Original Article

Available online at www.bpasjournals.com

Exploring The Impact Of Knowledge Sharing Behaviour On Organization's Success

Vivek Agrawal¹, Somesh Dhamija²

¹Institute of Business Management, GLA University, Mathura

How to cite this article: Vivek Agrawal, Somesh Dhamija (2024) Exploring The Impact Of Knowledge Sharing Behaviour On Organization's Success. *Library Progress International*, 44(3), 3331-3347.

Abstract

The purpose of this study is to look into the phenomenon of Co-worker Collaboration within financial services -oriented organizations. This study examines Examine how Co-worker Collaboration in financial institutions influences Financial Success and the development of innovative financial products or services and its mechanism. The study also examines whether Management Support is necessary for peer knowledge exchange. Data is collected and the model evaluated using survey design. The hypothesis is analyzed using structural equation modeling on data from 310 knowledge workers in Indian financial services -oriented organizations. The findings suggest that knowledge sharing with peers and manager guidance improves business knowledge management. This may boost the companies' innovation and Financial Success. The proposed model found that Co-worker Collaboration may affect Knowledge Management Success differently for men and women and expands knowledge by emphasizing Co-worker Collaboration and Management Support and emphasizes the importance of Knowledge Management Success in mediating the relationship between Enterprise Success and knowledge management behaviors like Co-worker Collaboration.

Keywords: Enterprise Success, Management Support, Structural equation modeling, Knowledge Management Success, Cross-Functional Knowledge Exchange, Co-worker Collaboration, Innovation Success, Financial Success.

Introduction

Modern businesses must find ways to facilitate staff knowledge sharing while also advancing the organization in order to cultivate intellectual capital. Unshared knowledge can have a negative impact on an Enterprise's sustainability, innovation, market competitiveness, and operational efficiency. In contrast, in organizations, "knowledge sharing" refers to a wide range of activities in which members share their knowledge. Individuals, groups, and organizations can all be affected (Bock, G. W., & Kim, Y. G. (2002).

If knowledge is the information people require to complete tasks, then knowledge sharing, regardless of the amount of knowledge shared, is always a cognitive-behavioral process involving people. Individual knowledge sharing is critical because it prepares for higher-level knowledge sharing, which increases an Enterprise's value. Personnel who are unable or unwilling to "collaborate in the sharing of knowledge with colleagues" endanger the Enterprise's core interests (Alavi and Leidner, 2001). According to Husted and Michailova (2003), managers in the knowledge-based economy struggle to create efficient systems that encourage worker collaboration and allow them to apply their expertise to productive projects. Knowledge can be disseminated by organizations in a variety of ways. Staff at this level can share their specialized knowledge with colleagues throughout the organization or with higher-level management (Li et al., 2018). Interpersonal communication, such as conversations with superiors or subordinates, is used to share information (Nonaka et al., 2000). Cross-Functional Knowledge Exchange entails sharing information with coworkers and colleagues from all levels of the organization (Ali et al., 2019). Horizontal knowledge flow extends across technologies, functional domains, and specializations. It has a significant impact on knowledge dissemination because it is a critical component that affects the entire organization (Keszey, 2018). Mom et al. (2007) investigated how knowledge sharing affects knowledge acquisition in organizations. Horizontal and bottom-up flows stifle managers' ability to explore, which is required for innovation. Top-down flow influences managers' ability to capitalize on opportunities.

²Professor, GLA University, Mathura

Horizontal structures are displacing vertical ones in companies focused on innovation. As a result, organizations must recognize the significance of Cross-Functional Knowledge Exchange in order to improve Success (Singh et al., 2019). Vertical knowledge flows from the top down and bottom up are critical for businesses to improve efficiency and capitalize on opportunities. Information exchange between departments or teams is becoming increasingly important in modern organizations attempting to innovate their ability to identify new opportunities (Kim et al., 2017). Many strategic knowledge management initiatives have improved Enterprise Success by emphasizing hierarchical knowledge dissemination. According to new research, organizations should share horizontal knowledge in order to improve their adaptability and innovation (Wang et al., 2016). According to Alvesson (2019), modern leaders are increasingly relying on horizontal peer-to-peer influence. This study looked at Cross-Functional Knowledge Exchange in modern organizations and how it can improve Success. We coined the term "Co-worker Collaboration" to describe horizontal information exchange among peers in order to distinguish it from organizational knowledge exchange. Individual or organizational knowledge has received the most attention in the literature on knowledge sharing. Although Co-worker Collaboration has been extensively researched, little research has been conducted on Collegial Information Exchange as a prominent example of Cross-Functional Knowledge Exchange in an organization (Chen and Latimer, 2014).

Early research indicates that information dissemination improves organizational effectiveness. More research is required to determine the most effective way to share knowledge within organizations and how it affects Success. These concerns raise questions about the nature, scope, and impact of knowledge sharing and Success. The vast majority of empirical research on this relationship has treated knowledge sharing as a single concept, ignoring both vertical and horizontal knowledge exchanges. They placed a high value on information sharing between internal and external subsidiaries. We don't understand the concept of "coworker collaboration." This study fills this gap. We also investigate how sharing affects business efficiency.

Several studies have linked an Enterprise's knowledge base view to its Success in knowledge-sharing innovation. The Knowledge-Based View framework is used in this study to investigate how knowledge sharing affects innovation and Financial Success. Our argument is that knowledge sharing improves Enterprise Success by increasing knowledge management efficiency. The paper also examines how Management Support distributes knowledge among colleagues and impacts Enterprise Success using social capital. To investigate how Co-worker Collaboration affects organizations. According to Edwards (2017), despite extensive research, knowledge sharing in organizations remains poorly understood. This is primarily due to the perception of knowledge sharing as a transaction devoid of context. Receivers and knowledge exchange are critical in any organization

2. Literature Review and Research Framework

Individuals, teams, and the entire company can benefit from knowledge sharing. Individual knowledge sharing is emphasized in this research because it is the foundation for effective knowledge sharing in organizations and teams. However, the manner in which organizations share knowledge varies. Knowledge shared among peers is not the same as knowledge discussed with superiors or subordinates (Wang et al., 2016).

Vertical knowledge sharing is typically comprised of directives, evaluations, and status updates. When it is necessary to aid policy dissemination or managerial decision-making, data is deconstructed or consolidated. Another viewpoint is organizational ambidexterity. This knowledge flow, whether from the top down or the bottom up, enables organizations to focus more on resource optimization and less on new opportunities. While intra-organizational knowledge sharing can foster collaboration and operational efficiency, Cross-Functional Knowledge Exchange generates the intellectual capital required for innovative ideas and exploration (Gerpott and Ulrike, 2019).

Organizations are more effective at developing intellectual capital, promoting horizontal knowledge dissemination, and fostering organic structure (Chiu et al., 2006). Employees in knowledge-based organizations share horizontal knowledge more frequently as a result of their cognitive proximity and interaction. These occurrences facilitate the transmission of explicit and implicit knowledge (Soleimani et al., 2024). Top-down knowledge transfer is difficult in these work environments because cross-functional knowledge, which fosters innovation, is rarely shared, especially within larger hierarchies (Khan et al., 2024). Knowledge sharing across departments is difficult due to multiple vertical hierarchies with large power disparities, structural constraints, and limited collaboration. Participants in vertical interactions exchange explicit knowledge more than tacit knowledge (Bhardwaj et al., 2023).

Knowledge can take two forms: explicit or tacit. Individual changes in tacit and explicit knowledge have an impact on organizational knowledge (Haass et al., 2023). This study concentrated on Cross-Functional Knowledge Exchange, or the informal exchange of explicit and implicit knowledge between peers. Peer knowledge exchange was prioritized for a variety of compelling reasons. Co-worker Collaboration enables people to socialize, externalize, combine, and internalize information, thereby increasing intellectual capital and organizational knowledge (Haq and Anwar, 2016). The exchange

of knowledge with colleagues benefits innovative businesses. When compared to sharing knowledge with superiors or subordinates, this method increases peer-to-peer interactions, expands collective knowledge, and reduces power distance. Many studies have looked at knowledge exchange at the individual and horizontal levels, which is what this research focuses on (Barley et al., 2011).

