non-linear relationships, addressing 
data imbalances, ensuring adequate feature representation, and handling complex scenarios, resulting in sub-
optimal performance.This research proposes a novel approach that optimizes the selection and refinement of 
classifiers, improving the accuracy and reliability of SAP. A key focus of this study is on addressing class 
imbalance, a crucial factor that significantly impacts the accuracy of software defect detection, as evidenced by 
performance metrics. Moreover, feature selection, which involves removing irrelevant features from a dataset, is 
also identified as essential for building more effective learning models. Recent research have also emphasized the 
importance of tuning of model parameters in boosting the performance of individual classifiers in SAP tasks. 
Additionally, Ensemble Learning (EL) techniques have demonstrated superior accuracy and effectiveness when 
applied to SAP datasets.This research introduces an innovative model that integrates Ensemble Learning with 
hyperparameter tuning, alongside class imbalance handling and careful feature selection, to predict software bugs 
more effectively. The study investigates whether Ensemble Learning models outperform individual models in 
software bug prediction and if integrating hyperparameter optimization, class imbalance handling, and feature 
selection further boosts their accuracy.The findings underscore the key role of these integrated approaches in 
improving the predictive power of SAP models . The proposed model, tested using Python software, shows a 
substantial improvement in accuracy compared to single classifier models on the PROMISE repository's PC1 and 
CM1 data sets, highlighting the potential of these advanced methods in advancing software bug prediction. 

KEYWORD: bug, ensemble, defect prediction, class imbalance, hyperparameter tuning  

 

 
Introduction 
For improving the software quality and reducing testing cost, prediction of software bugs is one 
solution that ensures only modules which are defective potentially will be sent to the testing phase. The 
process of coding, testing to fix bugs and then retesting (activity performed by Development team) to 
ensure high  quality before giving it to the client is called defects cycle, which is part of Software 
Development Life Cycle. By predicting defects accurately, the flawed modules can be detected early 
preventing the expensive downstream issues which occur post release as illustrated in Fig.1 It helps to 
maintain software quality and reliability but asks for much resources before time. In order to address 
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these difficulties, Software Anomaly Prediction (SAP) systems have been proposed with the intent of 
automating defect identification — helping teams in finding and resolving potential problems as early 
as possible, saving resources and ensuring that software gets released on time. 
 

 
Fig 1. SDLC Workflow: From Code Development to Quality Assurance 

Software defect prediction is the technique used to improve the quality of software and also reduce 
testing effort by sending the potentially defective modules to the testing phase. The testing team and 
the development team follow an iterative process where coding, testing, and defect fixing continue to 
happen repeatedly until perfect quality is achieved for that software. Defect prediction enables accurate 
identification of defect-prone modules at specific phases in SDLC, carryout an earlier detection towards 
faulty modules which will be undoubtedly reason behind disasters at final cycle as shown in Fig.1. 
Although it is resource-intensive, this early detection has an important role in the overall endeavor to 
ensure software quality and reliability. In order to address these problems, several research studies 
have been proposed that focus on automation bug-detection methods so as to reduce costs and risks 
early in the software process life cycle. 

Software fault prediction can be effectively achieved by training statistical and machine learning 
models using dependent variables (like fault presence) and independent variables (such as software 
metrics). Figure 2 illustrates this process, where the model analyzes code segments, predicting faults 
and guiding the engineering team in fixing them. The updated segments are re-evaluated by quality 
assurance before re-entering the development cycle. The process continues iteratively with the 
integration of new data, ensuring continuous improvement in fault detection and resolution. 
 

 

Fig 2.Workflow in SDP 

 Over the past three decades, a whole number of methods such as logistic regression, decision trees, 
Naive Bayes, support vector machines or more recently random forest have been used for software 
anomaly prediction. Machine learning is being used more and more, with which companies proactively 
predict bugs even before it can happen. Prediction accuracy is vital and raised through classifier models 
used in supervised learning, which learns from labeled (target) data. Nevertheless, they face practical 
issues related to overfitting and under fitting. Intuitively, some individual classifiers may not work 
well at detecting faults in all situations, so researchers have proposed ensemble learning methods 
which aggregate multiple classifiers to improve the accuracy of fault detection. In the ensemble learning 
approach, which combines several models to produce a final predictive result with higher prediction 
accuracy than any of the individual models. However, default settings are used in many studies which 
could have restricted the possible performance with these models. Types of Ensemble Techniques are: 
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Homogeneous and Heterogeneous. In the case of homogeneous ensembles, that refers to using the same 
base learner type throughout dataset subsets with methods such as boosting, rotating forests or bagging 
proving well in boosting model performance. Heterogeneous Ensembles combines different base 
learners, utilizing their strengths (where a single type might fail). This way is more flexible and it 
commonly leads to stronger models that are capable of capturing different patterns in the data. For 
instance, stacking where predictions are combined from various models via a meta-learner and voting 
classifiers aggregating predictions using majority votes or probability averaging to boost model 
accuracy while decreasing the chances of overfitting. 

Recent studies emphasize the importance of Hyperparameter Optimization   in improving the 
performance of individual classifiers in   Software Bug Prediction (SBP)   tasks. Ensemble models, when 
combined with hyperparameter tuning, show significant accuracy gains over single classifiers. 
Techniques like tuning Bayesian networks, SVM , and KNN   have notably enhanced bug prediction 
performance.Another key challenge in SBP, as in many real-world datasets, is class imbalance, where 
one class significantly outnumbers the other. This imbalance causes models to misclassified minority 
class instances as majority class examples.To mitigate this, data-level techniques like SMOTE(Synthetic 
Minority Oversampling Technique) are used to balance the dataset by generating synthetic samples for 
the minority class. Additionally,   feature selection   plays a critical role by eliminating irrelevant 
features, reducing dataset complexity, and improving model accuracy.  

Further studies have also highlights the advantages of combining re-sampling techniques with     
feature selection for imbalanced datasets,demonstrating that ensemble feature selection methods, 
which incorporate multiple techniques, generally outperform individual methods. Our analysis of 
various feature selection approaches confirmed that addressing class imbalance first, followed by 
applying ensemble feature selection, greatly improves model accuracy. Two main benefits of 
heterogeneous ensemble feature selection include: 

1. Enhanced Robustness: By combining techniques, these methods address the limitations of 
individual approaches, resulting in more reliable and stable feature selection. 

2. Improved Generalization: They capture a wider range of significant features, allowing the model to 
generalize better across various datasets and conditions. 

Despite the modest performance improvement, combining ensemble feature selection with SMOTE 
yields the best results. This research emphasizes the benefits of integrating class imbalance handling, 
feature selection, and advanced ensemble methods like stacking and voting to enhance software defect 
detection accuracy.The contributions of this paper are threefold: (1) It offers a comprehensive 
comparison of filter, wrapper, and embedded feature selection algorithms, along with ensemble 
methods; (2) It assesses the effectiveness of combining feature selection (using both single and ensemble 
methods) with over-sampling in various sequences to re-balance datasets and reduce feature 
dimensions; (3) It identifies top-performing approaches and algorithms, highlighting the critical role of 
Hyperparameter Optimization in enhancing the performance of individual classifiers in Software 
Anomaly Prediction (SAP) tasks.The study explores two primary research questions:  

(1) Do Ensemble Learning models outperform individual learning models in predicting software 
bugs? 
 (2) Does incorporating hyperparameter optimization into EL models, along with addressing class 
imbalance and feature selection, significantly enhance their accuracy?  

The paper is organized as follows: Section 2 provides review on related work with respect to feature 
selection, over-sampling and ensembles and highlights the limitations of existing approaches. Section 
3 describes the methodological approach used in the research. Section 4 gives the experimental settings 
and design. Performance evaluation is talked about in section 5, and the experiment results are 
discussed in section 6.Finally, Section 7 concludes the paper. 
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1.1 Objective, Innovation, and Impact 

To solve software anomaly detection problem, a novel framework is proposed that adjusts the class 
imbalance and integrates heterogeneous feature selection method with diverse classifiers, utilizing 
stacking with voting ensemble.As illustrated in Figure 3, the workflow in software defect prediction 
begins with defect reports that are pre-processed, leading to prediction models that assess software 
metrics, ultimately guiding performance evaluation and module updates. 

