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Abstract 

Structural health monitoring (SHM) has become a crucial aspect of maintaining the safety and durability of civil 

engineering structures, particularly concrete bridges. Traditional methods often rely on periodic inspections and 

manual sensor data analysis, which can be both time-intensive and susceptible to human error. With advancements 

in technology, Artificial Intelligence (AI) techniques such as Artificial Neural Networks (ANNs) and Machine 

Learning (ML) algorithms have emerged as effective tools for predictive modeling in SHM. These AI models can 

process large amounts of real-time sensor data to predict key indicators like crack propagation, load-bearing 

capacity, and overall structural health. By providing accurate predictions, AI models enable more efficient 

maintenance scheduling, reducing both the risk of structural failure and unnecessary repair costs. This research 

explores various AI-driven models, comparing the performance of ANNs with other machine learning techniques 

such as Random Forest and Gradient Boosting. The findings demonstrate that AI can significantly improve the 

precision of SHM, offering a more scalable and cost-effective solution for infrastructure management, ultimately 

extending the service life of bridges while ensuring public. 

Keywords: Artificial Neural Networks, Structural Health Monitoring, Machine Learning, Predictive Modelling, 

Concrete Bridges 

 

1. Introduction 

 

1.1 Background 

 

Structural Health Monitoring (SHM) has become an essential focus in civil engineering, especially when it comes 

to ensuring the safety and durability of vital infrastructures like bridges, tunnels, and dams (Nguyen et al., 2024). 

For bridges in particular, SHM helps in detecting structural weaknesses and forecasting potential problems before 

they turn into disasters. Traditionally, SHM relies on periodic inspections and sensor systems, which, while useful, 

often involve a lot of manual work and are time-intensive, leaving room for human error (Sofi et al., 2022). As 

infrastructure across the globe continues to age, the demand for smarter, more efficient, and real-time solutions 

has intensified, steering the field toward advanced computational approaches (Meemary et al., 2025).  
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In recent years, the application of Artificial Intelligence (AI), especially through Artificial Neural Networks 

(ANN) and Machine Learning (ML) models, has garnered attention for its ability to unravel complex, nonlinear 

interactions between multiple variables influencing structural integrity (Nguyen et al., 2024). These AI-driven 

systems, using large datasets from past performance records and sensor data, offer the potential to predict critical 

outcomes like crack development, load capacity, and the overall health of structures (Soleymani et al., 2023). This 

capacity to anticipate issues is crucial in keeping bridges functional and safe for longer periods.  

 

1.2 Problem Statement 

 

While traditional SHM methods have been effective in some cases, their main shortcoming is that they are largely 

reactive and fall short in providing timely and accurate forecasts. These methods tend to concentrate on monitoring 

just one or two indicators, such as crack size or displacement, without accounting for the complex interplay 

between various factors that together define the structure’s condition. This often leads to maintenance decisions 

that are based more on educated guesses than on precise data, either resulting in too little maintenance (which can 

escalate the risk of failure) or too much (which increases costs unnecessarily).  

 

The introduction of ANN and ML models promises a shift in approach. By training these systems on diverse 

datasets, we can create predictive models that assess a structure’s health dynamically, taking into account multiple 

factors at once. These models can guide maintenance decisions more accurately, reducing both risks and costs. 

Despite this potential, current research tends to be fragmented, with most studies focusing on only one aspect of 

structural health. There’s a clear need for comprehensive models that can assess multiple dimensions of structural 

health at the same time. 

 

1.3 Objectives and Scope 

 

The goal of this study is to close the gap in current SHM techniques by developing AI-driven models, particularly 

using ANNs and ML algorithms, that can predict the health of concrete bridges. The main objectives are:  

 

• To design predictive models that estimate key factors like load-bearing capacity and crack growth. 

• To create a system that can recommend maintenance schedules based on these predictions. 

• To analyze how cost-effective these AI-based models could be in real-world bridge management. 