Sharing knowledge with coworkers is a beneficial individual behavior that contributes to the development of organizational knowledge (Carmeli, et al., 2013). Knowledge sharing and the ability to apply knowledge benefit smaller organizations. It is critical to recognize that knowledge management extends beyond knowledge dissemination (Choi, et al., 2010). Knowledge Management Success influenced Co-worker Collaboration and enterprise Success (Reychav et al., 2012). The majority of research on intellectual assets and business process improvement has focused on the connection between knowledge sharing and enterprise Success. This lends credence to the need for additional research on micro-level business Success factors. An investigation was conducted to determine the impact of knowledge management on the company's Financial Success and innovation (Christensen and Pedersen, 2018). Management Support is formalized and emphasized as a prerequisite for Co-worker Collaboration. The proposed model of Co-worker Collaboration and Management Support on enterprise Success is depicted in Figure 1. Management Support is widely acknowledged to influence organizational climate, knowledge dissemination, and management. The financial and innovative success of an organization is used to assess its Success. Many people believe that Co-worker Collaboration can boost enterprise Success by making knowledge management easier.

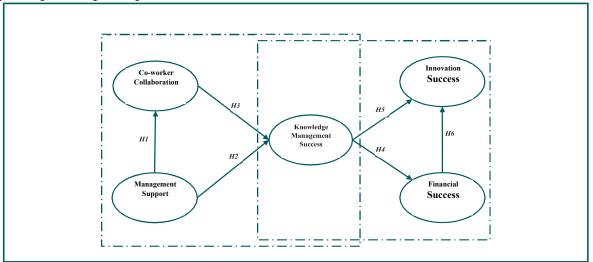


Figure 1: Proposed Model of Co-worker Collaboration and Management Support on Organization Success

3. Hypotheses

3.1 Management Support and Co-worker Collaboration

According to extensive research, Management Support is critical for promoting desirable organizational behaviors, particularly knowledge sharing. Srivastava et al. (2006) discovered that empowering leadership improved knowledge sharing and team Success in management teams. According to Le and Lei (2019), transformational leadership promoted innovation in new product and process development as well as knowledge exchange. Similarly, research on ethical leadership, respectful leadership, supervisor and management support, and organizational support finds that these factors improve knowledge exchange within an organization (Galeazzo and Furlan, 2019). Mishra and Pandey (2019) investigated how different leadership styles encourage knowledge sharing. Effective leaders can encourage knowledge sharing by fostering a positive work environment, establishing clear goals, fostering trust, implementing motivational strategies, and addressing miscommunication and misunderstandings. Transformational leadership, according to Jiang and Chen (2018), promotes team knowledge sharing. Employees frequently regard their supervisors and managers as representatives of the company (Kim, S.L. and Yun, S. (2015). Members' support and signals are interpreted by organizational members as a reflection of their values and priorities. This can have a significant impact on how employees share information. Management Support is critical for social capital because it facilitates the exchange of cognitive, relational, and structural information (Rezaei et al., 2017). Hypothesis derived from the above discussion is as follows:

H1. Management Support is positively related to Co-worker Collaboration

3.2 Management Support and Knowledge Management Success

The majority of literature on Knowledge Management Success strategies is divided into two categories. One that focuses on information systems. Both parties agree that knowledge management necessitates upper management and direct supervisors. Management Support in organizations has been a source of contention since the advent of knowledge management. According to Akram et al. (2019), empowered leadership strengthened connections between diverse knowledge management practices, resulting in Knowledge Management Success. Jiang and Chen (2018) discovered that transformational leadership fosters a positive environment and improves team knowledge management. A plethora of evidence supports the notion that leadership is critical to knowledge management in organizations. According to Lakshman (2007), leadership influences how organizations manage knowledge from trait, behavioral, transformational, and charismatic perspectives. Hypothesis derived from the above discussion is as follows:

H2. Management Support is positively related to Knowledge Management Success.

3.3 Co-worker Collaboration and Knowledge Management Success

This research distinguishes between intra-organizational and Co-worker Collaboration. Co-worker Collaboration is the horizontal exchange of knowledge within the formal or informal hierarchy of an organization (Song et al., 2015). We believe it improves enterprise Success by extending indirect influences on the efficacy of knowledge management. Many studies have been conducted to investigate the advantages of intra-organizational knowledge sharing. Individual-level knowledge exchange with peers may improve enterprise Success, but research is lacking. It is critical to understand the various types of knowledge sharing in organizations. Assuming that all forms of knowledge sharing are equal may obscure important factors and impede the evaluation of business impact. Sharing general knowledge among employees, according to social capital theory, promotes information exchange and social capital growth. People learn the importance of sharing and are motivated to do so. Sharing knowledge improves access, value prediction, and peer motivation. This could improve knowledge management. Sharing information helps colleagues learn knowledge administration skills because they use similar terminology and have similar experiences (Vigoda et al., 2002).

Knowledge management is heavily reliant on information exchange from the standpoints of management and information systems. Knowledge sharing, according to the Knowledge Management Success model, entails using various information systems to share expertise with coworkers when needed (Law and Ngai, 2008). Managers believe that knowledge management works best in a culture that values knowledge and provides multiple channels for it to spread. An environment that encourages expertise sharing assists members in retrieving critical information when needed, thereby improving organizational knowledge management (Kim et al., 2014).

To allow independent, interactive, and flexible information exchange, Co-worker Collaboration necessitates decentralised networking. According to Ahmad and Karim (2019), Co-worker Collaboration improves learning, Success, and creativity. Knowledge dissemination enhances knowledge management by encouraging autonomy, egalitarianism, and interconnectedness among organization members, facilitating information exchange. Some believe that direct interpersonal communication is the best way to share knowledge, particularly complex information (Al et al., 2016). Face-to-face interactions in "high bandwidth" situations can help to build trust, knowledge frameworks, and solve complex problems. Sharing knowledge among peers increases the likelihood of face-to-face interactions. Huysman and De (2004) investigated knowledge sharing in ten well-known organizations. When knowledge sharing was integrated into routine work tasks, it was more effective, allowing for the efficient exchange of explicit and tacit knowledge. Personal networks promoted better knowledge dissemination than managerial-driven networks. They concluded that when a need arose, knowledge sharing worked best. These and other events are involved in peer information exchange (Inkinen, 2016). Hypothesis derived from the above discussion is as follows:

H3. Co-worker Collaboration is positively related to Knowledge Management Success.

3.4 Knowledge Management Success and Organization Success

Knowledge is valuable, difficult to replicate, and has the potential to improve enterprise Success. Knowledge can be thought of as both an entity and an essential component of the institution (Saputri and Utami, 2023). Unused knowledge may exacerbate problems in certain circumstances, so it may not improve an Enterprise's Success. "Knowledge is a tool with the potential to produce both favorable and unfavorable outcomes," the authors wrote (Ogutu et al., 2023). "The advantages are frequently immediate and readily observable, while the drawbacks associated with inflexibility, lack of adoption, and alteration are more nuanced, less evident, and closely linked to social mechanisms." The value of an organization is determined by the use and dissemination of knowledge through various channels (Muhammed and Zaim, 2020). Sharing knowledge is critical to the advancement of knowledge. Businesses benefit from this method of knowledge

dissemination because it allows them to share and apply knowledge while also serving as a reliable Success indicator. These are required for efficient knowledge management (Vrontis et al., 2021).

According to Kaplan et al. (2001), a knowledge-based theory of the firm necessitates the use of diverse knowledge-based resources and actions to improve the Enterprise's internal knowledge capabilities. The effectiveness of knowledge management is used to evaluate these capabilities in this paper. Externally focused Success metrics can only be improved by these actions and resources after internal knowledge capabilities are strengthened. Many authors have argued that effective knowledge management, including knowledge sharing, boosts enterprise Success. Similar claims are made by teams and projects. The literature on knowledge management examines enterprise Success from a variety of perspectives. Many academics are intrigued by the relationship between knowledge management and innovation (Pellegrini et al., 2020). Knowledge management is frequently credited with improving the Success of innovation. There is still doubt about how well knowledge management is implemented and how well it fosters innovation. The relationship between the two phenomena could be more complicated than previously thought. Tacit knowledge is widely acknowledged to be critical to innovation (Pandey et al., 2018). Thus, knowledge management is necessary for innovation if it improves organizations' ability to manage knowledge by promoting, developing, disseminating, and applying original concepts to develop and market new products and services. Internal knowledge sharing and other knowledge management practices boost organizational innovation (Lam et al., 2021).

