Available online at www.bpasjournals.com

Evaluation of Changes in Pharyngeal Space and Hyoid Bone Position in Skeletal Class II with Mandibular Advancement- A Prospective Clinical Study

Dr. Vishwa Shah¹, Dr. Santosh Kumar Goje²

¹BDS, Post graduate student (MDS resident), Department of Orthodontics and Dentofacial Orthopaedics, KMSDCH, Vadodara, Gujarat, India.

Department of Orthodontics and Dentofacial Orthopaedics, Vadodara, Gujarat, India K.M. Shah Dental College and Hospital, pin-391760.

²BDS, MDS, Professor and Head, Department of Orthodontics and Dentofacial Orthopaedics, KMSDCH, Vadodara, Gujarat, India.

Department of Orthodontics and Dentofacial Orthopaedics, Vadodara, Gujarat, India K.M. Shah Dental College and Hospital, pin-391760.

¹vishwafshah@gmail.com, ²santoshgoje@gmail.com

How to cite this article: Vishwa Shah, Santosh Kumar Goje (2024) Evaluation of Changes in Pharyngeal Space and Hyoid Bone Position in Skeletal Class II with Mandibular Advancement- A Prospective Clinical Study. *Library Progress International*, 44(2s), 1627-1635.

ABSTRACT:

Introduction: Pharyngeal airway and hyoid position are highly influenced by its surrounding anatomical structures. Mandibular advancement appliances are one of the common options for an adult patient not willing to undergo mandibular advancement surgery. No prospective study with 3D imaging and pharyngeal airway volumetric analysis has been carried out in skeletal class II adult patients treated with mandibular advancement. Aim: To evaluate changes in pharyngeal airway space and hyoid bone position in adults with Skeletal Class II malocclusion with mandibular advancement.

Material and methodology: A prospective clinical trial was carried out in 20 adult patients. Sample consisted of adult patients with skeletal class II requiring mandibular advancement. Patients underwent mandibular advancement with either removable or fixed functional appliances. Pre treatment and post treatment full head CBCT scans were taken and change in the hyoid position and change in pharyngeal airway volume were recorded.

Results: Paired t- test was performed for evaluation of pre-treatment and post-treatment data using GraphPad Prism 10 for statistical analysis. Significant change was observed in airway parameters and hyoid bone position post treatment. There was significant improvement in nasopharynx, palatopharynx, glossopharynx and hypopharyngeal volume with (p < 0.001). There was significant decrease in H-HRP and H-RGn whereas increase in H-VRP and H-3vai indicating upward and forward movement of the hyoid bone.

Conclusion: Patients showed significant improvement in pharyngeal airway volume with upward and forward position of the hyoid bone.

INTRODUCTION

The upper airway is a complex 3-dimensional (3D) structure, key apparatus made up of hard

and soft tissue that is responsible for a critical human function: breathing.

Anatomically, the pharyngeal airway has been divided into three parts: the nasopharynx, oropharynx, and hypopharynx which has been shown to be affected by different craniofacial skeletal patterns¹. Accurate pharyngeal airway can be evaluated using 3D measurement of the minimum cross sectional area (MCA) and airway volume². The minimal cross sectional area is the anatomical site that is perpendicular to the direction of airflow as visualised in the axial plane, and the degree of its constriction defines the resistance to airflow.

Skeletal class II Malocclusions are corrected using Functional appliances either fixed or removable by adapting the mandible and the dentition³. There are significant amount of studies about the effects of these appliances; however, the method by which they cause skeletal change and the amount of skeletal change that can be related to their use remains highly debated.⁴ Craniofacial morphology is one of the factors that can influence the upper airway. The effects of functional appliances on the airway have been previously studied. Studies have shown that maladjustment of the maxillofacial anatomy can lead to stenosis of the bony upper airway, resulting in obstruction symptoms.^{5,6}. Suffering from airway stenosis is common in patients with short body length, retrusion, or clockwise rotation of the mandible. Subjects with retrognathic mandibles frequently experience narrowing of the pharyngeal airway passage (PAP) and soft palate adaptations.⁸ In people with sleep disordered breathing (SDB), the mandible is frequently retrognathic in relation to the cranial base. As a result, the space between the cervical column and the mandibular corpus shrinks, which contributes to a posteriorly postured tongue and soft palate, increasing the chances of impaired respiratory function during the day and potentially causing nocturnal problems like snoring, upper airway resistance syndrome, and obstructive sleep apnea (OSA) syndrome.¹⁰