 

This research will focus specifically on concrete bridges. We’ll use real-world sensor data and historical 

maintenance logs to train and validate the models. Both ANN models and several ML algorithms will be explored, 

with a comparison of their accuracy and suitability for long-term maintenance strategies. 

 

1.4 Significance of the Study 

 

Applying AI models like ANN and ML to SHM could drastically change the way we manage bridge maintenance, 

particularly in the following areas: 

 

• Improved Safety: Accurate predictions will help prevent sudden failures, ensuring that bridges remain 

safe for use. 

• Cost Savings: Predictive maintenance allows for timely interventions, which can cut down on 

unnecessary repairs or costly emergency fixes. 

• Longer Lifespan: By tracking the deterioration of a structure in real-time, maintenance can be better 

planned, extending the functional life of the bridge. 

 

Moreover, this research goes beyond just bridge maintenance—it offers insights into how AI can solve complex, 

multi-variable problems in civil engineering and infrastructure management (Xie et al., 2022). The potential for 

AI to bring more precision and efficiency to this field is immense, especially as infrastructure continues to age 
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and demand more attention. 

 

 

 

2. Literature Review 

 

2.1 AI in Civil Engineering 

 

The use of Artificial Intelligence (AI) in civil engineering has advanced rapidly over the last ten years, particularly 

in areas requiring intricate data analysis, such as Structural Health Monitoring (SHM) (Bui Tien et al., 2024). AI 

has been applied in diverse areas, from estimating material properties to managing large-scale construction 

projects and infrastructure monitoring. Among the various AI approaches, Artificial Neural Networks (ANNs) 

have shown remarkable ability to detect patterns in massive datasets, surpassing traditional statistical methods 

which often struggle with the complex, nonlinear nature of civil engineering data (Li et al., 2024).  

 

A number of studies have highlighted the success of AI models in predicting the compressive strength of concrete 

(Abolghasemi et al., 2024) or in detecting cracks and structural deformations (Keshmiry et al., 2024). In the 

context of SHM, ANNs and Machine Learning (ML) models have proven particularly valuable because they can 

process continuous sensor data in real time. These AI tools provide more reliable predictions for crack 

development, load-bearing capacity, and long-term structural health (Salimi et al., 2024). 

 

Beyond ANNs, other machine learning techniques, like Random Forest, Gradient Boosting, and Support Vector 

Machines (SVM), have been widely used for SHM tasks. These include fault detection, predicting structural loads, 

and scheduling maintenance (Guzmán-Torres et al., 2024). The adaptability of these models and their ability to 

enhance decision-making make them a promising addition to infrastructure management.Table 1 below compares 

some of the AI models utilized in SHM, detailing their accuracy and the key parameters they analyze.  

 

Table 1: Comparison of AI models used in SHM 

 

 

AI Model 

 

Application 

 

Structure Type 

 

Accuracy (%) 
Key Parameters 

Considered 

 

ANN 
Crack Propagation 

Prediction 

 

Concrete Bridges 

 

92.5 

 

Crack Width, Load, Age 

 

Random Forest 
Load-bearing 

Capacity Estimation 

 

Steel Bridges 

 

89.7 
Stress-Strain, Traffic 

Load 

Gradient 

Boosting 

Maintenance Schedule 

Prediction 

 

Concrete Bridges 

 

91.2 
Sensor Data, 

Environmental Factors 

 

SVM 

 

Fault Detection 
Concrete 

Structures 

 

88.3 
Acoustic Emissions, 

Vibration Data 

K-Nearest 

Neighbors 

Structural Health 

Index Estimation 

 

Steel Bridges 

 

87.5 
Displacement, 

Temperature Variations 
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2.2 Current SHM Techniques 

 

Traditionally, SHM has relied heavily on sensor-based methods, such as strain gauges, accelerometers, and 

displacement transducers, to track changes in structural performance. Additionally, non-destructive testing (NDT) 

techniques, like ultrasonic testing, infrared thermography, and radiography, are used to detect internal defects 

without harming the structure (Zhang et al., 2020). 