 

Fig 3. Software Defect Prediction Process 

 The research work emphasizes on enriching the predictive accuracy, stability and robustness by 
integrating several machine learning classifiers in an ensemble framework. Here in Figure 4, 
classification process is shown that illustrates how the data will be taken first and then clean it after this 
model learn according to its data, predict its results and, produce output by passing through proposed 
IHSVEM Model workflow. Finally, this model is verified on two NASA MDP datasets where it 
outperforms the current leading methods. This is achieved by introducing this new framework and 
demonstrating this in a thorough evaluation of its efficacy, benchmarking against high-level techniques 
in the field. This result quantifies the benefits of ensemble techniques, significantly improving 
predictive accuracy and surpassing all previous benchmarks, both academic and practical, in terms of 
performance scores. 

 

Fig 4. Classification Process 

2. Related Work 

Data over-sampling techniques are used, creating more synthetic minority samples, in order to deal 
with the class imbalance in datasets. A prime example of this is the Synthetic Minority Over-sampling 
Technique (SMOTE) a widely used method created to solve the imbalance. The SMOTE method 
generates new samples of the minority class within the feature space which is done by taking a random 
minority instance, finding k-nearest neighbors[1] and generating synthetic points along the lines 
between these neighboring instances. By doing so, we effectively overs-ample the minority class 
instances in the dataset. Different approaches either over-sampling methods or new arrivals for the 
problem of imbalanced data sets have pursued by various research studies. For example, Abdi and 
Hashemi [2] introduced an algorithm coupled with synthesizing technique based on synthetic data 
endowing the same Mahalanobis distance to class mean from the other minority class instances. Saez 
et al.[3] investigated class-dependent characteristics when using over-sampling on multi-class 
imbalanced datasets.Purnami and Trapsilasiwi [4] proposed the SMOTE-LSSVM, a second-stage 
classification method for multi-class imbalanced data, that optimizes the LS-SVM parameters with 
Particle Swarm Optimization (PSO), along with using SMOTE to balance the data. 
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 Feng et al. [5] propose COSTE, a novel oversampling technique for software defect prediction (SDP) 
that addresses class imbalance by generating synthetic instances from defective instances of similar 
complexity. It improves defect detection accuracy, enhances data diversity, and accounts for testing 
effort. In tests on 23 releases from 10 projects, COSTE outperformed existing methods like SMOTE and 
MAHAKIL, with statistically significant results. Deng et al. [6] proposed an over-sampling method 
based on classification ranking and weight setting, where data within each class are sorted according 
to their distance from the hyperplane, and sampling weights consider data density and boundary 
sorting between adjacent classes. Cai et al.[7] introduce a hybrid model, HMOCS-US-SVM, to tackle 
class imbalance and SVM parameter optimization in software defect prediction. By simultaneously 
selecting non-defective samples and tuning SVM parameters, the model improves prediction accuracy. 
Tested on eight Promise datasets, it outperforms other models in key metrics like false positive rate, 
probability of detection, and G-mean. Additionally, Bulavas et al. [8] applied SMOTE to balance highly 
imbalanced network traffic datasets, demonstrating that over-sampling improves classifier 
performance compared to models without over-sampling. Despite these advancements, the impact of 
feature selection on over-sampling results remains unexplored. It is unclear whether selecting a feature 
subset from an imbalanced dataset can enable the over-sampling process to generate more 
representative synthetic examples for subsequent classifier training. Conversely, it is also uncertain 
whether performing feature selection after re-balancing the dataset leads to better classifier 
performance than applying feature selection alone. Feature selection identifies the most important 
features from a dataset to improve model performance. Starting with a matrix  X m*n of m features and  
n samples, the goal is to select k  key features  S k*n that best distinguish between classes.Feature 
selection involves generating candidate subsets, evaluating them, stopping when optimal, and 
validating results. This process reduces data complexity and enhances model accuracy. Methods are 
categorized as filter (rank and remove based on statistics), wrapper (use a learning algorithm to 
optimize selection), and embedded (integrated into model training). While recent research combines 
feature selection with re-sampling for class imbalances, the impact on binary-class datasets is less 
explored. 

Masanari Kondo et al. [9] recommend using "Correlation-Based (CFS) or Consistency-Based (ConFS)" 
methods for feature subset selection in supervised defect prediction models, as these approaches 
outperform original models and other reduction techniques, enhancing model efficiency and accuracy. 
Dao et al. [10] tackled the issues of high-dimensional features, such as noise and overfitting, with a two-
stage feature selection method that reduces dimensionality while optimizing feature selection for better 
accuracy. Wang et al. [11] proposed an advanced approach to improve feature selection in defect 
prediction models by integrating a deep learning algorithm, boosting techniques, and the superposition 
criterion within a Nested-Stacking framework. This method, validated through extensive testing, excels 
in defect prediction and offers superior adaptability and generalization.Rostami [12] explored Swarm 
Intelligence techniques for feature selection, emphasizing the effectiveness of methods like Particle 
Swarm Optimization and Ant Colony Optimization. The study compares these methods, evaluating 
their strengths and weaknesses, and discusses factors affecting their success in feature selection. 
Hammouri et al. [13] conducted an in-depth analysis of three supervised ML models—Naive Bayes, 
Decision Tree, and Artificial Neural Networks—specifically designed for predicting software bugs. 
Their research, which compared these models with two previously proposed ones, found that the three 
ML models achieved significantly higher accuracy rates. Yang et al. [14] introduced a two-layer 
Ensemble Learning (TLEL) approach, integrating decision trees and ensemble techniques to improve 
just-in-time software defect prediction. Their model demonstrated a substantial performance boost 
over existing state-of-the-art ML models, identifying over 70% of bugs by reviewing just 20% of the 
code lines.  

Di Nucci et al. [15] took an innovative approach by quantifying the dispersal of modifications made by 
developers on a component and using this data to construct a bug prediction model. Building on prior 
research focused on the human factor in bug generation, the study found that developers who were 
less focused were more likely to introduce defects. This model outperformed four competing 
techniques. Khan et al. [16] developed a model that combined ML classifiers with Artificial Immune 
Networks (AIN) to optimize hyperparameters, enhancing bug prediction accuracy. Testing seven ML 
algorithms on a bug prediction dataset, they discovered that hyperparameter tuning using AIN 
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outperformed classifiers with default settings. Qiu et al. [17] explored 15 imbalanced Ensemble 
Learning methods across 31 open-source projects. Their study revealed that models combining under-
sampling and bagging were more effective in dealing with imbalanced datasets. Additionally, Pandey 
et al. [18] proposed a classification-based method for software bug prediction using a combination of 
Ensemble Learning techniques and Deep Representation. This approach showed superior performance 
compared to other EL techniques and state-of-the-art models across most datasets. The above reviewed 
literature has provided a comprehensive exploration of methodologies for addressing class imbalance 
in software defect prediction, homogeneous feature selection, encompassing supervised machine 
learning, Ensemble Learning, and deep representation techniques. These approaches, including 
advanced oversampling techniques like SMOTE, COSTE, and HMOCS-US-SVM, have demonstrated 
improved prediction accuracy by generating synthetic data, optimizing feature selection, and fine-
tuning SVM parameters. Comparative analyses underscore the effectiveness of Ensemble Learning 
models and highlight the importance of hyperparameter optimization in enhancing bug prediction 
accuracy. Despite these advancements, the impact of feature selection in conjunction with 
oversampling remains under explored, particularly in multi-class and binary-class scenarios.These 
insights provide a strong foundation for exploring the key components of Hyperparameter 
Optimization and Ensemble Learning in software bug prediction in the background section. The 
literature also highlights the importance of further investigating the integration of deep learning, 
Ensemble Learning, and Optimization algorithms(swarm intelligence) to enhance prediction accuracy 
while effectively managing class imbalances. Numerous studies and literature reviews indicate that 
models incorporating class imbalance handling, effective attribute selection, and ensemble classifiers  
outperform those relying solely on individual classifier techniques based on these insights, an approach 
was developed by incorporating multiple classifiers to create a model that is interpretable, 
generalizable, and highly accurate in predicting anomalies in software. 