According to empirical evidence, knowledge management experts maximize resources while encouraging innovation. To boost innovation, Gloet and Terziovski (2004) propose integrating human resource and knowledge management. Lopez and Meron (2011) discovered a link between the implementation of knowledge management strategies and the Success of innovation. Mardani et al. (2018) investigated the direct and indirect effects of knowledge management on Innovation Success. According to Alegre et al. (2013), knowledge management practices improve Innovation Success. Furthermore, dynamic knowledge management capabilities, which indicate successful knowledge management, act as a bridge between the two. Numerous studies have found that knowledge management efficiency has a direct impact on innovation effectiveness in a variety of contexts. Hypothesis derived from the above discussion is as follows:

H4. Knowledge Management Success is positively related to the Organization's Innovation Success.

3.5 Knowledge Management Success and Organization's Financial Success.

The literature on knowledge management is replete with empirical and theoretical evidence that effective knowledge management improves enterprise Success. More research is needed, however, to determine whether knowledge management improves Financial Success. Some researchers assess a company's Financial Success by taking into account revenue growth, customer retention, and profitability (Khan et al., 2024). Other scholars have provided a more detailed account, focusing on the financial impacts of the institutions. We use the second, more precise method to analyze Financial Success because this study also includes the Innovation Success construct, which covers an Enterprise's less immediate Success. Some academics believe that the vulnerability of financial indicators to external factors makes linking knowledge management to financial results difficult. Despite a lack of empirical evidence, there is widespread agreement that knowledge management improves financial results.

According to most studies, knowledge management correlates with non-Financial Success indicators more strongly than Financial Success indicators. Oztekin et al. (2015) discovered a link between knowledge management effectiveness and non-Financial Success. Financial Success and knowledge management have a slow correlation. However, there is mounting evidence that knowledge management has a direct impact on a company's operational effectiveness and Financial Success metrics. Hypothesis derived from the above discussion is as follows:

H5. Knowledge Management Success is positively related to the Organization's Financial Success.

3.6 Organization's Innovation Success and Financial Success.

Companies must innovate to stay competitive in knowledge-based economies. More empirical research, however, is required to demonstrate the link between Innovation Success and Financial Success. This is due to the fact that this study produced no conclusive results. For example, Gok and Peker (2017) discovered a link between poor Financial Success and innovation, particularly in the market. According to Bockova and Zizlavsky (2016), the Financial Success and innovation efficacy of an organization are more complex than previously thought. They demonstrated that this relationship could evolve.

Bigliardi (2013) discovered a positive relationship between Financial Success and innovation in SMEs. To measure innovation, Kostopoulos et al. (2011) investigated how R&D expenditure affects Financial Success. The researchers discovered an inverse relationship between the variables. Aguilera et al. (2013) demonstrated that organizational innovation improved Financial Success in a variety of settings. Several other studies have discovered a link between an

Enterprise's innovation and its Financial Success in similar circumstances. Hypothesis derived from the above discussion is as follows:

H6. Organization's Innovation Success is positively related to its Financial Success.

4. Methodology:

A model was developed to explain cross-sectional survey data. After collection, the data was checked for errors and missing information. To test our hypotheses, we used a two-step analysis. At the outset, content and factor analyses on items refined the measurement model. This confirmed that the constructs were one-dimensional and valid. The proposed model was then tested in LISREL using structural equation modeling based on covariance. The relationship between multiple measurement items in an entity is modeled and examined using structural equation modeling (SEM). The model-data fit was evaluated using maximum likelihood estimation. Anderson and Gerbing's (1988) model-comparison method was used to compare our structural model to plausible nested models. This method is similar to that of Wang et al. (2005). Confirmation bias is reduced by testing multiple hypotheses.

4.1. Measures

Pre-existing scale measurement items were modified whenever possible (Churchill, 1979). Some pre-existing items were modified to meet research requirements. Before proceeding, five business students, including five knowledge management professors with an average of seven years of management experience and expertise, reviewed the scales for coherence. The wording of the item was changed in response to feedback. This was done to be clear. To make the questionnaire shorter, some questions were removed. However, the remaining elements were chosen to convey the conceptualization of the construct. Modifications were made in order to keep at least three items per construct. The instrument was written in English. According to Brislin (1986), after this procedure, a group of experts agreed on how to align the two iterations. The research looked into how Co-worker Collaboration affects enterprise Success. Colleagues benefit from Co-worker Collaboration. We also wanted to create a tool that all employees, regardless of hierarchy, could use. As a result, the instrument has the potential to precisely measure information dissemination among entry-level knowledge personnel, midlevel executives, and senior executives. This need has not been addressed in any of the numerous studies on knowledge sharing in organizations. As a result, the instrument was constructed using prior research that met this criterion. Ali et al., (2019) investigated individual knowledge sharing using a three-item scale. "I frequently impart my expertise to my colleagues." "I actively engage in discussions on a wide range of topics with my colleagues." "I engage in regular discussions with my colleagues to address intricate problems." Zaim et al. (2019), our metric included knowledge sharing in general, technology-facilitated knowledge sharing, and the perceived utility of knowledge sharing among colleagues. Because technology is used to share knowledge, we included a technological component. Del and Della (2016), information technology enables organizations to share knowledge, particularly novel ideas. Each question was designed to make participants reflect on what they had said to their coworkers. This action demonstrated the horizontal flow of knowledge. As a result, when discussing a problem, frontline knowledge workers prioritized educating colleagues. When responding to an item, mid-level managers consider information shared by colleagues and peers.

Knowledge management is critical to our framework. We used to believe that effective knowledge management through peer sharing had an impact on enterprise Success. This is the most important organizational outcome because it connects peer-level knowledge sharing to improved external-oriented enterprise Success. The effectiveness of knowledge management is frequently measured using DeLone and McLean's (1992) information systems success model. This model takes into account system efficacy, information utility, user satisfaction, and knowledge utilization. A knowledge management information systems analysis would deviate the research from its intended course. We also evaluated the effectiveness of knowledge management through management rather than information systems. Without addressing how organizations would demonstrate Knowledge Management Success, our model required a broader framework to include organizational success. Thus, our method of measuring Knowledge Management Success is similar to that of Zaim et al. (2007), Oztekin et al. (2015), and Zaim (2019). The study looked at three key indicators of effective knowledge management implementation: how much time, effort, and other resources organizations invested in these indicators, and how well they were implemented.

Direct managers of respondents provide "Management Support" in knowledge management. Managers and supervisors are frequently viewed as representatives of the company. The assistance they receive is frequently viewed as coming from the organization. The definition of Management Support in this study corresponds to Kulkarni et al. (2006) supervisor support assessment, but not to their upper management support assessment. The researchers looked at three ways supervisors supported knowledge sharing: endorsing it, committing to it, and demonstrating support through words and actions. Instead of simply sharing knowledge, we defined Management Support as knowledge management assistance.

To determine support, participants' perceptions of the managers' conviction about knowledge management, motivation, and commitment as role models were assessed. The three components demonstrated Avolio and Gardner's (2005) positive leadership qualities.

We operationalized Innovation Success in the same way that Wang and Wang (2012) operationalized innovation quality in the context of knowledge sharing. To evaluate product-oriented Innovation Success, the study used metrics from Donate and Sanchez (2015). Lopez- and Meron (2011), for example, administered a two-item test. Donate and Sanchez (2015) and Cabrilo and Dahms (2018) used five-item scales. The innovation speed and quality metric was developed by Wang and Wang (2012). There are five of each item. Lopez and Meron (2011) polled participants to compare their companies' levels of innovation to those of other companies in the same industry. Donate and Sanchez (2015) asked participants to compare the innovation of their companies to competitors, the industry, and their previous Success. Cabrilo and Dahms (2018) and Wang and Wang (2012) investigated how employees compared the innovation of their companies to that of their competitors.

