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Abstract 
Deep learning, a subset of machine learning, aims to imbue machines with human-like perception, learning, and 
intelligence through advanced technology. It has made significant strides in fields such as speech recognition, 
computer vision and NLP. GAN (Generative Adversarial Network) is an innovative domain within deep learning that 
has made significant growth in areas like image processing, art, music, data analysis, drug discovery, and gaming 
industry applications. Biometric systems, which use distinct physiological features like iris patterns, fingerprints, and 
facial characteristics for authentication, have increasingly integrated deep learning models. As biometric technology 
becomes widespread, ensuring information security in sectors like banking, education, and airports is paramount. Deep 
learning-based generative networks have revolutionized synthetic biometric data generation, produced high-quality 
artificial data while preserved the statistical characteristics of the original dataset. These synthetic biometric datasets 
are invaluable for testing and developing biometric systems, especially under high-demand conditions. The purpose 
of this paper is to present a broad overview of GANs, its loss function, highlighting the popularly used architectures 
and application domains of the most well-known variations. The optimal biometric application area and the efficacy 
of various model designs will be discussed. 
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1. Introduction 
 

Generative models in machine learning, particularly GANs (Generative Adversarial Networks), have gained 
prominence for their versatility. They find applications in diverse fields such as picture-to-picture interpretation, 
picture super-resolution, and video edge prediction. Generative models offer solutions to AI challenges like spatial 
variation and semi-supervised learning by generating fresh samples of unknown data through unsupervised learning. 
Deep learning models, employing Deep Neural Networks (DNNs), enhance representation and deduction capabilities, 
excelling at feature extraction. However, they face challenges in applications like image recognition, medical 
diagnosis, and biometric authentication due to data scarcity [1]. Despite their ability to train features and classifiers 
simultaneously, deep learning models require substantial training examples. Generative models, including 
autoregressive models, are built on the foundations of the maximum likelihood principle and parametrized models. 
While some methods have successfully learned generative models in various fields [2] they may struggle with the 
complexity of authentic data distribution. To address these limitations, Generative Adversarial Networks (GANs) were 
introduced, presenting adversarial learning between a discriminator and a generator [1]. GANs outperform other 
generative models due to their innovative adversarial process. GANs excel in reproducing data distributions and 
generating diverse information. They have significantly impacted computer vision by synthesizing data of high quality. 
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Generative Adversarial Networks exhibit significant potential in diverse domains, including music, semi-supervised 
learning, art, handling missing data, unsupervised learning, and drug discovery. They play a role as both attackers and 
defenders against privacy risks as data concerns grow [3]. Research on GANs has expanded, focusing on improving 
model training and applying GANs to various emerging areas. [4][5][6]. 
Library Progress International| Vol.44 No.3 |July-December 2024   
GANs, have revolutionized the creation of synthetic biometric data. This synthetic data is valuable for developing and 
testing biometric systems under various scenarios, ensuring performance analysis under extreme load conditions. 
GANs prove to be resource-efficient and capable of generating diverse biometric samples compared to existing 
methods [7]. This diversity is crucial in overcoming challenges posed by distortion and corruption in data. GANs are 
instrumental in generating realistic fake biometric data, addressing privacy concerns associated with real biometric 
data. 
 
A new class of generative model called GAN was created as a way to learn in both supervised and unsupervised 
environments. The model is referred to be adversarial as a result of training pairs of neural networks in opposition to 
one another. To provide real samples that are comparable to one another, the discriminator and generator networks 
compete. Game theory-based GANs were familiarized by Ian Goodfellow in 2014 [1]. A GAN is an ANN that can 
duplicate a data distribution to produce crisper synthesised data and employs a certain standard deviation to produce 
fresh data that has never been seen before. GAN is based on the minmax game, in which the two organisations should 
enhance their comparative objective capabilities. This results in a situation in which the two organisations' combined 
consequences are zero, and each player gain or loss is perfectly well-adjusted by the gain or loss of the opposing 
organisation. Numerous issues, like creating pictures from text descriptions, getting high-resolution photos, detecting 
objects, returning images that fit a specific pattern, etc. have been effectively solved with GAN. The family of 
generative models, which includes generative adversarial networks, offers a number of benefits over other generative 
models. This involves leveraging parallel generation rather than serial generation to build samples in Fully Visible 
Belief Networks. Unlike Boltzmann machines, GANs do not need Markov chains. Furthermore, it has been discovered 
that GANs provide better samples than other models.  
 