3. Background 

This section takes us through the major components which build the foundation of methodological 
approach in this research: treating class imbalance, focusing on feature engineering, hyperparameter 
tuning and harnessing ensemble learning. These factors contribute to an enhancement of the predictive 
performance of software defect prediction, and a thorough review on how they are fulfilling the 
objectives that have been set forth within the current study will be discussed in this section. 

3.1 Over-sampling Technique 

SMOTE, or Synthetic Minority Over-sampling Technique, is commonly employed in software defect 
prediction to address the challenge of class imbalance.  The researchers describes the technique as 
useful for software defect datasets in which the number of non-defective modules (the majority class) 
far exceeds that of the defective ones (the minority class). The problem here is that due to this imbalance 
most predictive models built are dominated with majority class examples and fails most of the time in 
identifying defects. It generates imbalanced sets by creating new synthetic defective modules using the 
SMOTE algorithm to help balance training data . It takes the detected defective modules, calculates 
their nearest neighbors (usually based on a fixed k value) next it samples one of these neighbors and 
spawns a point between the original defect module and chosen neighbor. The dataset is augmented by 
the addition of these synthetic defects which helps to improve the representation of the minority class 
and further balance out the dataset. The major advantage of application of SMOTE in software defect 
prediction is that it can help the model to detect defects better as it provides a balanced training data. 
It hooks the model so that it can learn more from the incorrect modules and less prone to missing other 
defects later.Also, since SMOTE creating new synthetic instances rather than just replicating existing 
ones, it can reduce overfitting and improve the model generalization to new data. But still there are 
disadvantages of SMOTE. If the defective modules are not clearly defined, or if the minority class is 
filled with outliers, there is a risk of noise being introduced into the dataset. However, it performs best 
with numerical software metrics so it may not be most effective especially when you have categorical 
or textual features.  SMOTE [ 18] is used as an over-sampling method in this study. Although many 
different over-sampling algorithms exist (some of which are simply modifications of SMOTE), it is 



Tarunim Sharma, Shalini Bhaskar Aman Jatain,  Kavita Pabreja, Aman Jatain 

 

Library Progress International| Vol.44 No.3| Jul-Dec 2024 3292 
 

frequently referred to in the literature as a common over-sampling technique, and often used as a 
benchmark against which other re-sampling methods are compared.   

3.2 Feature Engineering 

Feature selection is a critical component in machine learning, particularly in the domain of predictive 
modeling for software defect prediction. The process involves selecting a subset of relevant features 
from a larger set to improve model performance, reduce complexity, and prevent overfitting.  The 
significance of feature selection is more evident when examining various approaches and their effects 
on classifier performance.In the subsequent sections, a comparison is provided between individual 
feature selection techniques and hybrid methods. 

Tables 1 and 2 present the performance metrics of various classifiers (Logistic Regression, Random 
Forest, Decision Tree, SVM, Naive Bayes, and KNN) on the CM1 and PC1 datasets, respectively, using 
different feature selection techniques such as Chi2, ANOVA, CFS, FFS, BFS, and RFE. Across both 
datasets, high values of precision, recall, and F1 scores are observed, particularly with Random Forest 
and Naive Bayes, where ensemble methods and regularization techniques like Lasso and Ridge 
maintain consistent performance. While the PC1 dataset generally shows slightly higher metrics across 
classifiers, both datasets highlight the effectiveness of using feature selection techniques in improving 
model accuracy and robustness.

 
CM1  

Feature 
Selection 
Techniques Chi2 ANOVA CFS FFS BFS RFE 
Classifier P R F P R F P R F P R F P R F P R F 

LR .77 .88 .82 .77 .88 .82 .95 .97 .96 .77 .88 .82 .77 .87 .82 .77 .87 .82 

RF .85 .88 .85 .77 .87 .82 .95 .97 .96 .82 .87 .83 .77 .87 .82 .77 .85 .81 

DT .83 .80 .81 .81 .84 .83 .95 .96 .95 .77 .87 .82 .81 .86 .83 .81 .83 .82 

SVM .77 .88 .82 .77 .88 .82 .95 .97 .96 .77 .87 .82 .77 .88 .82 .84 .87 .85 

NB .84 .87 .85 .84 .87 .85 .96 .95 .96 .77 .86 .81 .77 .86 .81 .84 .87 .85 

KNN .77 .88 .82 .82 .87 .83 .95 .97 .96 .77 .88 .82 .77 .86 .81 .77 .85 .81 

 
Table 1: Performance measure of best-reduced feature subsets using the filter, wrapper, and embedded methods[28] using a 
variety of performance metrics such as Precision, Recall, and F1 score on the CM1 dataset  

LASSO RIDGE 

P R F P R F 

.77 .88 .82 .77 .88 .82 

.77 .87 .82 .84 .88 .84 

.79 .81 .80 .83 .85 .84 

.77 .88 .82 .77 .88 .82 

.85 .88 .85 .83 .86 .84 

.77 .88 .82 .77 .88 .82 
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PC1  
Feature 
Selection 
Techniques 

Chi2 ANNOVA CFS FFS BFS RFE 

Classifier P R F P R F P R F P R F P R F P R F 

LR .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .96 .95 .98 .98 .97 

RF .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 

DT .95 .94 .94 .95 .96 .95 .95 .96 .95 .95 .97 .96 .95 .97 .96 .95 .95 .95 

SVM .95 .97 .96 .95 .97 .96 .95 .97 .96 .97 .97 .96 .95 .97 .96 .95 .97 .96 

NB .96 .96 .96 .96 .95 .96 .96 .95 .96 .95 .97 .96 .95 .97 .96 .96 .94 .95 
KNN .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 .95 .97 .96 

 

Table 2: Performance measure of best-reduced feature subsets using the filter, wrapper, and embedded 
methods[28] using a variety of performance metrics such as Precision, Recall, and F1 score on the PC1 
dataset

 

 

 

 

Table 3 below demonstrates the enhanced performance achieved by combining class imbalance 
handling (SMOTE), hybrid feature selection techniques (Recursive Feature Elimination, Sequential 
Feature Selection), and ensemble methods like Random Forest, Decision Tree, Adaboost, Bagging, 
Voting, and Stacking. Compared to previously discussed tables focusing on individual feature selection 
methods, these hybrid and ensemble approaches show significant improvements in performance 
metrics. For example, SMOTE, RFE , SFS and Random Forest delivers 98% in accuracy, precision, recall, 
and F1-score, surpassing the typical 95-96% seen with standalone techniques. Additionally, methods 
such as Bagging, Stacking, and Voting consistently maintain high performance with 94% across all 
metrics, indicating the reliability of ensemble approaches. The advantages of these combinations 
include better generalization, reduced overfitting by leveraging multiple models, and improved 
handling of class imbalance, leading to more accurate and consistent results. These hybrid techniques 
are particularly beneficial for imbalanced datasets, providing stronger overall performance than 
individual methods. By combining multiple feature selection methods, ensemble approaches capitalize 
on the strengths of different algorithms, enhancing both the precision and recall across classifiers. This 
highlights the benefit of hybrid approaches, which result in better overall accuracy and more robust 
performance. 

 

LASSO RIDGE 

P R F P R F 

.95 .96 .95 .95 .97 .96 

.95 .97 .96 .95 .97 .96 

.96 .97 .96 .95 .95 .95 

.95 .97 .96 .95 .97 .96 

.96 .93 .94 .96 .95 .95 

.95 .97 .96 .95 .97 .96 
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Table 3. Class Imbalance and Feature Selection Models Performance 

Acknowledging the strength of a hybrid feature selection method in enhancing model performance, 
three critical feature selection approaches namely two filter methods — Mutual Information (MI) and 
Principal Component Analysis (PCA), along with Recursive Feature Elimination with Cross-Validation 
(RFECV)— were implemented simultaneously, forming a pipeline in this study.  This section discusses 
all these feature selection techniques as well as the benefits of combination of them into one hybrid 
approach. In this study, a systematic feature selection criterion was executed over the pre-processed 
dataset to improve the prediction accuracy of software defect prediction models. All of these feature 
selection strategies together played vital role in reducing the feature set as much as possible and thus 
creating a resilient efficient model. 