Wang and Wang (2012) conducted a survey to determine how innovative their companies were in terms of novel concepts, products, procedures, managerial endeavors, and approaches when compared to their main competitors. We surveyed everyone in the organization to investigate horizontal knowledge dissemination. As a result, many of these participants, particularly those with less clout, may lack complete access to their companies' inner workings, making meaningful comparisons of innovation to competitors difficult. Employees at all levels, however, are aware of how their ability to generate new ideas compares to that of their biggest competitors. Our inventive-Success metric included market focus, new product and service introduction, and market entry as indicators of the company's overall innovation based on the above concepts. Participants were, however, required to compare these metrics to major competitors. The questionnaire items were rated on a five-point Likert scale ranging from 1 ("Strongly disagree") to 5 ("Strongly agree"). The same scale was used to quantify the other variables in the study.

Convenience sampling, as used by other researchers in this field, was used to contact relevant people. This method simplifies and lowers sample selection costs when the population is not precisely defined, such as with knowledge workers as a group. The researchers contacted key executives, mostly human resource managers, at various service-oriented organizations in India. To accomplish this, they used connections from a university programme that emphasised community involvement and industry collaboration. Following a brief explanation of the study's purpose to influential people, their organizations were assessed for readiness to participate, and informed consent was obtained. The questionnaires had to be delivered in person to the researchers. 700 paper surveys were shared to organizationally identified knowledge workers. Over the course of three months, 338 questionnaires were collected after two reminder emails and multiple follow-ups.. Following a more thorough examination of the returned questionnaires, some had incompleteness levels greater than 50%. These were removed from consideration. With 310 usable responses, the response rate was 44.28%. Further examination indicates that the lack of data in this recent dataset is not a major issue. The absence of data was less than 1%, and the distribution was random. To fill gaps in the data, mean values were used.

Banks dominated the sample, that is 47% of the total. There were 25% hospitals and 28% other service-based organizations in the sample. 62% percent were men, while 38% were women. Participants came from all levels of the organization. 56% of the population were front-line workers or specialists. 26% were supervisors, 4% were senior managers, and 14% were mid-level managers. The majority of large and medium-sized businesses distribute respondents in a hierarchical manner. Early and late responders were compared to identify bias from a lack of responses. There were no statistical differences between the two cohorts in any demographic or substantive factor.

To determine whether the data set was free of common method bias, Harman's single factor test was used. The single factor solution appears ineffective based on its 34.7% variation explanation. After accounting for five variables, 85.9% of the variation can be explained. Two supplementary tests were conducted as a result of the disagreement over Harman's single factor test for CMB assessment. First, bi-variate correlations between factors were investigated. The data fit of the proposed measurement model was then compared to that of the single factor model. The single factor model should not have a greater impact on CMB than the proposed measurement model. The bivariate correlation between Innovation Success and Financial Success was 0.75, indicating a statistically significant relationship. All remaining correlations, ranging from 0.36% to 0.62%, were less than the critical value of r>0.90, indicating a problem.

The data suitability of the single factor model and proposed measurement model was then evaluated. Slater et al. (2007) and Wei et al. (2019) used similar methods in this study. The fit index for the single factor model was 12.787, with CFI, IFI, NFI, NNFI, SRMR, and RMSEA values of 0.87, 0.86, 0.85, 0.99, and 0.196, respectively. CFI = 0.99, IFI = 0.99, NFI = 0.98, NNFI = 0.99, SRMR = 0.030, and RMSEA = 0.024 resulted in a fit index of 1.213 for the target measurement model. The proposed measurement model outperformed the single factor model in terms of fit indices. The Chi-square

test revealed that the degrees of freedom ratio differed significantly (p 0.001). According to previous findings (Podsakoff et al., 2012), CMB is not a risk factor in the dataset.

5. Analysis

Using psychometric properties, this study assessed construct validity and reliability. The assessment followed the guidelines established by Fawcett et al. (2014) and Fornell and Larcker (1981). A factor analysis was used to investigate item relationships, as suggested by Gerbing and Hamilton (1996). Many items had strong associations with the intended constructs, according to principal component extraction with varimax rotation. Because these items had little impact on Financial Success, they were removed from the pilot stage (Wieland et al., 2017). After these two elements were removed, the remaining item factor loadings ranged from 0.71 to 0.91, with negligible cross-loadings. This indicates that the model is one-dimensional and converged. Five factors were responsible for 78.1% of data discrepancies. Only 20% of the variance was explained by all factors. The most recently discovered items with the greatest overlap were those related to innovation and Financial Success. The cross-loadings, on the other hand, were less than 0.50 and at least 0.20 lower than the target construct, indicating a significant difference. The average weightings of the target construct exceeded 0.70. The AVEs for all constructs were greater than 0.50, indicating robust convergent validity. The constructs, scale items, loadings, and other validity and reliability details are listed in Table 1.

Table 1: Results for Loading, Mean (SD), AVE, ASV, Cronbach's alpha and Composite reliability

Construct's	Items	Loadings	Mean	Average	AVE	ASV	Cronbach's	Composite	
			(SD)	loading			alpha	reliability	
Management	MS1	0.70	3.62	0.74	0.56	0.25	0.79	0.79	
Support (MS)			(0.91)						
	MS2	0.79							
	MS3	0.74							
Co-worker	CWC1	0.80	3.90	0.77	0.59	0.16	0.81	0.81	
Collaboration			(0.82)						
(CWC)	CWC 2	0.71							
	CWC 3	0.77							
Knowledge	KMS1	0.80	3.58	0.85	0.74	0.31	0.88	0.89	
management			(0.93)						
success (KMS)	KMS2	0.90							
	KMS3	0.86							
Innovation	IS 1	0.79	3.48(0.	0.82	0.69	0.33	0.87	0.86	
Success (IS)			91)						
	IS 2	0.86							
	IS 3	0.82							
Financial	FS1	0.84	3.57	0.83	0.70	0.28	0.86	0.87	
Success (FS)			(0.94)						
	FS2	0.85							
	FS3	0.81							

Table 2: Correlation Matrix

Construct's	MS	CWC	KMS	IS	FS
MS	(0.74)				
CWC	0.45	(0.76)			
KMS	0.60	0.44	(0.86)		
IS	0.52	0.36	0.63	(0.83)	
FS	0.42	0.35	0.55	0.74	(0.83)

Notes: MS = Management Support; CWC = Co-worker Collaboration; KMS = Knowledge Management Success; IS = Innovation Success; FS = Financial Success; Square-root of AVE in parentheses on the diagonals.

The mean shared variances of all constructs are less than 0.50, which is the recommended threshold. The values, which ranged from 0.16 to 0.33, indicate that there is enough construct dissimilarity (Table 1). Correlations were examined to assess construct discriminant validity. The values ranged from 0.36 to 0.63, with the exception of 0.74, which represented the correlation between financial and Innovation Success. The correlations did not meet the 0.89 threshold, indicating insufficient discrimination, as shown in T-2 (Table 2). T-2 (Table 2) also shows that the diagonal square root of the extracted average variance (AVE) outperforms construct correlations. This indicates a strong ability to distinguish between constructs

Composite reliabilities and Cronbach's alpha were used to assess construct reliabilities. Cronbach's alpha was 0.79-0.88, while composite reliabilities ranged from 0.79 to 0.89. Both values exceeded the 0.70 cutoff, demonstrating the scales' dependability. A subsequent test revealed that the LISREL measurement model fit well. With a p-value of 0.0947, the chi-square divided by degrees of freedom was 96.02 divided by 80. The AGFI was 0.93, the CFI was one, and the NFI was 0.98. The GFI value was 0.95. The 89% CI for the Root Mean Square Error of Approximation (RSMEA) was 0.024, ranging from 0.00 to 0.041.