The use of functional appliances for retrognathic mandibles is fairly widespread in orthodontics. Adults with mild to moderate OSA are also commonly treated with similar appliances. Many prior research have shown that functional appliance therapy in children and oral appliance therapy in adults improves PAP dimensions. However, the majority of research employ two-dimensional analysis with cephalometric radiographs. ^{11,12,13} This has substantial limits since the airway is a complex three-dimensional structure in which the airway volume and minimum cross-sectional area (MCA) cannot be correctly evaluated with two-dimensional imaging ¹⁴. The use of cone-beam computed tomography (CBCT) systems for the maxillofacial region has greatly improved the ability to analyse upper airway space in a broader range of patients, including those who have had maxillofacial surgery, implantation, or orthodontic treatments. There are no standard procedures for assessing the location of the hyoid bone in 3D imaging therefore we used cephalometric points to analyse the hyoid position as proposed by Costa et al. ¹⁵

There is a retrospective study¹⁶ describing mandibular advancement using removable and fixed appliances causing increase in upper and lower pharyngeal airway dimensions in growing children. A retrospective analysis by T. Rückschlo et al¹⁷ shows that there are significant gains in almost all airway measurements six months postoperatively after mandibular advancement surgery in adult patients. But, there are no studies describing changes in pharyngeal airway space and hyoid bone position in adult patients with mandibular retrusion using functional appliances for dentoalveolar changes in prospective manner.

Hence the aim of the present study is to evaluate changes in pharyngeal airway space and hyoid bone position in adults with Skeletal Class II malocclusion treated with mandibular advancement.

MATERIAL AND METHODS

After Ethical approval from Sumandeep Vidyapeeth Institutional Ethical Committee (SVIEC), the study was conducted in the Department of Orthodontics and Dentofacial Orthopaedics, K. M. Shah Dental College & Hospital. This prospective study was conducted on 20 patients, with skeletal class II adults requiring mandibular advancement. The hyoid bone moves downward and forward with growth; therefore, the ages were selected to exclude the influence of development. The inclusion criteria for selection of patients was as follows- patients with age 16-30 years, mandibular clockwise rotation: Sum < 398, S-Ar-Go <145, Skeletal Class II patients with mandibular retrognathism (SNB< 78 degree, ANB angle >4degree, overjet >5mm, low or normal vertical growth pattern determined by SN-MP angle). Patients with sleep-disordered breathing (SDB), obstructive sleep apnea hypopnea syndrome (OSASH), degenerative disease of the temporomandibular joint and oral parafunctional activity, craniofacial anomalies, syndromes, severe asymmetries, or clefts and other developmental disorders, pregnant females, participants with Mallampati score 3 and 4, participants with bone loss or weak periodontium, history of drug intake that interferes in tooth movement, systemic disease, previous orthodontic treatment, poor oral hygiene were excluded.

Detailed case history and clinical examination were performed for all the included participants. Patients of both groups were subjected to pre-treatment full head CBCT scans in standard head position and cephalometric analysis was performed. Participants were subjected to mandibular advancement with either fixed or removable appliance. After complete mandibular advancement into class 1 molar relation, post-treatment CBCT scans were taken in the standard head postion. Post- treatment cephalometric analysis was performed and the following parameters were analysed given in **Table 1**.

