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ABSTRACT 
Abel’s integral equations have numerous applications in mathematical physics, chemical kinetics, 
potential theory, crystal growth, electrostatics, astrophysics, and stereology. In this paper, the Anuj 
transform for the closed form solution of the generalized Abel’s integral equation of the second kind 
(GAIESK) is discussed by the authors. Several examples of GAIESK are considered for demonstrating the 
reliability of the Anuj transform. The outcomes of these examples support the reliability and efficiency of 
the present scheme. It is also visualized from the outcomes that the Anuj transform provides the closed 
form solution of our study’s problem without the need for complicated calculation work. 

Keywords: Abel integral equation, Anuj transform, integral transform, integral equation, fundamental 
functions. 

MSC2010: 35A22, 45A05, 45D05 

 
1. INTRODUCTION 
Integral transforms have wide range of application in mathematics to solve differential equations, integral 
equations and their systems [1-2]. These transforms convert the original problem into the simpler 
problem that is easy to handle compare to the original problem. Integral transforms [3-10] are easy to 
apply and less time consuming to solve the problems of engineering and applied sciences compare to 
other methods like Adomian decomposition method [11], Homotopy perturbation method [12], Rayleigh-
Ritz method [13], Galerkin method [14], Variational iteration method [15], Quadrature method [16], and 
Sawi decomposition method [17]. Nowadays, researchers [18-20] developed various integral transforms 
and used these transforms for solving the problems of different kinds of integral equations. The duality 
relations of various integral transforms are well documented [21-28] and useful for developing theories 
of these transforms. Various situations of nature and sciences such as population problem of species, 
hanging chain problem, spring-mass problem, mortality of equipment and rate of replacement [29-33] 
properly handled by expressing them into integral equations because integral equations are easily 
solvable compare to differential equations. In this paper, we intend to find the closed form solution of 
GAIESK by the use of Anuj transform.  
2. BASIC DEFINITIONS AND PROPERTIES OF ANUJ TRANSFORMS:  

2.1 DEFINITION OF ANUJ TRANSFORM 

A function 𝜔(𝑥) ∈ 𝒞, 𝑥 ≥ 0, where 𝒞 is the collection of the piecewise continuous exponential order 
functions, has the Anuj transform and it is given by [20] 

𝒜{𝜔(𝑥)} = 𝓆2 ∫ 𝜔(𝑥)𝑒
−(

𝑥

𝓆
)
𝑑𝑥

∞

0
= 𝒻(𝓆), 𝓆 > 0                                              

The Anuj’s transformations of fundamental mathematical functions are given in Table 1 (see Table 1). 
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Table-1: The Anuj’s transformations of fundamental mathematical functions [20] 
S.N. 𝜔(𝑥) ∈ 𝒞, 𝑥 ≥ 0  𝒜{𝜔(𝑥)} = 𝒻(𝓆) 

1 1 𝓆3 
2 𝑒𝒶𝑥 

(
𝓆3

1 − 𝓆𝒶
) 

3 𝑥𝒶 , 𝒶 ∈ 𝑁 𝒶! 𝓆𝒶+3 
4 𝑥𝒶 , 𝒶 > −1, 𝒶 ∈ 𝑅 𝓆𝒶+3Γ(𝒶 + 1) 
5 sin(𝒶𝑥) 

(
𝒶 𝓆4

1 + 𝓆2𝒶 2
) 

6 cos(𝒶𝑥) 
(

𝓆3

1 + 𝓆2𝒶 2
) 

7 sinh(𝒶𝑥) 
(

𝒶𝓆4

1 − 𝓆2𝒶2
) 

8 cosh(𝒶𝑥) 
(

𝓆3

1 − 𝓆2𝒶 2
) 

 
2.2 LINEARITY PROPERTY OF ANUJ TRANSFORMS [34] 
If 𝜔𝑖(𝑥) ∈ 𝒞, 𝑥 ≥ 0 and 𝒜{𝜔𝑖(𝑥)} =  𝒻𝑖(𝓆) then  
𝒜{∑ 𝒶𝑖𝜔𝑖(𝑥)𝑛

𝑖=1 } = ∑ 𝒶𝑖
𝑛
𝑖=1 𝒜{𝜔𝑖(𝑥)} = ∑ 𝒶𝑖

𝑛
𝑖=1  𝒻𝑖(𝓆), where 𝒶𝑖  are arbitrary constants. 