6. Model Assessment and Hypotheses Testing

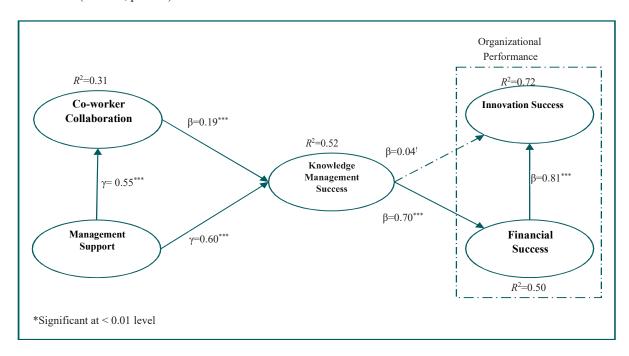

The LISREL method evaluates the data fit and hypotheses efficacy of the structural model. Table 3 demonstrate that the structural model's outcomes correspond to the model data. The chi-square statistic for the target model is 109.55 with 83 degrees of freedom, resulting in a 1.3161 ratio. The RMSEA is 0.030, with a 90% confidence interval ranging from 0.010 to 0.045. These findings indicate that the model fits well. Except for H5 (good Financial Success to knowledge management), all path coefficients were statistically significant (p 0.01). Their values ranged from 0.19 to 0.81.

Table -3 SEM Comparison											
Mod el	Description	Chi- Squar	df	ΔChi- square/	RMSE A	GF I	PGF I	NF I	NNF I	CF I	AIC
		e		df							
M-1	Mesurement	96.02	79		0.024	0.9	0.63	0.9	0.99	0.9	176.0
			+			5		8		9	2
M-2	Base Structural	109.55	83		0.030	0.9	0.66	0.9	0.98	0.9	181.5
						5		7		9	5
M-3	CWC →IS	107.98	82	1.56	0.030	0.9	0.65	0.9	0.98	0.9	181.9
						5		7		9	8
M-4	CWC →FS	108.30	82	1.24	0.030	0.9	0.65	0.9	0.98	0.9	182.3
						5		7		9	0
M-5	CWC →FS and IS	107.15	81	1.19	0.030	0.9	0.64	0.9	0.99	0.9	183.1
						5		7		9	5
M-6	$MS \rightarrow IS$	100.75	82	8.79	0.025	0.9	0.65	0.9	0.99	0.9	174.7
						5		8		9	5
M-7	MS →FS	108.64	82	0.90	0.030	0.9	0.65	0.9	0.98	0.9	182.6
						5		7		9	4
M-8	MS →FS and IS	98.53	81	5.50	0.025	0.9	0.65	0.9	0.99	0.9	174.5
						5		8		9	3
M-9	Independence	7184.2	10								
		0	4								
M-10	Alternate -1	212.00	80		0.069	0.9	0.61	0.9	0.96	0.9	290.0
	$([MS,CWC,KMS] \rightarrow [IS ,FS])$					1		6		7	0
M-11	Alternate -2 ([KMS,MS]	218.54	83		0.069	0.9	0.63	0.9	0.97	0.9	290.5
	→CWC→[IS & FS] ; IS->FS)					1		6		7	3
M-12	Alternate – 3 ([KMS,	145.29	83		0.046	0.9	0.65	0.9	0.98	0.9	219.2
	$CWC] \rightarrow MS \rightarrow [IS \& FS]$; $IS - > FS$)					3		7		8	9

	Table -3 SEM Comparison									
M-13	Alternate -4 (MS→CWC→KMS→IS →FS	176.72	85	0.056	0.9	0.66	0.9 6	0.97	0.9	244.7
M-2F	Female Base structural model	136.72	83	0.059	0.8	0.56	0.9 1	0.94	0.9 5	208.7
M- 2M	Male Base structural model	99.70	8	0.027	0.9 4	0.65	0.9 7	0.98	0.9 9	171.7 0

All other hypotheses were found to be correct (Figure 2). To investigate mediating effects, the researchers used the Sobel (1982) test, as described by Iacobucci et al. (2007). According to the authors, Sobel test z-values were calculated using path coefficients and standard errors. These values, as well as the online Sobel test calculator (Preacher and Leonardelli, 2001), were used to determine the magnitude and significance of mediation effects.

The positive correlation between knowledge management and Financial Success is supported by significant correlation coefficients (z = 9.13, p 0.001).

According to the proposed model, knowledge management mediates the relationship between Co-worker Collaboration and Innovation Success. Table 3 shows the results of our investigation into various alternative and nested models. This was done to improve the predictive validity of the study. Previous research has found a link between knowledge sharing and enterprise Success. Models 3-5 established direct relationships between Co-worker Collaboration and enterprise Success variables. The fitness of all three models was comparable to the base model, with no statistically significant difference in chi-square/df. There were no significant correlations between Co-worker Collaboration and financial or innovation Success in these models. These findings demonstrate that the fundamental model outperforms the nested models. This study looked into the success mediation of knowledge management. According to the findings, knowledge management effectiveness mediates both Innovation and peer knowledge exchange. The findings support the initial hypothesis by confirming full mediation (z = 6.26, p 0.001).

Then there's nested effectiveness. Models 6-8 were investigated to see if Management Support influenced enterprise Success. The pathway linking Management Support and Innovation Success in Model 8 had a different chi-squared/df value than in Models 6 and 7. These models outperformed the base model in terms of data fit. The relationship between Financial Success and Management Support was not statistically significant. The remaining hypothesized pathways were almost as powerful as the base model. Furthermore, in Model 6 (0.24) and Model 8 (0.26), there was a significant correlation (p 0.01) between Innovation Success and Management Support. The remaining significant relationships

remained strong and followed the initial model after incorporating the correlation between Management Support and Innovation Success. For model testing, a theoretically sound, simple model is preferable.

Iacobucci et al. (2007) compared several alternative models to the base model in order to assess their Success and the effects of varying constructs (Table 3). The Alternate Model-1, or Model 10, is a structural framework that influences Innovation and finance through knowledge management, Management Support, and Co-worker Collaboration. The variables listed above are unaffected by knowledge management objectives. The impact of mutual knowledge exchange on enterprise Success was minimal. This model revealed that Management Support had no significant effect on Financial Success. Alternate Model-2 an Alternate Model-3 linked unrelated variables to enterprise Success variables through Co-worker Collaboration and Management Support. These models revealed that the mediating variable had no direct effect on firm Financial Success. Alternate Model-4 is a linear model based on the theory of the foundational model. According to the statement, leaders' assistance influences colleagues' knowledge transfer. This has an impact on knowledge management efficiency, which in turn has an impact on an Enterprise's ability to Innovate and make money. Each path in this one-of-a-kind linear model was statistically significant. All alternative models had a higher chi-square/df ratio, a statistically significant p-value, It is recommended that the foundational model be implemented.

Although knowledge sharing is an individual experience, we investigated the consistency of these associations between men and women. Several studies have found that gender influences business knowledge sharing. Validation of the framework requires structural model testing in both cohorts. Individual tests on the base model performed within each group evaluated the structural model's stability and interdependence. Table 3 shows the fit indices. Despite the small sample size, the male group is highly compatible, while the female group is suitable. Significant associations in the final structural model had similar magnitudes and orientations. Knowledge sharing with peers did not predict Knowledge Management Success in the female group.

Table 4: Hypothesis Results Summary							
Hypothesis	Beta	t-test	Remarks				
H ₁ (Management Support is positively related to Co-worker Collaboration)	0.55	7.47	Accepted				
H ₂ (Management Support is positively related to Knowledge Management Success.)	0.60	7.50	Accepted				
H ₃ (Co-worker Collaboration is positively related to Knowledge Management Success.)	0.17	2.76	Accepted				
H ₄ (Knowledge Management Success is positively related to the Organization's Innovation Success.)	0.70	11.11	Accepted				
H ₅ (Knowledge Management Success is positively related to the Organization's Financial Success.)	0.04	0.71	Rejected				
H ₆ (Organization's Innovation Success is positively related to its Financial Success.)	0.81	9.34	Accepted				

For Knowledge Management Success and Co-worker Collaboration, the structural model has the smallest effect size. As a result, the small female sample size may have hampered the observation of this phenomenon. However, men and women may have different perspectives on what factors contribute to the success of knowledge management goals. There was no difference in variable mean or range between groups, according to the results. This implies that the two groups have similar perspectives on knowledge sharing and management, so this factor is unlikely to account for this group's insignificance.