Mutual Information (MI) was the first technique applied to the dataset. MI was used to measure the 
dependency between each feature and the target variable, allowing for the identification of features 
that provide significant information about the target. This method is particularly effective because it 
captures non-linear relationships between features and the target variable, and it does not assume any 
specific distribution of the data. By applying MI, features with the highest relevance to the prediction 
of software defects were retained, forming an initial, refined set of features. Following the application 
of MI, Recursive Feature Elimination with Cross-Validation (RFECV) was employed to further narrow 
down the feature set. RFECV works by iteratively removing the least important features based on 
model performance. At each iteration, the model was trained, and features were ranked according to 
their importance scores. The process continued until an optimal subset of features was identified. Cross-
validation within this method ensured that the selected features were not only relevant but also 
generalized well to unseen data. This step was crucial in avoiding overfitting and ensuring the 
robustness of the model. 

Finally, Principal Component Analysis (PCA) was applied to the feature set resulting from the RFECV 
process. PCA is a dimensionality reduction technique that transforms the original features into a new 
set of uncorrelated components, known as principal components. These components are linear 
combinations of the original features and are ranked based on the amount of variance they explain in 
the data. By applying PCA, the dimensionality of the feature space was further reduced while 
preserving the most critical information. This reduction not only helped in speeding up the training 
process but also improved the overall performance of the model by eliminating any remaining noise in 
the data. 

The combination of these three techniques allowed for a comprehensive and effective feature selection 
process. The feature selection pipeline with Mutual Information (MI), Recursive Feature Elimination 
with Cross-Validation (RFECV) and Principal Component Analysis (PCA) is introduced to maximize 
model performance by selecting the relevant features through MI, refining them iteratively via 

Class Imbalance +Feature 
Selection Techniques 

Accuracy P R F1 

Smote + RFE + SFS +  
Random Forest 

98 98 98 98 

Smote + RFE + SFS + 
Decision Tree 

80 82 80 81 

Smote + RFE +SFS +KNN 88 94 88 91 

Smote + RFE + SFS + 
ADABOOST 

92 94 92 93 

Smote + RFE +SFS +  
Bagging 

94 94 94 94 

Smote + RFE + SFS +  Voting 92 93 92 92 

Smote + RFE + SFS +  
Stacking 

94 94 94 94 
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elimination while generalizing through RFECV and dimensionality reduction for computational 
efficiency and noise reduction in PCA. By harnessing this hybrid, the predictive performance and 
model stability get a liftoff. Each step progressively refined the feature set, ensuring that the final model 
was both efficient and highly accurate in predicting software defects. This approach was particularly 
beneficial in addressing the complexity and variability inherent in the dataset, ultimately leading to 
more reliable predictions. 

So to enhance the accuracy of a classification model, especially when managing imbalanced datasets 
and numerous features, the following procedure is used to balance the data and identify the most 
important variables for training and testing. 

1. Begin with the original dataset Z, which consists of n observations, each described by m variables. 

2. Partition the dataset Z into a learning subset P and an evaluation subset Q. 

3. Apply an oversampling method to the learning subset P to balance the class distribution, resulting 
in a modified subset P_balanced. 

4. Execute a feature selection process on P_balanced to reduce the number of variables from m to r 
(where r < m). 

5. Create a refined learning subset P_selected, containing only the r chosen variables. 

6. Use P_selected to train the classification algorithm. 

7. Implement the hybrid feature selection process on the evaluation subset Q, producing Q_selected 
with the identical r variables. 

8. Test the trained model using the Q_selected subset to assess its performance. 

To evaluate the proposed methods, two binary-class imbalanced datasets – the NASA MDP (Metric 
Data Program) are used in this work. This Table 4 represents some basic information of these datasets 
such as the number of features, instances, and classes which are sorted by the number of features in 
ascending manner. The imbalance ratio is calculated for each dataset as the number of the largest class 
divided by that of the smallest class. Datasets were iteratively divided into training datasets (80% of 
the data) and testing dataset (20% of the data), using 10-fold cross-validation. To remove the bias from 
the experiment, and to show a homogeneous result, the original imbalance ratio of the dataset was kept 
as it is while dividing into different  
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training sets which also been imbalanced. 

3.3 Aggregated Learning 

Ensemble Learning (EL) algorithms stand out from traditional single-hypothesis approaches by 
utilizing multiple hypotheses instead of depending on a single, optimal solution. Rather than focusing 
on one best explanation, EL algorithms generate a variety of hypotheses and combine them to classify 
new data points more effectively and with greater diversity. Studies have consistently shown that 
ensemble methods are generally more dependable than individual models. Fraihat et al. [21] conclude 
that Software Bug Prediction (SBP) is crucial for improving software quality and reducing costs by 
predicting bugs early. Their study shows that using Machine Learning (ML) with Ensemble Learning 
(EL) and Hyperparameter Optimization significantly boosts prediction accuracy.In a comparison using 
NASA's dataset (10,885 instances, 20 attributes) and WEKA, EL models outperformed single classifiers, 
with further accuracy gains from hyperparameter tuning. This confirms EL with optimization as an 
effective strategy for enhancing SBP performance highlighting the robustness and adaptability of EL in 
diverse scenarios. 

An "ensemble" is a set of base learners (Individual models) whose generalization may be better than an 
individual model. Therefore, EL is specifically useful as it can upscale the performance of weak learners 
— i.e. learners only slightly better than random guessing process— to an excellent prediction accuracy. 
Theoretical studies are biased toward weak learners; in practice, however, EL applications often include 
strong base learners which lead to an even better performance from the ensemble. Bagging, Adaboost, 
Stacking and Voting are some of the frequently used EL methods. 

Bagging, or bootstrap aggregation, is a foundational ensemble technique that boosts model 
performance by creating diversity among base learners. It works by generating multiple bootstrapped 
samples from the original dataset, where each sample is a random subset of the data with replacement. 
Different classifiers are trained on these subsets, and their predictions are aggregated using majority 
voting. This approach reduces variance, making Bagging particularly effective for high-variance 
models like decision trees, which are prone to overfitting. Adaboost is another popular ensemble 
method that improves accuracy by training a sequence of models, where each model focuses on 
correcting the errors of its predecessors. During this process, the algorithm increases the weight of 
misclassified examples, making them more influential in subsequent rounds. This iterative process 
helps Adaboost gradually refine its ability to handle difficult cases, significantly enhancing the 
ensemble’s overall performance. Stacking, or stacked generalization, is an ensemble technique that 
combines the predictions of multiple base models using a meta-model to improve accuracy. It allows 
for the use of diverse models, capturing a wider range of patterns in the data. There are several 
approaches to stacking, including simple stacking, where a single meta-model combines base models' 
outputs; blending, which uses a holdout set to train the meta-model and reduce overfitting; multi-layer 
stacking, which adds complexity by layering meta-models; and cross-validation stacking, which uses 
cross-validation to generate unbiased predictions for the meta-model. Voting is another ensemble 
technique that aggregates predictions from multiple classifiers to reach a final decision. The three 
primary voting strategies are unanimous, majority, and plurality. Unanimous voting requires all 
classifiers to agree on the decision, majority voting selects the class agreed upon by more than half of 
the classifiers, and plurality voting chooses the class with the most votes, even if it doesn't represent an 
absolute majority. These strategies enhance the ensemble’s robustness and accuracy by combining the 
strengths of different models. Random Forests extend the Bagging method by not only using random 
bootstrap samples for each tree but also selecting a random subset of features for each node split. This 
added randomness increases diversity among the trees, improving the ensemble’s robustness. The trees 
in a Random Forest are fully grown and unpruned, capturing detailed patterns. By combining the 
outputs of these diverse, fully grown trees, Random Forests achieve high accuracy and stability, making 
them a widely used and effective model.The following methodology section will delve into the practical 
application of class imbalance, ensemble feature selection and classifier with Hyperparameter 
Optimization within the context of software bug prediction, demonstrating how these techniques can 
be effectively utilized to enhance predictive accuracy.                      
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3.4 Hyperparameter Optimization 