TABLE 1							
Tooth Descriptions							
Ü1-PP; U1-	U1-PP- the angle between the palatal plane and the long axis of U1, U1-						
NA, (mm)	NA: linear distance from incisal edge of U1 to NA line						
L1-MP; L1-	L1-MP: the angle between mandibular plane and long axis of L1, L1-						
NB, mm	NB: linear distance from incisal edge to L1-NB line						
Mandibular Measurements							
Articulare angle	Angle between Sella point, articulare point and gonion point.						
C	Sum = Angle N-S-Ar (saddle angle) + Angle S-Ar-Go(articular angle) +						
Sum	angle Ar-Go-Me(gonial angle) (N: nasal point, Me: menton)						
MP-SN	Angle formed by lines MP (Mandibular plane) and SN (Sella- Nasion						
IVII -SIN	line)						
NBa-PtmGn	Angle formed by lines NBa (Nasion- basion) and line PtGn (line from						
	pterygomaxillary fissure to Gn: gnathion)						
Pog-NTVL,	Linear measurement from Pog to N true vertical line (Pog: pogonion)						
mm	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
SNB	Angular measurement between SN plane and NB line						
ANB	Angular measurement between lines AN and NB						
	Hyoid Bone Position, mm						
H-HRP	Linear measurement from hyoid point to horizontal reference plane (7						
11-11101	degree clockwise rotation of SN plane at S point)						
H-VRP	Linear measurement from hyoid point to vertical reference plane (HPR						
	vertical line passing through S point)						
H-Cv3ia	Linear measurement from hyoid point to most inferior-anterior point on						
	the corpus of the third cervical vertebra						

H-RGn	Linear distance from hyoid point to rgn(retrognathion) point.						
Airway Parameters							
Nasopharynx mm ³	From PNS plane -So line (So: the midpoint of the line connecting sellar						
	point and basion point) to PNS plane (line parallel to the lower border of						
	the CBCT images passing through the posterior nasal spine						
Palatopharynx	From PNS plane to UT(uvula top) plane (line parallel to the lower border						
mm ³	of the CBCT images passing through the uvula top)						
Glossopharynx	From UT plane to ET plane (line passing through the epiglottis						
mm^3	pavimentum parallel to the lower border of the CBCT images)						
Hypopharynx mm ³	From ET plane to Cv3ia plane (line parallel to the most inferior anterior point of cervical vertebrae 3.						

Fig.1

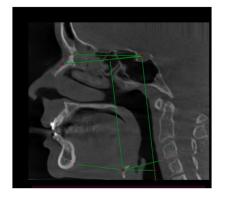


Fig.2

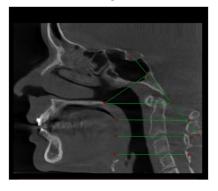


FIG.1. Hyoid Parameters.H-HRP (a) Distance between pt H and HRP. H-VRP (b) Distance between pt H and VRP. H-C3vai (c) Distance between pt H and antero-inferior point of 3rd cervical vertebrae. H-RGn (d)Distance between pt H and Retrognathion. FIG.2.Airway Parameters. Nasopharynx (a) Between line passing from PNS to So point (midpoint of the line sella pt to basion pt. Palatopharynx (b) Between PNS plane and UT plane. Glossopharynx (c) Between ut plane and ET plane. Hypopharynx (d) Between ET plane and line passing through antero-inferior point of C3 parallel to cbct image.

Statistical Analysis

GraphPad Prism 10 software was used for statistical analysis. Paired t test was used for evaluation between pre-treatment and post treatment dental changes, skeletal changes, change in position of hyoid bone and changes in pharyngeal airway.

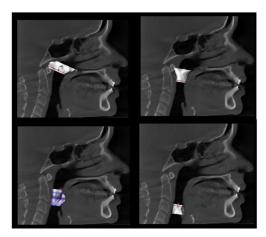


Fig.3 Volumetric measurements of the (a) nasopharynx, (b) palatopharynx, (c) glossopharynx, and (d) hypopharynx on the reconstructed 3D surface model.

RESULTS

Table 2 shows the mean difference in the pre-treatment and post treatment measurements of patients with Skeletal Class II with mandibular advancement.

U1-NA showed mild statistically significant decrease post treatment. There was a statistically significant increase in the proclination of lower incisors represented by increase in the L1-MP and L1-NB. Articular angle, NaBa- Ptm Gn, Pog-NTVL showed significant change post advancement. Bjorks sum and MP-SN did not show statistical significant difference.