 

While effective, these methods are often reactive rather than proactive. Inspections occur at scheduled intervals, 

which leaves room for damage to go unnoticed for long stretches. Moreover, deploying sensor-based systems on 

large-scale structures like bridges can be expensive and complicated. Similarly, NDT techniques, though accurate, 

are time-consuming and require specialists to interpret the results (Munyensanga & El Mabrouk, 2023). These 

constraints hinder the broad application of traditional SHM methods in today’s engineering projects, where real- 

time and cost-effective solutions are increasingly necessary. 

 

2.3 ANNs and ML in SHM 

 

In response to the limitations of traditional techniques, recent studies have explored how ANN and ML models 

can enhance SHM by introducing predictive capabilities. These AI models use historical sensor data to predict 

various structural health indicators like crack growth, load capacity, and structural fatigue (Katlav et al., 2024). 

For instance, (Elbatanouny et al., 2024) showed how ANN models accurately predicted crack widths in concrete 

bridges by analyzing environmental data and sensor inputs. 

 

 

 

Figure 1: Workflow of Structural Health Monitoring Using AI Models 
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Similarly, (Chen et al., 2023) employed Random Forest algorithms to predict load-bearing capacity, using several 

structural parameters to create more reliable forecasts. These AI-based approaches offer considerable advantages 

over conventional methods by quickly processing vast amounts of sensor data and providing real-time insights 

that optimize maintenance schedules and predict future deterioration trends (Elbatanouny et al., 2024). Figure 1 

provides a schematic overview of a typical SHM process that uses AI models, from initial data collection to 

predictive decision-making for managing bridge maintenance. 

 

2.4 Research Gaps 

 

Despite the progress made in integrating AI into SHM, several gaps remain that need further investigation: 

 

• Multivariate Models: Many existing studies focus on predicting single parameters of structural health, 

such as crack growth or load capacity. However, the development of models that can predict several 

interacting factors simultaneously is still limited (Battu et al., 2025). 

• Real-time Monitoring: Although AI-based SHM systems have proven useful in static environments, few 

models are equipped to handle real-time monitoring where structural conditions continuously evolve, 

like fluctuating loads and varying environmental factors (Battu et al., 2025).  

• Long-term Forecasting: Most AI models excel in short-term predictions but are less effective at 

forecasting long-term outcomes. Such capabilities are critical for the strategic management of 

infrastructure over extended periods (Singh et al., 2013). 

• Scalability: Many models are designed for specific types of structures, limiting their ability to be applied 

across different infrastructures. More research is needed to develop AI systems that can scale across 

various types of bridges or infrastructure systems (Hong et al., 2024). 

 

Addressing these gaps is essential to fully realize the potential of AI in revolutionizing SHM practices, allowing 

for more comprehensive, adaptive, and cost-effective solutions. 

 

3. Methodology 

 

This section describes the approach taken to develop and evaluate AI models for predicting structural health in 

concrete bridges. The methodology follows a systematic process that includes data collection, preprocessing, 

model development (including both Artificial Neural Networks and Machine Learning models), training, testing, 

and performance assessment. The aim is to establish a robust and accurate predictive framework for real-time 

Structural Health Monitoring (SHM). 

 

3.1 Data Collection 

 

The dataset used in this research was compiled from several sources, such as real-time sensor data from concrete 

bridges, historical maintenance logs, and environmental data like temperature and humidity. Sensor data includes 

measurements from strain gauges, accelerometers, and crack width sensors installed across various parts of the 

bridges. Additionally, historical data from state transportation departments provided insight into traffic load 

patterns, bridge age, and previous maintenance activities. 

 

The primary parameters collected for the predictive modeling include: 

 

• Bridge Age: The number of years since construction or the last significant maintenance. 

• Traffic Load: The average and maximum load (in tonnes per day) exerted by vehicles crossing the bridge. 