2.3 TRANSLATION PROPERTY OF ANUJ TRANSFORMS [10] 

If 𝜔(𝑥) ∈ 𝒞, 𝑥 ≥ 0 and 𝒜{𝜔(𝑥)} = 𝒻(𝓆) then 𝒜{𝑒𝒶𝑥𝜔(𝑥)} = (1 − 𝓆𝒶)2 𝒻 (
𝓆

1−𝓆𝒶
), where 𝒶 is arbitrary 

constant. 
2.4 CHANGE OF SCALE PROPERTY OF ANUJ TRANSFORMS [6] 

If 𝜔(𝑥) ∈ 𝒞, 𝑥 ≥ 0 and 𝒜{𝜔(𝑥)} = 𝒻(𝓆) then 𝒜{𝜔(𝒶𝑥)} =  
1

𝒶3 𝒻(𝒶𝓆), where 𝒶 is arbitrary constant. 

2.5 FALTUNG (CONVOLUTION) PROPERTY OF ANUJ TRANSFORMS [20] 
If 𝜔𝑖(𝑥) ∈ 𝒞, 𝑥 ≥ 0, 𝑖 = 1,2 and 𝒜{𝜔𝑖(𝑥)} =  𝒻𝑖(𝓆), 𝑖 = 1,2 then  

𝒜{𝜔1(𝑥) ∗ 𝜔2(𝑥)} =
1

𝓆2
∏ 𝒜{𝜔𝑖(𝑥)}2

𝑖=1 =
1

𝓆2
∏  𝒻𝑖(𝓆)2

𝑖=1 .  

3.  INVERSE ANUJ TRANSFORM [20] 
The inverse Anuj transform of 𝒻(𝓆), assigned by 𝒜−1{𝒻(𝓆)}, is another function 𝜔(𝑥) having the 
characteristic that 𝒜{𝜔(𝑥)} = 𝒻(𝓆).  

Table-2: The inverse Anuj’s transformations of fundamental mathematical functions [20, 34] 
S.N. 𝒻(𝓆)  𝒜−1{𝒻(𝓆)} = 𝜔(𝑥) 

1 𝓆3 1 

2 
(

𝓆3

1 − 𝓆𝒶
) 

𝑒𝒶𝑥 

3 𝒶! 𝓆𝒶+3, 𝒶 ∈ 𝑁 𝑥𝒶  
4 𝓆𝒶+3Γ(𝒶 + 1), 𝒶 > −1, 𝒶 ∈ 𝑅 𝑥𝒶  
5 

(
 𝓆4

1 + 𝓆2𝒶 2
) 

sin(𝒶𝑥)

𝒶
 

6 
(

𝓆3

1 + 𝓆2𝒶 2
) 

cos(𝒶𝑥) 

7 
(

𝒶𝓆4

1 − 𝓆2𝒶2
) 

sinh(𝒶𝑥)

𝒶
 

8 
(

𝓆3

1 − 𝓆2𝒶 2
) 

cosh(𝒶𝑥) 

 
4. ANUJ TRANSFORM FOR THE CLOSED FORM SOLUTION OF GENERALIZED ABEL’S INTEGRAL 
EQUATION OF SECOND KIND:  
The generalized Abel’s integral equation of second kind is given by [12]  

𝜔(𝑥) = 𝐹(𝑥) + ∫
𝜔(𝑡)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

0
, 0 < 𝛼 < 1         (1) 

where 𝐹(𝑥), 𝜔(𝑥), and 𝛼 are known function, unknown function, and constant respectively. 
Operating Anuj transform on Eq. (1) gives 
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𝒜{𝜔(𝑥)} = 𝒜{𝐹(𝑥)} + 𝒜 {∫
𝜔(𝑡)

(𝑥 − 𝑡)𝛼
𝑑𝑡

𝑥

0

} ,0 < 𝛼 < 1 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝐹(𝑥)} + 𝒜{𝜔(𝑥) ∗ 𝑥−𝛼},0 < 𝛼 < 1      (2) 
Use of convolution property of Anuj transform in Eq. (2) suggests 

𝒜{𝜔(𝑥)} = 𝒜{𝐹(𝑥)} +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜{𝑥−𝛼},0 < 𝛼 < 1 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝐹(𝑥)} +
1

𝓆2 𝒜{𝜔(𝑥)}Γ(1 − 𝛼)𝓆3−𝛼 ,0 < 𝛼 < 1 

⇒𝒜{𝜔(𝑥)} = [
1

1−Γ(1−𝛼)𝓆1−𝛼
] 𝒜{𝐹(𝑥)}, 0 < 𝛼 < 1       (3) 

Operating inverse Anuj transform Eq. (3) gives 

𝜔(𝑥) = 𝒜−1 {[
1

1−Γ(1−𝛼)𝓆1−𝛼
] 𝒜{𝐹(𝑥)}} , 0 < 𝛼 < 1, which gives the required closed form solution of Eq. (1). 