In machine learning, "optimization" involves fine-tuning hyperparameters—such as regularization, 
kernels, and learning rates—to enhance model performance. These adjustments are crucial for 
improving classifier accuracy throughout the learning, model construction, and evaluation phases. 
Several methods are commonly employed for hyperparameter optimization. Manual Search relies on 
expert intuition to iteratively select, evaluate, and refine hyperparameters, although it may not fully 
explore the parameter space. Grid Search, in contrast, systematically examines all possible 
combinations of predefined hyperparameters, offering thorough coverage but at a high computational 
cost. Random Search provides a more efficient alternative by randomly selecting combinations, often 
yielding effective solutions with less computational effort. Bayesian Optimization further refines this 
process by predicting and focusing on the most promising hyperparameter configurations, achieving 
near-optimal results with fewer iterations. Evolutionary Algorithms take a different approach by 
mimicking natural selection to evolve and combine the best hyperparameter settings, making them 
particularly useful for complex optimization tasks. Typically, these methods are paired with cross-
validation to ensure the chosen hyperparameters generalize well to new data, ultimately helping to 
maximize model accuracy and overall performance. Nevendra et al.[20] study highlights the 
importance of hyperparameter tuning in improving defect prediction accuracy in software systems. 
Through analysis of 15 software defect datasets, the research shows that optimizing hyperparameters 
significantly boosts model performance. The study underscores the effectiveness of thorough 
hyperparameter exploration, particularly through grid search, in achieving substantial accuracy gains, 
especially for parameter-sensitive models.As suggested by Haidar Osman et al.[19] explored the impact 
of hyperparameter tuning on bug prediction accuracy in machine learning models. They studied k-
nearest neighbors (IBK) and support vector machines (SVM) across five open-source Java systems. The 
study found that tuning hyperparameters significantly improved accuracy for IBK and maintained or 
enhanced it for SVM, showing that models often benefit from customized settings over default ones. 
The authors recommend hyperparameter tuning as essential for optimizing bug prediction 
models.Having established the importance of hyperparameter optimization in boosting classifier 
performance, it is now crucial to explore how these optimized models are implemented in real-world 
scenarios. The next section presents an advanced ensemble model specifically tailored for software 
defect prediction, utilizing multiple heterogeneous supervised machine learning classifiers. This 
approach capitalizes on the benefits of hyperparameter tuning to further improve accuracy and 
efficiency in detecting software defects. 

4. Experimental Design and Approach 

The paper puts forward an advanced ensemble model for software defect prediction utilizing multiple 
heterogeneous supervised machine learning classifiers to provide higher accuracy. This approach 
solves the problems predicting software defects more effectively. Through a stacking with voting 
ensemble approach that aggregates outputs of single base classifiers, IHSVEM model improves the 
predictive strength in more accurate defect detection. As depicted in Figure 5 this method  involves 
data preprocessing, base classification, ensemble classification and subsequently, testing on the entire 
dataset to obtain a final prediction. Figure 5 illustrates the structure of the IHSVEM model, which has 
two main layers — training and testing; its training phase includes three major steps — data 
preprocessing, base classification, and ensemble classification. 

 

Fig 5. Training and Testing Data 
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In the training layer, the dataset is cleansed and formatted for accurate classification. The results from 
the base classifiers are then combined using an ensemble classifier, forming the model-based ensemble.  
The testing layer targets exclusively the prediction, using the trained model to predict defect in software 
modules that have never been seen before. This work was conducted using a Python-based tool, which 
helped in efficient data preprocessing, advanced statistical analysis and precise machine learning 
modeling which eventually led to the discovery of important insights from the research data. The 
following steps were performed to locate faulty modules of the software: 

1. Data Collection: Initially, datasets comprising various software metrics were gathered and 
reused [22]. 

2. Data Preprocessing:The datasets were subjected to preprocessing, which involved dataset 
splitting, cleaning, and normalization and handling class imbalance using smote [23], [24]. 

3. Feature Selection: A hybrid feature selection method was used to identify the most relevant 
features, reducing the dataset's dimensionality. 

4. Model Training: The IHSVEM model was trained using a diverse combination of base classifiers. 

5. Ensemble Integration:The base classifiers were combined using an ensemble learning technique, 
which aggregated their accuracy to produce unbiased and more accurate results. 

6.Defect Prediction:Finally, the preprocessing technique was applied to new modules, and the 
dataset was fed into the trained model to predict defective modules. 

 Stacking with Voting Intelligent Hybrid Ensemble model can be defined as a mix of two main ensemble 
techniques: Stacking and Voting. Being an ensemble, the representation here takes its own process in 
which the outputs from base models are either stacked or boosted and later gets optimized by a voting 
mechanism. Mathematically, it is found as follows:  

Base Models: Suppose you have n base models M1, M2, …, Mn. Each model Mi takes the input vector X 
and produces an output prediction Yi = Mi (X) 

Stacking Layer: The predictions from all base models Y1,Y2,…,Yn  are used as input features for a meta-
model Mmeta , which produces the final stacked prediction: 

Ystack = Mmeta(Y1,Y2,…, Yn) 

Here, Ystack represents the output after stacking the base models. 

Voting Mechanism: In the final step, the output from the stacking model Ystack is combined with the 
predictions from the base models through a voting mechanism (e.g., majority voting or weighted 
voting) to produce the final prediction Yfinal: 

Yfinal=V(Y1,Y2,…,Yn,Ystack) 

Where V represents the voting function that aggregates the predictions. The primary goal of the 
proposed approach is to accurately predict defective software modules. The overall mapping of the 
Stacking with Voting Intelligent Hybrid Ensemble model can be represented as follows: 

Yfinal=V(M1(X),M2(X),…,Mn(X),Mmeta(M1(X),M2(X),…,Mn(X))) 

 This equation illustrates that the final prediction Yfinal is obtained by first stacking the predictions from 
multiple base models and then applying a voting mechanism to combine these stacked predictions with 
the original base model outputs. This hybrid approach leverages both stacking and voting to enhance 
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the model’s predictive performance. Each software module X  is characterized by multiple attributes: 
X = x1, x2, x3, ….., xn where x1, x2, x3, …, xn  denote the attributes associated with the software module. 
This research aims to discover this mapping through ensemble-based machine learning techniques. 

4.1 Dataset Selection and Preprocessing 

The first step in this study involved selecting historical software defect datasets from NASA's MDP 
repository, specifically choosing benchmark datasets like CM1, PC1, and PC4. These datasets were 
selected to ensure alignment with previous research. Each dataset corresponds to a unique software 
component, where each instance represents a software module. These modules contain various 
software quality metrics, such as LOC_COMMENT, LOC_TOTAL_CALL_PAIRS, 
HALSTEAD_LENGTH, and HALSTEAD_CONSTANT, all documented during the Software 
Development Life Cycle (SDLC). To evaluate classifier performance, the datasets were split into 80% 
for training and 20% for testing. This method maintained the original dataset's imbalance ratio within 
each training fold, thereby minimizing the risk of bias in the results. Each software module includes 
multiple independent variables (e.g., x1, x2, x3,…) for prediction, while the dependent variable, or target, 
indicates whether a module is defective (Y) or non-defective (N).Pre-processing, the second phase in 
the training layer, includes three essential steps: dataset splitting, cleaning, and normalization. In the 
first step, the pre-processed dataset is split into training and testing datasets with a 80:20 ratio using a 
class-based approach to ultimately assure the segregation of relevant and irrelevant data for the 
purpose of training and testing the model[22]. Second, cleaning is essential for improving the model’s 
robustness and accuracy. Cleaning is performed through the elimination of the outliers and undesired 
data points, reduction of noise, and imputation of missing values using the mean technique to improve 
prediction and data quality[23]. Third, normalization is applied to scale the input features within a 
range of 0 to 1[24], enhancing the model's convergence, stability, and processing speed. It prevents the 
model form feature domination due to limited range; thus, contributing to the balanced learning and 
consistency of the model across all datasets[25]. This step is essential for overall model robustness and 
generality in the IHSVEM. 