• Crack Width: Measured in millimeters using installed crack gauges. 
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• Stress-Strain Data: Obtained from strain gauges and accelerometers, capturing structural response under 

load. 

• Environmental Conditions: Including temperature, humidity, and wind speed, all of which can impact a 

bridge's structural integrity. 

 

Table 2 below presents the various input parameters used for modeling, along with their corresponding 

measurement units. 

 

Table 2: Input Parameters Collected for Predictive Modeling 

 

Parameter Measurement Unit Source 

Bridge Age Years Historical Maintenance 

Data 

Traffic Load Tonnes/day Traffic Sensors 

Crack Width mm Crack Gauges 

Stress-Strain Data MPa Strain Gauges 

Temperature °C Environmental Sensors 

Humidity % Environmental Sensors 

Wind Speed m/s Environmental Sensors 

 

 

 

 

3.2 Data Preprocessing 

 

Preprocessing the data is a critical step to ensure the AI models produce reliable predictions (Elbatanouny et al., 

2024). The following tasks were performed to prepare the data: 

 

1. Data Cleaning: Missing values in sensor readings were handled by interpolation, while outliers, which 

could skew model results, were identified using z-scores and removed. 

2. Normalization: To standardize the wide-ranging sensor readings (e.g., crack width in millimeters versus 

traffic load in tonnes), all input features were normalized using min-max scaling. This prevents features 

with larger values from disproportionately influencing the models. 

3. Feature Selection: Based on correlation analysis and expert knowledge, highly correlated features were 

selected to improve the model's performance and reduce the risk of overfitting. 

4. Data Splitting: The dataset was divided into three subsets—70% for training, 15% for validation, and 

15% for testing. The training set was used for model development, the validation set for tuning 

hyperparameters, and the test set was reserved for the final evaluation of model performance.  

 

Figure 2 illustrates the data preprocessing workflow, showing how raw sensor data is transformed into model- 

ready inputs. 



Putturu Manoj Kumar, Dr.Vajja Varalakshmi, P Abhilash, Scientist, Dr. Om Prakash  

Singh, Sanjay Kumar Ray, Arpit Sethia 

 

 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 17500 

 

 

 

 
 

 

 

Figure 2: Data Preprocessing Workflow 

 

This figure outlines the process, including data cleaning, normalization, feature selection, and splitting into 

training, validation, and test sets. 

 

 

 

3.3 ANN Model Architecture 

 

At the heart of the SHM framework is an Artificial Neural Network (ANN) (Nguyen et al., 2024). The architecture 

was designed to capture complex relationships in the data: 

 

• Input Layer: This layer receives the preprocessed data, with each sensor reading or historical record 

assigned to a neuron.
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• Hidden Layers: Two hidden layers, consisting of 64 and 32 neurons respectively, were implemented. 

The ReLU (Rectified Linear Unit) activation function was used to add non-linearity, allowing the model 

to capture the intricate patterns in the data. 

• Output Layer: This layer includes multiple neurons, each predicting a distinct structural health parameter, 

such as crack width, load-bearing capacity, or optimal maintenance intervals. 

 

Training of the ANN model was conducted using the Adam optimizer with a learning rate of 0.001, and the loss 

function used was Mean Squared Error (MSE) to minimize the discrepancy between predicted and actual values. 

 

3.4 Machine Learning Models 

 

In addition to the ANN, various other machine learning (ML) models were employed to compare their 

performance (Wang et al., 2024). Table 3 summarizes the key hyperparameters used for each model, which 

include the following: 

 

• Random Forest: A robust ensemble method that creates multiple decision trees during the training phase, 

and then aggregates their predictions to improve accuracy. 

• Gradient Boosting: A sequential method where each new model corrects the errors of the previous one. 

This method excels at reducing overfitting and improving predictive performance. 

• Support Vector Machine (SVM): A versatile algorithm used for both classification and regression, it 

aims to find the optimal hyperplane that best separates the data points in feature space.  