5. NUMERICAL EXAMPLES: In this section several examples of GAIESK have considered to 
visualization the efficiency of Anuj transform. 
Example: 5.1 Consider the GAIESK 

𝜔(𝑥) = 𝑥 −
9

4
(𝑥

4
3⁄ ) + ∫

𝜔(𝑡)

(𝑥−𝑡)
2
3⁄

𝑑𝑡
𝑥

0
       

 (4) 
Operating Anuj transform on Eq. (4) gives 

𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
9

4
𝒜 {𝑥

4
3⁄ } + 𝒜 {∫

𝜔(𝑡)

(𝑥 − 𝑡)
2
3⁄

𝑑𝑡
𝑥

0

} 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
9

4
𝒜 {𝑥

4
3⁄ } + 𝒜 {𝜔(𝑥) ∗ 𝑥−(2 3⁄ )}      (5) 

Use of convolution property of Anuj transform in Eq. (5) suggests 

𝒜{𝜔(𝑥)} = 𝓆4 −
9

4
Γ (

7

3
) 𝓆

13

3 +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜 {𝑥−(2 3⁄ )} 

⇒𝒜{𝜔(𝑥)} = 𝓆4 −
9

4
Γ (

7

3
) 𝓆

13

3 +
1

𝓆2 𝒜{𝜔(𝑥)}Γ (
1

3
) 𝓆

7

3 

⇒𝒜{𝜔(𝑥)} = 𝓆4          (6) 
 Operating inverse Anuj transform Eq. (6) gives 
𝜔(𝑥) = 𝒜−1{𝓆4} = 𝑥, which provides the required closed form solution of Eq. (4). 
Example: 5.2 Consider the GAIESK 

𝜔(𝑥) = 𝑥2 −
128

45
(𝑥

9
4⁄ ) + ∫

𝜔(𝑡)

(𝑥−𝑡)
3
4⁄

𝑑𝑡
𝑥

0
        (7) 

Operating Anuj transform on Eq. (7) gives 

𝒜{𝜔(𝑥)} = 𝒜{𝑥2} −
128

45
𝒜 {𝑥

9
4⁄ } + 𝒜 {∫

𝜔(𝑡)

(𝑥 − 𝑡)
3
4⁄

𝑑𝑡
𝑥

0

} 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝑥2} −
128

45
𝒜 {𝑥

9
4⁄ } + 𝒜 {𝜔(𝑥) ∗ 𝑥−(3 4⁄ )}      (8) 

Use of convolution property of Anuj transform in Eq. (8) suggests 

𝒜{𝜔(𝑥)} = 2𝓆5 −
128

45
Γ (

13

4
) 𝓆

21

4 +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜 {𝑥−(3 4⁄ )} 

⇒𝒜{𝜔(𝑥)} = 2𝓆5 −
128

45
Γ (

13

4
) 𝓆

21

4 +
1

𝓆2 𝒜{𝜔(𝑥)}Γ (
1

4
) 𝓆

9

4 

⇒𝒜{𝜔(𝑥)} = 2𝓆5          (9) 
Operating inverse Anuj transform Eq. (9) gives 
𝜔(𝑥) = 𝒜−1{2𝓆5} = 2𝒜−1{𝓆5} = 𝑥2 , which provides the required closed form solution of Eq. (7). 