Except for H5, which proposes a direct relationship between efficient knowledge management and positive Financial Success, the structural model supports all of the study's hypotheses. The structural model hypothesis tests are summarized in Table 4. According to the findings, knowledge management fosters a symbiotic relationship between knowledge

dissemination and organizational Innovation. Furthermore, it partially neutralizes the relationship between Management Support and Innovation Success.

7. Discussion

Except for H5, which looked at Financial Success and Knowledge Management Success, all hypotheses were supported. Financial and non-financial factors were used to evaluate enterprise Success. The findings indicate that knowledge management has an impact on Innovation Success (H4) but not on financial or non-financial indicators. The success of knowledge management has an impact on Financial Success by improving innovative and market-oriented Success (H6). Extensive research has been conducted on knowledge sharing and enterprise Success, but the results have been inconclusive. A lack of critical mediating factors and opposing knowledge sharing perspectives could be to blame. Several studies have found a link between knowledge sharing and Financial Success in businesses. An in-depth analysis of Coworker Collaboration can assist organizations in understanding how knowledge sharing affects Success.

Our research shows that Co-worker Collaboration has an effect on firm Success metrics only when institutions manage knowledge effectively. The impact of knowledge management on Financial Success is determined by how it affects other market and operational variables, such as Innovation. According to previous research, knowledge sharing improves enterprise Success by increasing firm Innovation. It also lends credence to the notion that organizations have adaptable expertise-based capabilities. Environmental dynamism and organizational competitiveness are advanced capabilities that can help explain the relationship between Financial Success and Knowledge Management Success. Studying reconfiguration, leveraging, learning, and creative integration can help us better understand these capabilities.

According to this study, effective Management Support promotes knowledge sharing (H1). The research also shows that Management Support can have an impact on the entire organization. As a direct result, it has an unexpected correlation with organizational Innovation and knowledge management efficiency (H2). Sharing knowledge improves knowledge management (H3). However, for female survey participants, this correlation is not statistically significant. Beyond the methodological considerations in the results section, there are many perspectives to consider, despite the small sample size for women and the need for careful analysis. Women will most likely make unique contributions to knowledge management. Women can also contribute to better knowledge management by actively creating and applying knowledge rather than simply disseminating it. Miller and Karakowsky (2005) discovered that respondents' gender and group gender influenced their knowledge sharing and feedback-seeking behavior. Commercial enterprises must also consider the effects of knowledge protection. Previous research has demonstrated that corporate appropriability mechanisms can have an impact on information distribution. Gender and group composition may have an impact on this phenomenon, particularly in situations where there are no effective safeguards against unauthorized knowledge acquisition.

Other factors may influence how much Co-worker Collaboration aids knowledge management goals. The information was gathered in India, where the local work culture and practices may have influenced the results. Women in this culture may be more cautious when sharing their expertise with peers, particularly men, who constitute the majority of our sample. Women may have contributed less to the success of these organizations through knowledge sharing in knowledge management than they did through other knowledge management activities. As demonstrated in the results section, the different interpretations of the two metrics by the two groups cannot account for the correlation discrepancy. In a unique situation where men are in the minority, the outcome is uncertain. Given the possibility that similar outcomes could occur in other settings, these disparities should be investigated.

An unexpected correlation between organizational Innovation and Management Support was discovered during the nested model evaluation. Historical conclusions should be approached with caution. A Management Support team, on the other hand, can have a significant impact on an organization that goes beyond knowledge sharing and management (H1 and H2). Many aspects of organizational leadership have been extensively researched. The majority of these studies have concentrated on how advanced strategy leadership affects the Success of an organization. According to this study, gaining Management Support across an organization can improve Success indicators such as Innovation. This is because it may encourage managers to engage in knowledge management-beneficial behavior. This post-discovery issue merits further investigation due to its potential to lay the groundwork for future research.

This study discovered that sharing knowledge with coworkers has no effect on company Success. According to Hypothesis H3, knowledge sharing must also improve knowledge management in order to have an impact on Success. This claim is supported by the fact that knowledge sharing strongly mediates the efficacy of knowledge management. As the nested models demonstrate, knowledge sharing has no direct impact on Innovation or Financial Success.

8. Limitations:

There are numerous concerns associated with the research that warrant your attention. When a cross-sectional design is employed to collect data, establishing causal relationships becomes more complicated. The potential for common method bias exists as a result of obtaining both the independent and dependent variables from the same source. However, strategies were employed to alleviate this concern. Due to the fact that the sample was comprised of members of service-based organizations in India, the conclusions drawn may not apply to other organizational types or cultures. Due to the relatively low proportion of females in the sample, it is advisable to exercise prudence when extrapolating conclusions regarding gender. Considering the exclusive focus of the investigation on financial success metrics, it is recommended that forthcoming studies incorporate a greater number of objective financial indicators.

9. Future Research Directions:

Subsequent inquiries ought to concentrate on scrutinizing the interrelationships that exist among diverse organizational frameworks and cultural milieus. An examination of the effects that knowledge sharing has on the success of an enterprises at different levels of the hierarchy, including middle and upper management, can yield significant and worthwhile findings. An examination of the interaction between vertical and horizontal knowledge sharing is imperative in order to detect any possible discrepancies that may exist between the two. Additional research may be required to examine the ramifications of knowledge dissemination in particular sectors and domains. Further investigation into supplementary knowledge-management endeavors, including the production and application of knowledge, may augment our understanding. Moreover, in regard to the effectiveness of innovations, further research could be undertaken to assess the influence of management support on organizations in areas other than knowledge sharing promotion.

10. Conclusion

The benefits of knowledge sharing for modern organizations at all levels are being researched. The purpose of this study was to define and investigate how Co-worker Collaboration improves enterprise Success. Our main focus was Co-worker Collaboration, which is an important way for organizations to share knowledge. This study clarifies knowledge sharing and adds to knowledge management. Knowledge management is critical because it connects organizations' ability to share knowledge and generate new ideas. According to the study, Management Support improves Co-worker Collaboration and has a significant impact on organizations.

References:

- Aguilera-Caracuel, J. and Ortiz-de-Mandojana, N. (2013), "Green innovation and financial performance: an institutional approach", Organization & Environment, Vol. 26 No. 4, pp. 365-385.
- Ahmad, F. and Karim, M. (2019), "Impacts of knowledge sharing: a review and directions for future research", Journal of Workplace Learning, Vol.31 No.3, pp.207-230.
- Akram, M.U., Chauhan, C., Ghosh, K. and Singh, A. (2019), "Knowledge management, sustainable business performance and empowering leadership: a firm-level approach", International Journal of KnowledgeManagement, Vol.15 No.2,pp.20-35
- Al Saifi, S.A., Dillon, S. and McQueen, R. (2016), "The relationship between face to face social networks and knowledge sharing: an exploratory study of manufacturing firms", Journal of Knowledge Management, Vol. 20No. 2, pp. 308-326.
- Alam, S., Abdullah, Z., Ishak, N., & Zain, Z. (2009). Assessing knowledge sharing behavior among employees in SMEs: An empirical study. International Business Research, 2, 115–122.
- Alavi, M., & Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. *MIS quarterly*, 107-136.
- Alegre, J., Sengupta, K. and Lapiedra, R. (2013), "Knowledge management and innovation performance in a high-tech SMEs industry", International Small Business Journal: Researching Entrepreneurship, Vol.31No.4,pp.454-470.
- Ali, A.A., Panneer Selvam, D.D.D., Paris, L. and Gunasekaran, A. (2019), "Key factors influencing knowledge sharing practices and its relationship with organizational performance within the oil and gas industry", Journal of Knowledge Management, Vol. 23 No. 9, pp. 1806-1837.
- Alvesson, M. (2019), "Waiting for Godot: eight major problems in the odd field of leadership studies", Leadership, Vol. 15No. 1, pp. 27-43.
- Anderson, J.C. and Gerbing, D.W. (1988), "Structural equation modeling in practice: a review and recommended two-stepapproach", Psychological Bulletin, Vol. 103 No. 3, p. 411.