4.2 Classification 

Through optimization, it was determined that the Support Vector Machine (SVM) performs optimally 
with a regularization parameter ( C = 1), an RBF kernel, and a class weight setting of {0: 1, 1: 5}, 
effectively handling class imbalance. SVM is particularly strong in managing non-linear data due to its 
kernel functions. Adaboost, known for enhancing model performance by focusing on difficult-to-
classify instances, is paired with the XGBoost classifier, which showed the best results with 200 
estimators, a learning rate of 0.1, and a maximum depth of 7. Similarly, CatBoost, which efficiently 
handles categorical variables and reduces overfitting, performed best with 200 iterations, a learning 
rate of 0.1, and a depth of 7. 

Gradient Boosting, recognized for its sequential error correction capabilities, was optimized with 200 
estimators, a learning rate of 0.1, and a maximum depth of 7. Logistic Regression, valued for its 
simplicity and effectiveness in binary classification tasks, was fine-tuned with a regularization 
parameter ( C = 1 ) and a class weight setting of {0: 1, 1: 10} to better manage class imbalance. Finally, 
Random Forest, which excels in capturing complex data relationships, was optimized with 200 
estimators, a maximum depth of 20, and a minimum sample split of 2 . After optimizing these six 
classifiers, they were integrated into a stacking model, where their predictions were combined using a 
Random Forest as the meta-model. Following the stacking process, a voting ensemble was 
implemented, incorporating the stacked model along with XGBoost, Adaboost, and Gradient Boosting 
classifiers. This final step leveraged the complementary strengths of the stacked ensemble, which 
combines diverse model outputs for greater accuracy, and the individual models, which excel in 
specific aspects like handling non-linear relationships, correcting errors sequentially, and dealing with 
class imbalances. As a result, this approach not only ensures robustness and accuracy across various 
datasets but also enhances the model's adaptability and resilience, making it well-suited for complex 
and varied predictive tasks. 
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4.3 Ensemble modelling 

Ensemble modeling, as the fourth step in the training process, involves the integration of multiple 
individual models to enhance prediction accuracy and classification performance. This approach 
leverages the power of ensemble-learning, as different models perform well in certain tasks may be 
able to mine a more diverse set of patterns and knowledge than merely thrashing on one model[26]. In 
this work voting ensemble method is used to achieve reliable and accurate predictions. By combining 
the strengths of each base model, more dependable predictions are obtained through voting in the 
ensemble. Due to the diversity of the ensemble, biases and errors that may exist in any one model are 
mitigated; this leads to a more complete view on software quality attributes. This diversity also makes 
the model more resistant to outliers and noise in the data which helps make better and stable 
predictions. As an added bonus, this ensemble approach effectively mitigates the risk of overfitting, 
which is typical in machine learning and pertains to models accommodating themselves too closely to 
particular patterns in the training data. 

Ensemble models are particularly useful for software defect prediction, in which we need higher 
precision and reliability to predict a model against bugs by merging predictions from multiple sources 
contribute improving the accuracy overall. The above model improves the overall accuracy by using 
ensemble method to aggregate predictions of multiple stream based machine or data learning models. 
This fact is well suited in certain types of tasks, one of which is anomaly prediction, requiring high 
precision and reliability for security and quality assurance. This model combined the predictive outputs 
produced by six different base learners into a ensemble stacking model, with the meta-model being of 
the form of Random Forest. After stacking all the models, a Voting Ensemble was employed with these 
predicted probabilities as inputs for the stacked model along with XGBoost, Adaboost and Gradient 
Boosting classifiers. The former is deep in the sense that it uses stacking, whereby high-level outputs 
from multiple models are combined to create one meta-model; and using of voting which refines 
predictions by considering collective opinion among all models. This hybrid approach allows each 
technique to learn and perform better than they would individually. Experiments on datasets 
demonstrate that the IHSVEM model significantly outperforms single base classifiers by utilizing this 
ensemble strategy over the original base models. 

4.4 Advancing Defect Detection with the IHSVEM Framework 

To overcome such challenges this study proposes a novel stacking with voting ensemble based software 
defect prediction model[27]. In the testing phase, this model is deployed to serve its purpose that 
requires only one task of making real-time predictions for a different software package which has never 
been seen before. At this phase, the function f(X) is applied to unlabeled data for appropriate labelling 
of each module. The obtained results indicate that the proposed approach has a minimum error rate ɛ 
compared to state-of-the-art software defect prediction methods. The predicted output Y by the 
function f(X) is then given to the development team in the Software Development Life Cycle (SDLC). 
This enables the team to find and rectify defective modules before they are passed to the testing team 
that streamlines the quality assurance process and reduces costs for the organization. 

5. Performance evaluation 

In this study, the performance of the proposed software defect prediction model SIHVE is assessed 
using several metrics, including accuracy, recall, precision, F1 score, AUC-ROC, and PR AUC. Because 
the dataset is imbalanced, accuracy may not be a reliable indicator of performance, as it might not 
adequately reflect how well the model identifies instances from the minority class. Even if accuracy 
appears high, it may fail to capture the model's effectiveness in detecting the minority class instances 
as it is the ratio of correctly predicted instances (true positives and true negatives) to the total number 
of instances. The formula for accuracy is: 

Accuracy=Correct Predictions/Total Predictions  

Thus, additional metrics which can be considered for a more comprehensive evaluation are: 
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1. Precision is the ratio of true positive predictions to the total number of positive predictions, 
highlighting the model's ability to accurately identify relevant instances. The precision formula is: 

Precision=Correct Positive Predictions/All Positive Predictions 

2. Recall measures the proportion of actual positive instances that the model correctly identifies, 
ensuring that the minority class is adequately represented. The recall formula is: 

Recall= Correct Positive Predictions/Correct Positive Predictions +Missed Positive Instances 

3. F1 Score     is the harmonic mean of precision and recall, balancing both metrics to provide a single 
measure of the model's performance. This is particularly useful in imbalanced datasets. The F1 score is 
calculated as: 

F1 Score= 2* (Precision*Recall)/Sum of Precision and Recall 

Another important metric for evaluating model performance is AUC-ROC (Area Under the Receiver 
Operating Characteristic Curve). An ROC curve shows the model's ability to distinguish between 
classes by plotting the true positive rate (recall) against the false positive rate (1-Specificity). The AUC 
measures the probability that, given a randomly chosen positive and negative instance, the model will 
correctly rank them. A higher AUC indicates a better model. 

Additionally, PR AUC (Precision-Recall Area Under the Curve) is particularly useful for imbalanced 
datasets. The PR curve plots precision as a function of recall, focusing on the quality of the positive 
class predictions. For imbalanced datasets where the rarer class is of greater interest, a higher PR AUC 
score indicates the model's ability to correctly identify positive instances, which are typically fewer in 
number.Together, these metrics provide a comprehensive assessment of the model's performance, 
ensuring that evaluation covers various aspects of prediction accuracy, especially when dealing with 
imbalanced data. 