There was decrease in the post treatment value of H-HRP indicating an upward movent of the hyoid bone. Increase in H-VRP, H-C3vai and decrease in H-RGn indicated significant forward movement of the hyoid bone.

Nasopharynx showed only moderately significant increase in airway volume whereas palatopharynx, glossopharynx and hypopharynx showed highly significant difference in patients with Skeletal class II malocclusion after mandibular advancement.

TABLE 2 - CLASS II MANDIBULAR ADVANCEMENT								
	PARAMETER	MEAN/SD		MEAN DIFFERENCE	P VALUE			
Dental Parameters	U1-NA	pre- post-	5.52±1.55 3.6±1.72	1.04 ± 1.65	0.019*			
	U1-PP	pre- post-	116.7±1.2 115.91±1.1 5	0.59 ±0.42	<.001**			
	L1-MP	pre- post-	92.3 ±2.7 97.12± 2.5	14.80 ±1.5	<.001**			
	L1-NB	pre- post-	4.22± 1.4 7.2± 1.3	2.86 ±0.9	<.001**			
Mandibular Parametrs	ARTICULAR ANGLE	pre-	139.74 ±3.6	2.44 ± 0.87	<.001**			
		post-	143.1 ± 3.5					

			277.00		
		pre-	377.98 ±9.5	6.06 + 67.17	0.65
	BJORKS SUM	post-	360.52	6.86 ± 67.17	0.65
			±64.05		
	MP-SN	pre-	25.8 ±2.22	1.109 ± 3.36	0.15
		post-	26.6 4.07		
	NaBa-PtmGn	pre-	95.18 ± 2.8	$-2.7.3 \pm 1.15$	<.001**
		post-	92.48 ± 2.7		
	Pog-NTVL	pre-	-3.49± 1.86	3.87± 0.956	<.001**
		post-	0.355 ± 1.7		*
			93.52 ±	0.60 ± 0.33	<.001**
	H-HRP	pre-	3.57		
		post-	92.86 ± 3.4		
		pre-	14.68		
Hyoid	H-VRP	pre-	±1.48	0.923 ± 0.57	<.001**
parameters	II-VIXI	post-	15.60 ±	0.923 ± 0.37	*
parameters		post-	1.52		
	H-C3vai	pre-	35.09± 3.5	0.718± 0.47	<.001**
,		post-	35.8 ±3.6		*
		pre-	37.59± 3.7	1.26 ± 0.61	<.001**
	H-RGn	nost	$35.87 \pm$		
		post-	4.06		
	Nasopharynx	pre-	$10.77 \pm$	0.273 ±0.347	.002**
			1.25		
		post-	11.04		
		Post	±1.31		
	Palatopharynx	pre-	14.52±	0.441 ± 0.12	<.001**
		pre	1.42		
Airway		post-	14.97 ±		*
Parametrs		+ -	1.38		
	Glossopharynx	pre-	13.33 ±1.4	0.451 ± 0.07	<.001**
		post-	13.79±		*
		1	1.49		
	Hypopharynx	pre-	12.78	0.37 ± 0.10	<.001**
			±1.43		*
		post-	13.16 ± 1.43		

P value (*) mild significance, (**) moderate

(***)high significance

DISCUSSION

The upper airway has a length of 120–140 mm¹⁸. The nasopharynx, palatopharynx, glossopharynx, and hypopharynx are all parts of this uneven lumen. Breathing issues could arise if one or more upper airway segments are narrowed.

The hyoid bone is a special structure in the head and neck bones since it is not directly related to other bones. Its position is primarily controlled by the suprahyoid and hypohyoid muscles. It has a role in the creation of upper airways, swallowing, vocalisation, mandibular movement, and the preservation of clear airways both during normal head and neck posture and other

activities¹⁹. The attachment of the genioglossus, geniohyoideus and other ligaments between the mandibular lingual body and hyoid bone making their positions independent and balanced²⁰.