 

Table 3: Model Parameters for ANN and ML Models 

 

Model Hyperparameters 

ANN Learning Rate: 0.001, Hidden Layers: 2 (64, 32) 

Random Forest Trees: 100, Max Depth: 10 

Gradient Boosting Learning Rate: 0.01, Trees: 50 

SVM Kernel: RBF, Regularization: 1.0 

 

3.5 Model Training and Testing 

 

All models were trained using the training set, while hyperparameter tuning was carried out using the validation 

set (Du et al., 2024). The final evaluation was performed on the test set, using standard metrics such as: 

 

• Mean Absolute Error (MAE): Measures the average magnitude of errors in predictions. 

• Root Mean Squared Error (RMSE): Captures the square root of the average squared differences between 

predicted and actual values. 

• R-squared (R²): Indicates how well the predictions match the real data. 

• Accuracy: Evaluates the precision of the model across various predictions. 

 

Cross-validation was also used to ensure that the models generalized well to unseen data, thereby minimizing the 

chances of overfitting. 

 

3.6 Sensitivity Analysis 

 

A sensitivity analysis was performed to determine which input variables had the most influence on the model’s 

predictions. This step is crucial in understanding how changes in factors such as traffic load or environmental 

conditions affect predictions of crack propagation or load-bearing capacity (Shoukry et al., 2008). Knowing which 
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variables have the greatest impact can help engineers prioritize certain aspects of maintenance, ultimately leading 

to more effective, targeted interventions. 

 

By understanding these sensitivities, the models not only predict outcomes but also provide insights into the key 

factors driving structural health, allowing for more efficient and cost-effective maintenance planning. 

 

4. Results and Discussion 

 

4.1 ANN Model Performance 

 

The ANN model designed for this study performed well in predicting key structural health indicators, including 

crack propagation rates, load-bearing capacity, and suggested maintenance schedules (Tahenni et al., 2020). After 

the model was trained using preprocessed data, it was evaluated on the test dataset, yielding highly accurate 

predictions for crack width and load-bearing capacity over time. 

 

The performance metrics of the model include: 

 

• Mean Absolute Error (MAE): 0.021 mm for crack width prediction and 12.7 tonnes for load-bearing 

capacity. 

• Root Mean Squared Error (RMSE): 0.027 mm for crack width and 14.1 tonnes for load-bearing capacity. 

• R² (Coefficient of Determination): 0.91 for crack width prediction and 0.89 for load-bearing capacity, 

indicating a strong alignment between predicted and actual values. 

 

The ANN model excelled in predicting crack propagation rates, and while its performance for load-bearing 

capacity was also impressive, the predictions for this parameter showed slightly lower accuracy. This minor 

discrepancy is likely due to the more complex relationships among the factors that influence load-bearing capacity, 

such as fluctuating traffic loads, material fatigue, and environmental conditions. Table 4 summarizes the ANN 

model's performance based on the key metrics. 

 

Table 4: Performance Metrics of ANN Model 

 

Structural Health Parameter MAE RMSE R² 

Crack Width (mm) 0.021 0.027 0.91 

Load-bearing Capacity (tonnes) 12.7 14.1 0.89 

Maintenance Schedule N/A N/A N/A 

 

4.2 ML Model Performance 

 

To further evaluate model performance, several machine learning algorithms were also implemented, including 

Random Forest, Gradient Boosting, and Support Vector Machine (SVM) (Tao et al., 2024). These models were 
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applied to predict structural parameters and were compared with the ANN model in terms of accuracy.  

 

• Random Forest: This model performed well in predicting load-bearing capacity, achieving an R² value 

of 0.87. However, it underperformed slightly in crack width prediction with an R² of 0.85. 

• Gradient Boosting: Slightly more effective for crack width prediction (R² = 0.88), this model struggled 

with load-bearing capacity (R² = 0.84). 