- Avolio, B.J. and Gardner, W.L. (2005), "Authentic leadership development: getting to the root of positive formsofleadership", The Leadership Quarterly, Vol. 16No. 3, pp. 315-338.
- Barley, S. R., Meyerson, D. E., and Grodal, S. (2011), "E-mail as a source and symbol of stress". Organization Science, Vol.22 No.4, pp.887-906.
- Bhardwaj, R., Srivastava, S., Mishra, H. G., & Sangwan, S. (2023). Exploring micro-foundations of knowledge-based dynamic capabilities in social purpose organizations. Journal of Knowledge Management, 27(4), 1016-1041.
- Bigliardi, B. (2013), "The effect of innovation on financial performance: a research study involving SMEs", Innovation, Vol.15No.2, pp.245-255.
- Bock, G. W., & Kim, Y. G. (2002). _Breaking the myths of rewards: An exploratory study of attitudes about knowledge sharing. Information Resources Management Journal, 15, 14–21. https://doi.org/10.4018/IRMJ
- Bockova, N. and Zizlavsky, O. (2016), "Innovation and financial performance of a company: a studyfromCzechmanufacturingindustry", TransformationsinBusiness&Economics, Vol. 15No. 3, pp. 156-175.
- Brislin, R.W. (1986), "Thewording and translation of research instruments", in Lonner, W.L. and Berry, J.W. (Eds), Field Methods in Cross-Cultural Research, Sage, Newbury Park, CA, pp. 137-164.
- Cabrilo, S. and Dahms, S. (2018), "How strategic knowledge management drives intellectual capital to superior innovation and market performance", Journal of Knowledge Management, Vol. 22 No. 3, pp.621-648.
- Carmeli, A., Gelbard, R., and Reiter-Palmon, R. (2013), "Leadership, creative problem-solving capacity, and creative performance: The importance of knowledge sharing". Human Resource Management, Vol.52 No.1, pp.95-121.
- Chen, F., Zhang, L., & Latimer, J. (2014). How much has my co-worker contributed? The impact of anonymity and feedback on social loafing in asynchronous virtual collaboration. *International Journal of Information Management*, 34(5), 652-659.
- Chiu, C.M., Hsu, M.H. and Wang, E.T. (2006), "Understanding knowledge sharing in virtual communities: an integration of social capital and social cognitive theories", Decision Support Systems, Vol. 42 No. 3, pp.1872-1888.
- Choi, S. Y., Lee, H., and Yoo, Y. (2010), "The impact of information technology and transactive memory systems on knowledge sharing, application, and team performance: a field study". MIS quarterly, Vol.34 No.4, pp.855-870
- Christensen, P.H. and Pedersen, T. (2018), "The dual influences of proximity on knowledge sharing", Journal of KnowledgeManagement,Vol.22 No.8, pp.1782-1802.
- Churchill Jr, G.A. (1979), "A paradigm for developing better measures of marketing constructs", Journal ofMarketingResearch,Vol.16No.1,pp.64-73.
- DelGiudice,M.andDellaPeruta,M.R.(2016), "TheimpactofITbasedknowledgemanagementsystems on internal venturing and innovation: a structural equation modeling approach to corporate performance", Journal of Knowledge Management, Vol. 20 No. 3, pp. 484-498.
- DeLone, W.H. and McLean, E.R. (1992), "Information systems success: the quest for the dependent variable",InformationSystemsResearch,Vol.3No.1,pp.60-95.
- Donate, M.J. and Sanchez De Pablo, J.D.S. (2015), "The role of knowledge-oriented leadership in knowledge management practices and innovation", Journal of Business Research, Vol. 68 No. 2, pp.360-370.
- Edwards, J.S. (2017), "Knowledge sharing: at the heart of knowledge management", in Jain, P. andMnjama,N.(Eds),ManagingKnowledgeResourcesandRecordsinModernOrganizations,IGIGlobal,pp.1-14.
- Fawcett, S.E., Waller, M.A., Miller, J.W., Schwieterman, M.A., Hazen, B.T. and Overstreet, R.E. (2014), "A trail guide to publishing success: tips on writing influential conceptual, qualitative, and survey research", JournalofBusinessLogistics, Vol.35No.1, pp.1-16.
- Fornell, C. and Larcker, D.F. (1981), "Evaluating structural equation models with unobservable variables andmeasurementerror", Journal of Marketing Research, Vol. 18No. 1, pp. 39-50.
- Fornell, C. and Larcker, D.F. (1981), "Evaluating structural equation models with unobservable variables andmeasurementerror", Journal of Marketing Research, Vol. 18No. 1, pp. 39-50.
- Galeazzo, A. and Furlan, A. (2019), "Good problem solvers? Leveraging knowledge sharing mechanisms and management support", Journal of Knowledge Management, Vol. 23 No. 6, pp. 1017-1038.
- Gerbing, D.W. and Hamilton, J.G. (1996), "Viability of exploratory factor analysis as a precursor to confirmatory factor analysis", Structural Equation Modeling: A Multidisciplinary Journal, Vol. 3 No. 1, pp.62-72.
- Gerpott, F.H. and Ulrike, F. (2019), "Respectful leadership and followers' knowledge sharing: a social mindfulnesslens", HumanRelations, Vol.73No.6, doi:10.1177/0018726719844813.

- Gloet, M. and Terziovski, M. (2004), "Exploring the relationship between knowledge management practices and innovation performance", Journal of Manufacturing Technology Management, Vol. 15 No.5,pp.402-409.doi:10.1108/17410380410540390.
- Gok, O. and Peker, S. (2017), "Understanding the links among innovation performance, market performance and financial performance", Review of Managerial Science, Vol. 11 No. 3, pp. 605-631.
- Haass, O., Akhavan, P., Miao, Y., Soltani, M., Jan, T., & Azizi, N. (2023). Organizational citizenship behaviour on organizational performance: A knowledge-based organization. Knowledge Management & E-Learning, 15(1), 85.
- Haq, M., and Anwar, S. (2016), "A systematic review of knowledge management and knowledge sharing: Trends, issues, and challenges". Cogent Business & Management, Vol.3 No.1, pp.112-144.
- Huysman, M. and De Wit, D. (2004), "Practices of managing knowledge sharing: towards a second wave ofknowledgemanagement", Knowledgeand Process Management, Vol. 11 No. 2, pp. 81-92.
- Iacobucci, D., Saldanha, N. and Deng, X. (2007), "A meditation on mediation: evidence that structural equations models perform better than regressions", Journal of Consumer Psychology, Vol. 17 No. 2, pp.139-153.
- Inkinen, H. (2016), "Review of empirical research on knowledge management practices and firm performance", Journal of Knowledge Management, Vol. 20 No. 2, pp. 230-257, doi: 10.1108/JKM-092015-0336.
- Jiang, Y. and Chen, C.C. (2018), "Integrating knowledge activities for team innovation: effects of transformational leadership", Journal of Management, Vol. 44No. 5, pp. 1819-1847.
- Kaplan, S., Schenkel, A., von Krogh, G. and Weber, C. (2001), "Knowledge-based theories of the firm in strategic management: a review and extension", International Journal of Project Management, Vol. 25, pp.143-158.
- Keszey, T. (2018), "Boundary spanners' knowledge sharing for innovation success in turbulent times", Journal of Knowledge Management, Vol.22 No.5,pp.1061-1081.
- Khan, A. N., Mehmood, K., & Kwan, H. K. (2024). Green knowledge management: A key driver of green technology innovation and sustainable performance in the construction organizations. Journal of Innovation & Knowledge, 9(1), 100455.
- Khan, A. N., Mehmood, K., & Kwan, H. K. (2024). Green knowledge management: A key driver of green technology innovation and sustainable performance in the construction organizations. Journal of Innovation & Knowledge, 9(1), 100455.
- Kim, S.L. and Yun, S. (2015), "The effect of coworker knowledge sharing on performance and its boundary conditions: an interactional perspective", Journal of Applied Psychology, Vol. 100 No. 2, p.575.
- Kim, S.L., Han, S., Son, S.Y. and Yun, S. (2017), "Exchange ideology in supervisor-subordinate dyads, LMX, and knowledge sharing: a social exchange perspective", Asia Pacific Journal of Management, Vol.34No.1,pp.147-172.
- Kim, T.H., Lee, J.N., Chun, J.U. and Benbasat, I. (2014), "Understanding the effect of knowledge management strategies on knowledge management performance: a contingency perspective", Information&Management, Vol.51 No.4, pp.398-416.
- Kostopoulos, K., Papalexandris, A., Papachroni, M. and Ioannou, G. (2011), "Absorptive capacity,innovation,andfinancialperformance",JournalofBusinessResearch,Vol.64No.12,pp.1335-1343.
- Kulkarni, U.R., Ravindran, S. and Freeze, R. (2006), "A knowledge management success model: theoretical development and empirical validation", Journal of Management Information Systems, Vol. 23 No.3,pp.309-347.
- Lakshman, C. (2007), "Organizational knowledge leadership: a grounded theory approach", Leadership &OrganizationDevelopmentJournal,Vol.28No.1,pp.51-75.
- Lam, L., Nguyen, P., Le, N., & Tran, K. (2021). The relation among organizational culture, knowledge management, and innovation capability: Its implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 66.
- Law, C.C. and Ngai, E.W. (2008), "An empirical study of the effects of knowledge sharing and learning behaviorsonfirmperformance", ExpertSystems with Applications, Vol. 34No. 4, pp. 2342-2349.
- Le, B. and Lei, H. (2019), "Determinants of innovation capability: the roles of transformational leadership, knowledge sharing and perceived organizational support", Journal of Knowledge Management, Vol. 23 No.3,pp. 527-547.
- Li, M., Liu, H. and Zhou, J. (2018), "G-SECI model-based knowledge creation for CoPS innovation: the roleofgreyknowledge", Journal of Knowledge Management, Vol. 22No. 4, pp. 887-911.
- Lopez-Nicolas, C. and Meron °o-Cerdan, A '.L. (2011), "Strategic knowledge management, innovation andperformance", International Journal of Information Management, Vol. 31No.6, pp. 502-509.