The present study includes adult patients with Skeletal Class II malocclusion primarily due to retrusive mandible. Subjects with a retrognathic mandible typically have small posterior pharyngeal airway dimensions and anatomical adaptations of the soft palate^{21,22,23}. When mandibular retrognathism is corrected using functional appliances, the upper airway's dimensions are improved²⁴. Although, reproducibility of airway dimensions on lateral cephalograms was reported highly accurate²⁵. 3D imaging would be an appropriate method for the evaluation of pharyngeal airway space analysis, hence, present study uses a CBCT for airway evaluation.

Post- treatment CBCT of patients showed a significant improvement in the entire pharyngeal airway space.

Mandibular retrusion in class II malocclusion individuals was corrected using fixed or removable myofunctional appliances, considerable improvement in the depth of nasopharynx, palatopharynx, glossopharynx, and hypopharynx was seen. In individuals with a retrognathic mandible, the soft palate is pushed posteriorly and the upper airway's dimensions are reduced due to the tongue's backward position. The removable or fixed functional appliance leads to anterior mandibular displacement and alteration in the hyoid bone's position, which in turn affects the tongue's position and enhances the upper airway morphology. In the present study the upward and forward movement of the hyoid can be attributed to mandibular advancement leading to increase of space in the oral cavity due to correction of the downward position of the tongue and hence upward and forward movement in the hyoid bone. The results of the present study are consistant with those of Jena et al²⁴ and Schutz et al²⁵ and inconsistent with the results of Hanggi et al²⁶. But, the above mentioned studies are done in adolescents whereas the present study includes adults. Surgical correction of mandibular advancement leads to increased pharyngeal airway in the long term²⁷. In the present study, the results were measured post mandibular advancement but, long term effects of functional appliances on pharyngeal airway in adults should be check in further studies.

CONCLUSION

There was significant improvement in the nasopharynx, palatopharynx, glossopharynx and hypopharynx immediately after mandibular advancement in adults with functional appliances. Hyoid movement occurred in upward and forward direction immediatedly after mandibular advancement. Long term studies are needed to check the retention of these results.

REFERENCES

- 1. El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofacial Orthop. 2011;139(6):e511-21
- 2. Ghoneima A, Kula K. Accuracy and reliability of cone-beam computed tomography for airway volume analysis. Eur J Orthod. 2013;35(2):256–61
- 3. Bishara SE, Ziaja RR. Functional appliances: a review. Am J Orthod Dentofacial Orthop. 1989;95(3):250–8.
- 4. Woodside DG. Do functional appliances have an orthopedic effect? Am J Orthod Dentofacial Orthop. 1998;113(1):11–4.
- 5. Claudino LV, Mattos CT, Ruellas AC de O, Sant' Anna EF. Pharyngeal airway characterization in adolescents related to facial skeletal pattern: a preliminary study. Am J Orthod Dentofacial Orthop. 2013;143(6):799–809.
- 6. Kim Y-J, Hong J-S, Hwang Y-I, Park Y-H. Three-dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J