Example: 5.3 Consider the GAIESK 

𝜔(𝑥) = 𝑥 −
25

14
(𝑥

7
5⁄ ) + ∫

𝜔(𝑡)

(𝑥−𝑡)
3
5⁄

𝑑𝑡
𝑥

0
        (10) 

Operating Anuj transform on Eq. (10) gives 

𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
25

14
𝒜 {𝑥

7
5⁄ } + 𝒜 {∫

𝜔(𝑡)

(𝑥 − 𝑡)
3
5⁄

𝑑𝑡
𝑥

0

} 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
25

14
𝒜 {𝑥

7
5⁄ } + 𝒜 {𝜔(𝑥) ∗ 𝑥

−(3 5⁄ )
}      (11) 

Use of convolution property of Anuj transform in Eq. (11) suggests 

𝒜{𝜔(𝑥)} = 𝓆4 −
25

14
Γ (

12

5
) 𝓆

22

5 +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜 {𝑥

−(3 5⁄ )
} 
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⇒𝒜{𝜔(𝑥)} = 𝓆4 −
25

14
Γ (

12

5
) 𝓆

22

5 +
1

𝓆2 𝒜{𝜔(𝑥)}Γ (
2

5
) 𝓆

12

5  

⇒𝒜{𝜔(𝑥)} = 𝓆4          (12) 
 Operating inverse Anuj transform Eq. (12) gives 
𝜔(𝑥) = 𝒜−1{𝓆4} = 𝑥, which provides the required closed form solution of Eq. (10). 
Example: 5.4 Consider the GAIESK 

𝜔(𝑥) = 𝑥 −
36

55
(𝑥

11
6⁄ ) + ∫

𝜔(𝑡)

(𝑥−𝑡)
1
6⁄

𝑑𝑡
𝑥

0
        (13) 

Operating Anuj transform on Eq. (13) gives 

𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
36

55
𝒜 {𝑥

11
6⁄ } + 𝒜 {∫

𝜔(𝑡)

(𝑥 − 𝑡)
1
6⁄

𝑑𝑡
𝑥

0

} 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
36

55
𝒜 {𝑥

11
6⁄ } + 𝒜 {𝜔(𝑥) ∗ 𝑥−(1 6⁄ )}      (14) 

Use of convolution property of Anuj transform in Eq. (14) suggests 

𝒜{𝜔(𝑥)} = 𝓆4 −
36

55
Γ (

17

6
) 𝓆

29

6 +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜 {𝑥−(1 6⁄ )} 

⇒𝒜{𝜔(𝑥)} = 𝓆4 −
36

55
Γ (

17

6
) 𝓆

29

6 +
1

𝓆2 𝒜{𝜔(𝑥)}Γ (
5

6
) 𝓆

17

6  

⇒𝒜{𝜔(𝑥)} = 𝓆4          (15) 
 Operating inverse Anuj transform Eq. (15) gives 
𝜔(𝑥) = 𝒜−1{𝓆4} = 𝑥, which provides the required closed form solution of Eq. (13). 
Example: 5.5 Consider the GAIESK 

𝜔(𝑥) = 𝑥 −
9

10
(𝑥

5
3⁄ ) + ∫

𝜔(𝑡)

(𝑥−𝑡)
1
3⁄

𝑑𝑡
𝑥

0
       (16) 

Operating Anuj transform on Eq. (16) gives 

𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
9

10
𝒜 {𝑥

5
3⁄ } + 𝒜 {∫

𝜔(𝑡)

(𝑥 − 𝑡)
1
3⁄

𝑑𝑡
𝑥

0

} 

⇒𝒜{𝜔(𝑥)} = 𝒜{𝑥} −
9

10
𝒜 {𝑥

5
3⁄ } + 𝒜 {𝜔(𝑥) ∗ 𝑥−(1 3⁄ )}      (17) 

Use of convolution property of Anuj transform in Eq. (17) suggests 

𝒜{𝜔(𝑥)} = 𝓆4 −
9

10
Γ (

8

3
) 𝓆

14

3 +
1

𝓆2
𝒜{𝜔(𝑥)}𝒜 {𝑥−(1 3⁄ )} 

⇒𝒜{𝜔(𝑥)} = 𝓆4 −
9

10
Γ (

8

3
) 𝓆

14

3 +
1

𝓆2 𝒜{𝜔(𝑥)}Γ (
8

3
) 𝓆

14

3  

⇒𝒜{𝜔(𝑥)} = 𝓆4          (18) 
 Operating inverse Anuj transform Eq. (18) gives 
𝜔(𝑥) = 𝒜−1{𝓆4} = 𝑥, which provides the required closed form solution of Eq. (16). 
6. CONCLUSION: In the present research, authors implemented Anuj transform to determine the closed 
form solution of the generalized Abel’s integral equation of second kind. The efficiency of Anuj transform 
was visualized by solving several examples of GAIESK. The outcomes of these examples suggested that 
the method of Anuj transform is efficient and accurate in finding the closed form solutions for GAIESK. In 
future, Anuj transform can be use to solve the system of GAIESK. 
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