6. Result and Discussion 

The performance comparison between PC1 and CM1 datasets without addressing class imbalance 
presents several notable findings, as analyzed in   Table 5  . The   Intelligent Heterogeneous Stacked 
Voting Model   achieves high accuracy (92%) on PC1, showing balanced precision, recall, and F1-score. 
However, its AUC-ROC (86%) and PR Curve AUC (39%) reveal limitations in handling minority class 
instances, as reflected by its moderate MCC (0.37). On CM1, the model’s performance declines, with 
accuracy reduced to 87% and an MCC of -0.057, indicating difficulty in managing class imbalance. 
Similarly,   Random Forest   performs well on PC1 (92% accuracy) but struggles on CM1 with a negative 
MCC (-0.04). The   Logistic Regression   model displays variability, with reasonable performance on 
PC1 (81% accuracy) but lower scores on CM1 (83% accuracy, 58% AUC-ROC). Models like   SVM  ,   
Naive Bayes  , and   KNN   maintain high accuracy on PC1 (91%-92%) but show a significant drop in 
AUC-ROC and MCC on CM1, with   SVM   particularly under-performing with an MCC of -0.018. 
Leaving the class imbalance unaddressed may reduce performance, particularly on the CM1 dataset. 
Metrics such as MCC, PR Curve AUC, and AUC-ROC—especially on models—are significantly worse 
at detecting minority class instances. For instance, SVM MCC shows a negative value (-0.018), 
highlighting the difficulty in predicting minority class instances even when examining specific cases in 
isolation. Failing to account for class imbalance can cause models to be biased towards the majority 
class, resulting in inflated accuracy while performing poorly in terms of recall (ability to correctly 
identify) and precision (accuracy of classifications) for minority classes. This leads to a biased overall 
performance, diminishing the effectiveness of the models for defect prediction in software. There are 
techniques like SMOTE or undersampling, and applying one of these would likely make the results a 
lot better by generating better classifiers system that needs to detect software defects as well as balance 
the class representation in favor of the smallest ones. Figure 6 below also shows a comparison of 
precision, recall and F1-score with regard to PC1 and CM1 datasets which helps visualize the 
performance difference amongst the datasets. 
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.Table 5. Performance Comparison of Optimized Model Frameworks without handling Class 
Imbalance on PC1 and CM1 Datasets

 

           

Fig 6. Performance Metrics(AUC ROC & PR Curve) on CM1and PC1 testing Dataset without 
implementing SMOTE  Across Optimized Model Frameworks

The Smart Ensemble Stack consistently stands out for its ability to manage class imbalances and handle 
complex datasets like PC1 and CM1 , as shown in Table 6. It achieves superior accuracy, maintaining 
95% on PC1 and 85% on CM1, while balancing precision, recall, and F1-scores effectively. Its 
AUC-ROC values—93% on PC1 and 77% on CM1—demonstrate its capability to differentiate between 
classes in challenging scenarios, outperforming individual models like Random Forest, Naive Bayes, 
and Adaboost. Even though CM1 is more complex, the Smart Ensemble Stack remains highly 

Datasets 
Optimized Model 

Framework 
Accuracy Precision Recall 

F1-
SCORE 

AUC 
ROC 

PR 
Curve 
AUC 

MCC 

PC1 IHSVEM MI RFE CV 
PCA + Stacked Voting 

('SVM', 'XGBoost', 
'CatBoost', 'Gradient 
Boosting', 'Logistic 
Regression') + Soft 
Voting ('Stacking', 

'XGBoost', 'Adaboost', 
'Gradient Boosting') 

92 92 92 92 86 39 0.37 

CM1 87 80 87 83 75 20 -0.057 

PC1 MI RFE CV PCA + 
Random Forest + 

Optimized 
Hyperparameters + K-
Fold Cross Validation 

92 91 92 91 91 37 0.31 

CM1 88 80 88 84 72 17 -0.04 

PC1 MI RFE CV PCA + 
Logistic Regression + 

Optimized 
Hyperparameters + K-
Fold Cross Validation 

81 91 81 85 71 35 24 

CM1 83 85 83 84 58 16 19 

PC1 
MI RFE CV PCA + 
SVM + Optimized 

Hyperparameters + K-
Fold Cross Validation 

92 86 92 89 73 19 -0.018 

CM1 89 80 89 84 54 16 0 
PC1 MI RFE CV PCA + 

Naive Bayes + 
Optimized 

Hyperparameters + K-
Fold Cross Validation 

91 90 91 90 80 29 24 

CM1 87 83 87 85 59 20 11 

PC1 MI RFE CV PCA + 
KNN + Optimized 

Hyperparameters + K-
Fold Cross Validation 

92 91 92 91 80 32 0.31 

CM1 89 80 89 84 51 11 -0.028 
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adaptable, showing minimal performance decline compared to other models, as further visualized in 
Figure 7. 
What makes the Smart Ensemble Stack exceptional is its integration of diverse techniques, such as 
stacking and voting mechanisms, along with advanced feature selection and class balancing strategies 
like SMOTE. It achieves superior performance metrics, particularly on the PC1 dataset, and maintains 
strong results on the more challenging CM1 dataset.This ensures high stability and generalization 
across different datasets, making it well-suited for real-world software defect prediction tasks. The 
combination of multiple classifiers, including SVM, XGBoost, CatBoost, and Logistic Regression, allows 
it to leverage the strengths of each model, leading to better accuracy, robustness, and adaptability. This 
ability to handle complex, imbalanced datasets effectively is what makes the Smart Ensemble Stack a 
powerful tool for software defect prediction as highlighted in the performance comparison in Figure 7. 
The analysis underscores the importance of using ensemble models like this, which are better suited to 
handle the intricacies of real-world datasets, especially those with imbalanced class distributions.
 
Table 6.Performance Comparison of Optimized Model Frameworks handling Class Imbalance using 
SMOTE on PC1 and CM1 Datasets 

 

Datasets 
Optimized Model 

Framework 
Accuracy Precision Recall 

F1-
SCORE 

AUC 
ROC 

PR 
Curve 
AUC 

MCC 

PC1 IHSVEM Smote 
+MI RFE CV PCA + 

Stacked Voting 
('SVM', 'XGBoost', 

'CatBoost', 'Gradient 
Boosting', 'Logistic 
Regression') + Soft 
Voting ('Stacking', 

'XGBoost', 
'Adaboost', 'Gradient 

Boosting') 

95 95 95 95 93 62 0.5 

CM1 

85 82 85 83 77 22 -0.014 

PC1 Smote+MI RFE CV 
PCA + Random 

Forest + Optimized 
Hyperparameters + 

K-Fold Cross 
Validation 

90 93 90 91 90 44 42 

CM1 85 82 85 83 72 19 0.068 

PC1 
Smote+MI RFE CV 

PCA + Logistic 
Regression + 

Optimized 
Hyperparameters + 

K-Fold Cross 
Validation 

84 90 84 87 70 23 0.23 

CM1 79 85 79 81 69 17 0.18 

PC1 Smote+MI RFE CV 
PCA + SVM + 

Optimized 
Hyperparameters + 

K-Fold Cross 
Validation 

83 91 83 86 73 19 0.16 

CM1 75 82 75 78 60 14 0.043 

PC1 Smote+MI RFE CV 
PCA + Naive Bayes 

+ Optimized 
Hyperparameters + 

K-Fold Cross 
Validation 

91 90 91 90 77 28 0.24 

CM1 87 83 87 85 73 21 0.11 

PC1 Smote+MI RFE CV 
PCA + KNN + 

Optimized 
Hyperparameters + 

K-Fold Cross 
Validation 

82 92 82 86 81 46 0.35 

CM1 75 84 75 79 61 24 0.13 

The analysis of the performance metrics for various models applied to the PC1 and CM1 datasets 
demonstrates the effectiveness of the Optimized Model Framework, which integrates SMOTE for class 
imbalance, feature selection techniques (MI, RFECV, PCA), hyperparameter tuning, and multiple 
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classifiers. Overall, the Smart Ensemble Stack leads in most metrics, particularly on PC1, showcasing 
its robustness and ability to handle class imbalances effectively. While the CM1 dataset presents more 
difficulty for all models, the Optimized Model Framework continues to demonstrate adaptability and 
strong performance across varying conditions. Each model displays unique strengths depending on the 
dataset, emphasizing the importance of tailored approaches in software defect prediction.