- Orthod Dentofacial Orthop. 2010;137(3):306.e1-11; discussion 306-7.
- 7. de Freitas MR, Alcazar NMPV, Janson G, de Freitas KMS, Henriques JFC. Upper and lower pharyngeal airways in subjects with Class I and Class II malocclusions and different growth patterns. Am J Orthod Dentofacial Orthop . 2006;130(6):742–5.
- 8. Kirjavainen M, Kirjavainen T. Upper airway dimensions in Class II malocclusion. Effects of headgear treatment: Effects of headgear treatment. Angle Orthod. 2007;77(6):1046–53.
- 9. Arens R, Marcus CL. Pathophysiology of upper airway obstruction: a developmental perspective. Sleep. 2004;27(5):997–1019.
- 10. Ozbek MM, Miyamoto K, Lowe AA, Fleetham JA. Natural head posture, upper airway morphology and obstructive sleep apnoea severity in adults. Eur J Orthod. 1998;20(2):133–43.
- 11. Ozbek MM, Memikoglu TU, Gögen H, Lowe AA, Baspinar E. Oropharyngeal airway dimensions and functional-orthopedic treatment in skeletal Class II cases. Angle Orthod. 1998;68(4):327–36.
- 12. Yassaei S, Bahrololoomi Z, Sorush M. Changes of tongue position and oropharynx following treatment with functional appliance. J Clin Pediatr Dent . 2007 Summer;31(4):287–90.
- 13. Jena AK, Singh SP, Utreja AK. Effectiveness of twin-block and Mandibular Protraction Appliance-IV in the improvement of pharyngeal airway passage dimensions in Class II malocclusion subjects with a retrognathic mandible. Angle Orthod. 2013;83(4):728–34.
- 14. Kannan A, Sathyanarayana HP, Padmanabhan S. Effect of functional appliances on the airway dimensions in patients with skeletal class II malocclusion: A systematic review. J Orthod Sci. 2017;6(2):54–64.
- 15. da Costa ED, Roque-Torres GD, Brasil DM, Bóscolo FN, de Almeida SM, Ambrosano GMB. Correlation between the position of hyoid bone and subregions of the pharyngeal airway space in lateral cephalometry and cone beam computed tomography. Angle Orthod. 2017;87(5):688–95.
- 16. Celikoglu M, Buyuk SK, Ekizer A, Unal T. Pharyngeal airway effects of Herbst and skeletal anchored Forsus FRD EZ appliances. Int J Pediatr Otorhinolaryngol. 2016;90:23–8.
- 17. Rückschlo T, Ristow O, Berger M, Engel M, Freudlsperger C, Hoffmann J, et al. Relations between mandible-only advancement surgery, the extent of the posterior airway space, and the position of the hyoid bone in Class II patients: a three-dimensional analysis. Br J Oral Maxillofac Surg. 2019;57(10):1032–8.
- 18. Tarkar JS. An evaluation of upper and lower pharyngeal airway width, tongue posture and hyoid bone position in subjects with different growth patterns. J Clin Diagn Res [Internet]. 2016;
- 19. Afzal E, Fida M. Evaluation of the change in the tongue posture and in the hyoid bone position after Twin Block appliance therapy in skeletal class II subjects. Dent Med Probl [Internet]. 2019;56(4):379–84.
- 20. Kim M-A, Kim B-R, Choi J-Y, Youn J-K, Kim Y-JR, Park Y-H. Three-dimensional changes of the hyoid bone and airway volumes related to its relationship with horizontal anatomic planes after bimaxillary surgery in skeletal Class III patients. Angle Orthod [Internet]. 2013;83(4):623–9.
- 21. Schafer ME. Upper airway obstruction and sleep disorders in children with craniofacial anomalies. Clin Plast Surg [Internet]. 1982;9(4):555–67.
- 22. Ozbek M. Natural head posture, upper airway morphology and obstructive sleep apnoea severity in adults. Eur J Orthod [Internet]. 1998;20(2):133–43.

- 23. Muto T, Yamazaki A, Takeda S. A cephalometric evaluation of the pharyngeal airway space in patients with mandibular retrognathia and prognathia, and normal subjects. Int J Oral Maxillofac Surg [Internet]. 2008;37(3):228–31.
- 24. Jena AK, Singh SP, Utreja AK. Effectiveness of twin-block and Mandibular Protraction Appliance-IV in the improvement of pharyngeal airway passage dimensions in Class II malocclusion subjects with a retrognathic mandible. Angle Orthod [Internet]. 2013;83(4):728–34.
- 25. Malkoc S, Usumez S, Nur M, Donaghy CE. Reproducibility of airway dimensions and tongue and hyoid positions on lateral cephalograms. Am J Orthod Dentofacial Orthop [Internet]. 2005;128(4):513–6.
- 26. Hanggi MP, Teuscher UM, Roos M, Peltomaki TA. Long-term changes in pharyngeal airway dimensions following activator-headgear and fixed appliance treatment. Eur J Orthod [Internet]. 2008;30(6):598–605.
- 27. Ristow O, Rückschloß T, Berger M, Grötz T, Kargus S, Krisam J, et al. Short- and long-term changes of the pharyngeal airway after surgical mandibular advancement in Class II patients—a three-dimensional retrospective study. J Craniomaxillofac Surg [Internet]. 2018;46(1):56–62.