- Mardani, A., Nikoosokhan, S., Moradi, M. and Doustar, M. (2018), "The relationship between knowledge management and innovation performance", The Journal of High Technology Management Research, Vol.29No.1,pp.12-26.
- Michailova, S., & Husted, K. (2003). Knowledge-sharing hostility in Russian firms. California management review, 45(3), 59-77.
- Miller, D.L. and Karakowsky, L. (2005), "Gender influences as an impediment to knowledge sharing:whenmenandwomenfailtoseekpeerfeedback", The Journal of Psychology, Vol. 139No. 2, pp. 101-118.
- Mishra, M. and Pandey, A. (2019), "The impact of leadership styles on knowledge-sharing behavior: a review of literature ,development and learning in organizations", AnInternationalJournal, Vol. 33No. 1, pp. 16-19.
- Mom, T.J., Van Den Bosch, F.A. and Volberda, H.W. (2007), "Investigating managers' exploration and exploitation activities: the influence of top-down, bottom-up, and horizontal knowledge inflows", Journal of Management Studies, Vol.44 No.6,pp.910-931.
- Muhammed, S., & Zaim, H. (2020). Peer knowledge sharing and organizational performance: the role of leadership support and knowledge management success. Journal of knowledge management, 24(10), 2455-2489.
- Nonaka, I., Toyama, R. and Konno, N. (2000), "SECI, Ba and leadership: a unified model of dynamic knowledgecreation", Long Range Planning, Vol. 33 No. 1, pp. 5-34.
- Ogutu, H., Adol, G. F. C., Bujdosó, Z., Andrea, B., Fekete-Farkas, M., & Dávid, L. D. (2023). Theoretical nexus of knowledge management and tourism business enterprise competitiveness: An integrated overview. Sustainability, 15(3), 1948.
- Pandey, S.C., Dutta, A. and Nayak, A.K. (2018), "Organizational capabilities and knowledge management success: a quartet of case studies", Kybernetes, Vol. 47 No. 1, pp. 222-238.
- Pellegrini, M. M., Ciampi, F., Marzi, G., & Orlando, B. (2020). The relationship between knowledge management and leadership: mapping the field and providing future research avenues. Journal of Knowledge Management, 24(6), 1445-1492.
- Reychav, I., Stein, E. W., Weisberg, J., and Glezer, C. (2012), "The role of knowledge sharing in raising the task innovativeness of systems analysts". International Journal of Knowledge Management (IJKM), Vol.8 No.2, pp.1-22.
- Rezaei, G., Gholami, H., Shaharou, A. B. M., Zameri Mat Saman, M., Sadeghi, L., and Zakuan, N. (2017), "Shared knowledge mediated correlation between cultural excellence and organisational performance". Total Quality Management & Business Excellence, Vol.28 No.3-4, pp.427-458.
- Saputri, M. E., & Utami, F. N. (2023, February). Knowledge Management on Bandung MSMEs in the Digital Era. In Conference on Digital Humanities 2022 (CODH 2022) (pp. 7-14). Atlantis Press.
- Singh, S.K., Del Giudice, M., Tarba, S.Y. and De Bernardi, P. (2019a), "Top management team shared leadership, market-oriented culture, innovation capability, and firm performance", IEEE Transactions on EngineeringManagement,inPress,doi:10.1109/TEM.2019.2946608.
- Sobel, M.E. (1982), "Asymptotic intervals for indirect effects in structural equations models", Sociological Methodology, Vol. 13, pp. 290-312.
- Soleimani Nejad, A., Doroudi, F., & Kamyab, R. (2024). Assessment of the status and factors influencing the adoption of cloud computing in knowledge-based companies Case Study: Kerman Science and Technology Park. International Journal of Information Science and Management (IJISM), 17-29.
- Song, C., Park, K. R., and Kang, S. W. (2015), "Servant leadership and team performance: The mediating role of knowledge-sharing climate". Social Behavior and Personality: an international journal, Vol.43 No.10, pp.1749-1760.
- Srivastava, A., Bartol, K.M. and Locke, E.A. (2006), "Empowering leadership in management teams: effects on knowledge sharing, efficacy, and performance", Academy of Management Journal, Vol. 49 No.6, pp.1239-1251.
- Vigoda, E. (2002), "Stress related aftermaths to workplace politics: the relationships among politics, job distress, and aggressive behavior in organizations". Journal of Organizational Behavior, 23 No.5, pp.571-591.
- Vrontis, D., Christofi, M., Battisti, E., & Graziano, E. A. (2021). Intellectual capital, knowledge sharing and equity crowdfunding. Journal of Intellectual Capital, 22(1), 95-121.
- Wang, H., Law, K.S., Hackett, R.D., Wang, D. and Chen, Z.X. (2005), "Leader-member exchange as a mediator of the relationship between transformational leadership and followers' performance and organizational citizenship behavior", Academy of Management Journal, Vol. 48 No. 3, pp. 420-432.

- Wang, Z. and Wang, N. (2012), "Knowledge sharing, innovation and firm performance", Expert Systems withApplications,Vol.39No.10,pp.8899-8908.
- Wang, Z., Sharma, N. and Cao, J. (2016), "From knowledge sharing to firm performance: a predictive model comparison", Journal of Business Research, Vol. 69 No. 10, pp. 4650-4658.
- Wei, S., Ke, W., Lado, A.A., Liu, H. and Wei, K.K. (2019), "The effects of justice and top management beliefs and participation: an exploratory study in the context of digital supply chain management", JournalofBusinessEthics,doi:10.1007/s10551-018-04100-9.
- Zaim, H., Muhammed, S. and Tarim, M. (2019), "Relationship between knowledge management processes and performance: critical role of knowledge utilization in organizations", Knowledge ManagementResearch&Practice,Vol.17No.1,pp.24-38,doi:10.1080/14778238.2018.1538669.
- Zaim, H., Tatoglu, E. and Zaim, S. (2007), "Performance of knowledge management practices: a causal analysis", Journal of Knowledge Management, Vol. 11 No. 6, pp. 54-67.