      

Fig 7. Performance Metrics(AUC ROC & PR Curve) on CM1and PC1 testing Dataset Across 
Optimized Model Frameworks with SMOTE 

7. Conclusion 
The study highlights the effectiveness of the Smart Ensemble Stack (Intelligent Heterogeneous Stacked Voting 
Ensemble Model) for software defect prediction, integrating SMOTE to address class imbalance, advanced 
feature selection methods (MI, RFECV, PCA), and optimized hyperparameters across multiple classifiers. The 
model achieves an impressive 95% in accuracy, precision, recall, and F1-score on the PC1 dataset, along with 
an AUC-ROC of 93%, outperforming individual models such as Random Forest and Naive Bayes. Even on the 
more complex CM1 dataset, it maintains strong performance, with 85% accuracy and an AUC-ROC of 77%. 
This approach demonstrates superior class distribution handling and predictive stability, setting a new 
benchmark for software defect prediction by surpassing the limitations of single classifiers and showcasing the 
advantages of ensemble learning for managing imbalanced and complex data. However, an ensemble model 
trained on historical data may face challenges when adapting to unforeseen changes 
in project dynamics or new development approaches. Since the model generates predictions based on past 
data patterns, its performance may degrade if the current task significantly diverges from the training data so 
this need to be handled in future. We will enhance our methodology by applying statistical tests like the t-test, 
Wilcoxon test, ANOVA, and Mann-Whitney U test to compare classifier performance. These tests ensure that 
performance differences are statistically significant and not due to random chance, providing a more robust 
and reliable evaluation. Additionally, future work will involve extending the approach to multiclass datasets 
to further validate the models across more complex classification tasks. 
 
References 

[1] D. Elreedy, A.F. Atiya, A comprehensive analysis of synthetic minority oversampling technique 
(smote) for handling class imbalance, Inf. Sci. 505 (2019) 32–64” 

[2] L. Abdi, S. Hashemi, To combat multi-class imbalanced problems by means of over- sampling 
techniques, IEEE Trans. Knowl. Data Eng. 28 (1) (2016) 238–251 

[3] J. Saez, B. Krawczyk, M. Wozniak, Analyzing the oversampling of different classes and types of 
examples in multi-class imbalanced datasets, Pattern Recognit. 57 (2016) 164–178. 

[4]  S.W. Purnami, R.K. Trapsilasiwi, SMOTE-least square support vector machine for classification of 
multiclass imbalanced data, Int. Conf. Mach. Learn.  Comput. (2017) 107–111.  



  Tarunim Sharma, Shalini Bhaskar Aman Jatain,  Kavita Pabreja, Aman Jatain 

 
 

Library Progress International| Vol.44 No.3| Jul-Dec 2024 3305 

[5] Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2021). COSTE: 
Complexity-based OverSampling TEchnique to alleviate the class imbalance problem in software defect 
prediction. Information and Software Technology, 129, 106432. 

[6] M. Deng, Y. Guo, C. Wang, F. Wu, An oversampling method for multi-class imbalanced data based on 
composite weights, PLoS One 16 (11) (2020) e0259227 

[7] Cai, X., Niu, Y., Geng, S., Zhang, J., Cui, Z., Li, J., & Chen, J. (2020). An under‐sampled software defect 
prediction method based on hybrid multi‐objective cuckoo search. Concurrency and Computation: Practice 
and Experience, 32(5), e5478.  

[8] V. Bulavas, V. Marcinkevicius, J. Ruminski, Study of multi-class classification algorithms performance 
on highly imbalanced network intrusion datasets, Informatica 32 (3) (2021) 441–475. 

[9] Kondo, Masanari, Cor-Paul Bezemer, Yasutaka Kamei, Ahmed E. Hassan, and Osamu Mizuno. "The 
impact of feature reduction techniques on defect prediction models." Empirical Software Engineering 24 (2019): 
1925-1963. 

[10] Dao, Fu-Ying, Hao Lv, Fang Wang, Chao-Qin Feng, Hui Ding, Wei Chen, and Hao Lin. "Identify origin 
of replication in Saccharomyces cerevisiae using two-step feature selection technique." Bioinformatics 35, no. 
12 (2019): 2075-2083. 

[11] Chen, Li-qiong, Can Wang, and Shi-long Song. "Software defect prediction based on nested-stacking 
and heterogeneous feature selection." Complex & Intelligent Systems 8, no. 4 (2022): 3333-3348. 

[12] Rostami, Mehrdad, Kamal Berahmand, Elahe Nasiri, and Saman Forouzandeh. "Review of swarm 
intelligence-based feature selection methods." Engineering Applications of Artificial Intelligence 100 (2021): 
104210. 

[13] A. Hammouri, M. Hammad, M. Alnabhan, and F. Alsarayrah, ‘‘Software bug prediction using ML 
approach,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2, pp. 78–83, 2018. 

[14] X. Yang, D. Lo, X. Xia, and J. Sun, ‘‘TLEL: A two-layer ensemble learning approach for just-in-time 
defect prediction,’’ Inf. Softw. Technol., vol. 87, pp. 206–220, Jul. 2017. 

[15] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia, ‘‘A developer centered 
bug prediction model,’’ IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 5–24, Jan. 2018. 

[16] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, ‘‘Hyper-parameter optimization of classifiers, using an 
artificial immune network and its application to software bug prediction,’’ IEEE Access, vol. 8, pp. 20954–
20964, 2020.  

[17] S. Qiu, L. Lu, S. Jiang, and Y. Guo, ‘‘An investigation of imbalanced ensemble learning methods for 
cross-project defect prediction,’’ Int. J. Pat- tern Recognit. Artif. Intell., vol. 33, no. 12, Nov. 2019, Art. no. 
1959037.  

[18] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, ‘‘BPDET: An effective soft- ware bug prediction model 
using deep representation and ensemble learn- ing techniques,’’ Expert Syst. Appl., vol. 144, Apr. 2020, Art. 
no. 113085. 

[19] H. Osman, M. Ghafari and O. Nierstrasz, "Hyperparameter o ptimization to improve bug prediction 
accuracy," 2017 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation 
(MaLTeSQuE), Klagenfurt, Austria, 2017, pp. 33-38, doi: 10.1109/MALTESQUE.2017.7882014. 

[20] Nevendra, M., & Singh, P. (2022). Empirical investigation of hyperparameter optimization for software 
defect count prediction. Expert Systems with Applications, 191, 116217. 

[21] Al-Fraihat, D., Sharrab, Y., Al-Ghuwairi, A. R., Alshishani, H., & Algarni, A. (2024). Hyperparameter 
Optimization for Software Bug Prediction Using Ensemble Learning. IEEE Access. 

 



  Tarunim Sharma, Shalini Bhaskar Aman Jatain,  Kavita Pabreja, Aman Jatain 

 
 

Library Progress International| Vol.44 No.3| Jul-Dec 2024 3306 

[22] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some comments on the NASA software 
defect datasets,’’ IEEE Trans. Softw. Eng., vol. 39, no. 9, pp. 1208–1215, Sep. 2013, doi: 10.1109/TSE.2013.11.  

[23] J. Shi, X. Li, L. Li, C. Ouyang, and C. Xu, ‘‘An efficient deep learningbased troposphere ZTD dataset 
generation method for massive GNSS CORS stations,’’ IEEE Trans. Geosci. Remote Sens., 2023.  

[24] W. Du, C. Wu, H. Yu, Q. Kong, Y. Xu, and W. Zhang, ‘‘Determination of multicomponents in Rubi 
Fructus by near-infrared spectroscopy technique,’’ Int. J. Anal. Chem., vol. 2023, pp. 1–9, Nov. 2023, doi: 
10.1155/2023/5575944. 

[25] Aftab, S. Abbas, T. M. Ghazal, M. Ahmad, H. A. Hamadi, C. Y. Yeun, and M. A. Khan, ‘‘A cloud-based 
software defect prediction system using data and decision-level machine learning fusion,’’ Mathematics, vol. 
11, no. 3, p. 632, Jan. 2023, doi: 10.3390/math11030632  

[26] Ali, M., Mazhar, T., Arif, Y., Al-Otaibi, S., Ghadi, Y. Y., Shahzad, T., ... & Hamam, H. (2024). Software 
defect prediction using an intelligent ensemble-based model. IEEE Access. 

[27] Agrawalla, B., & Reddy, B. R. (2024). Software Fault Prediction Using Optimal Classifier Selection: An 
Ensemble Approach. Procedia Computer Science, 235, 2965-2974. 

[28] Sharma, T., Jatain, A., Bhaskar, S., & Pabreja, K. (2024). Original Research Article An empirical analysis 
of feature selection techniques for Software Defect Prediction. Journal of Autonomous Intelligence, 7(3). 

 