• SVM: The least accurate model in this study, with an R² of 0.82 for crack width and 0.80 for load-bearing 

capacity, likely due to its limitations in handling complex datasets involving nonlinear relationships. 

Table 5 provides a performance comparison between the ANN and the ML models. 

 

Table 5: Performance Comparison of ANN vs. ML Models 

 

Model Crack Width Prediction (R²) Load-bearing Capacity Prediction (R²) 

ANN 0.91 0.89 

Random Forest 0.85 0.87 

Gradient Boosting 0.88 0.84 

SVM 0.82 0.80 

 

 

4.3 Practical Implications for Bridge Maintenance 

 

The predictive capabilities of the ANN model offer valuable insights that can be seamlessly integrated into 

existing bridge maintenance systems. By forecasting crack propagation rates and load-bearing capacities with 

high accuracy, maintenance teams can better prioritize repairs and allocate resources more efficiently (Di Mucci 

et al., 2024). This approach allows for more effective decision-making, reducing the risks of both under- 

maintenance (which may lead to structural failures) and over-maintenance (which results in unnecessary 

expenses). 

 

For example, bridges experiencing heavy traffic loads and rapid crack development can be flagged for immediate 

inspection and repair. Conversely, bridges showing slower signs of deterioration can have their maintenance 

deferred without risk, optimizing resource use and minimizing downtime (Bui Tien et al., 2024). This AI-driven 

maintenance optimization could significantly prolong the operational life of bridges while reducing overall 

maintenance costs.Figure 3 compares the predicted versus actual crack propagation rates over time, demonstrating 

the model's accuracy in real-world scenarios. 
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                                 Figure 3: Predicted vs. Actual Crack Propagation Rates 

 

4.4 Error Analysis and Improvements 

 

While both the ANN and ML models displayed strong accuracy, there were instances where the predictions did 

not perfectly match the real-world data. Specifically, the ANN model showed a tendency to slightly underpredict 

load-bearing capacity in cases where environmental conditions, such as extreme humidity or temperatures, played 

a significant role in material performance (Karunasingha, 2022). These errors indicate that the inclusion of more 

detailed environmental data could improve future predictions. 

 

To further enhance the model's accuracy, several potential improvements have been identified: 

 

• Incorporation of additional environmental factors: Including more detailed environmental variables, such 

as corrosion rates or the effects of freeze-thaw cycles, could improve the accuracy of load-bearing 

capacity predictions. 

• Dynamic model updates: Introducing an online learning mechanism that continuously incorporates new 

sensor data would allow the model to adapt to real-time conditions more effectively, making it more 

responsive to changes in the structural environment. 

• Advanced AI techniques: Future models could incorporate more sophisticated deep learning 

architectures like convolutional neural networks (CNNs) or recurrent neural networks (RNNs). These 

advanced models might offer even better predictive performance, especially for long-term structural 

health forecasts where patterns evolve over time. 

 

These improvements would not only refine the predictive power of the models but also provide more actionable 

insights for the ongoing maintenance and management of concrete bridges. 

 

5 Conclusions 

 

This research successfully demonstrated how Artificial Neural Networks (ANN) and various Machine Learning 

(ML) algorithms can be applied to predict structural health in concrete bridges, focusing on crucial factors like 

crack propagation rates and load-bearing capacity. The ANN model outperformed other ML approaches, such as 

Random Forest and Gradient Boosting, with a higher predictive accuracy (R² = 0.91 for crack width and R² = 0.89 
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for load-bearing capacity), though ML models still proved useful for comparative purposes. In practical terms, 

these models showed their potential in optimizing maintenance schedules, helping to reduce costs and improve 

safety by accurately predicting when interventions are necessary. Sensitivity analysis revealed that traffic loads 

and environmental conditions, particularly temperature and humidity, were among the most significant factors 

affecting bridge health. Looking ahead, future studies could expand the model to different types of infrastructure, 

use larger and more diverse datasets, and explore advanced AI techniques like Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) to enhance prediction accuracy and overall model robustness.  
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