The primary focus of the survey is to contextualize recent progress in the GAN field, examining various recently 
introduced variants and their approaches to addressing the main challenges in training GANs. The survey provides an 
overview of the original GAN model, its challenges, modified versions, and applications, with a specific focus on 
biometrics. Throughout the sections, the paper outlines the various architectures of GAN. 
 

2. GAN network structure 

The Discriminator model attempts to discriminate between samples acquired from training samples and data produced 
from the Generator model, whereas the Generator model makes a sample in the domain, such as an image, where a 
fixed-length random vector is used as an input. The networks that represent the discriminator and generator are 
frequently implemented using multi-layer networks with convolutional and/or fully linked layers. The generator and 
discriminator networks need to be differentiable, although they don't have to be directly invertible. GANs are built on 
a minimax game,[1], where the Generator generates samples on its own. In order to provide clamour for the generative 
interaction, a vector is randomly extracted from Gaussian circulation. After preparation, foci in this complicated vector 
space will correspond to foci in the problem space, framing a condensed representation of the information dispersion. 
This vector space is also known as a latent space or a vector space containing latent variables (hidden variables), 
variables that are essential to a domain but cannot be directly seen [4]. If the picture is correctly organised in response 
to the Discriminator's critique, the Discriminator will be paid; nevertheless, the Generator will be penalised and forced 
to rebalance its weight. If the data are erroneously categorised, the discriminator is penalised and forced to adjust its 
weights. As a consequence, the distribution of false photos starts to match that of actual images, and the Discriminator 
starts to categorise an image as fake or real with a probability of 0.5.  
 
Loss function of GAN 
The training objective function (minG maxD) is as follows: 
V(G, D) = Ex~Pdata(x)[logD(x)] + EzPz(z)[log(1 - D(G(z)))]  
(1) 
where pz(z) is the probability distribution of G's latent space and pdata(x) is the distribution of actual data. When modelling 
fresh data samples, D(G(z)) capacity is to distinguish the actual conveyance D(x) with the combined appropriation 
D(G(x)). pz(z) is generally a uniform or Gaussian noise.  
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As per the equation (1), the initial presentation of the GANs [1] indicated the presence of a solitary solution. When 
neither of the players can recover from their defeat, what is known as a Nash Harmony (NE) result. A few 
investigations have revealed that NE attainment is probably not going to be conceivable in practice [8]. 
With regard to visual data, imagine that one network is an authority on art, while the another one is an art forger. The 
G (generator), sometimes referred to as the forger, makes forgeries in the GAN literature with the goal of creating 
realistic visuals. The master, the discriminator, D, accepts both the real (true) and falsified photographs with the 
intention of separating them. The generator does not directly access the pictures; instead, it learns via interacting with 
the discriminator. The real-image samples from the stack as well as the fictitious samples are both available to the 
discriminator. The discriminator task is to precisely discriminate between the samples produced by the Generator and 
the real samples using a binary classifier. The Generator then makes an effort to misrepresent the output's authenticity 
in an effort to raise the chance that the Discriminator will make a mistake. Knowing whether the picture originated 
from the real or the generator provides a simple ground truth that serves as the discriminator's error signal. The two 
players are becoming better, and the production quality is improving as well. The discriminator enables the generator 
to be taught with the same error signal, resulting in higher-quality forgeries. 
 
GAN Challenges.  
Although Generative Adversarial Networks (GANs) are powerful instruments for creating artificial data, they also 
present certain difficulties, including nonconvergence because of unstable behavior between the discriminator and 
generator, delayed learning, and mode collapse. [9] Some of the key challenges are: 
 
Mode Collapse. To produce synthesised data from a latent space, high-quality data and generalization are required. 
GAN models can reproduce previously undiscovered data, but mode collapse occurs when multiple inputs in the latent 
space produce the same output, leading to a lack of diversity in generated samples [10]. Mode collapse has been the 
focus of several efforts, but remains an open problem. Partial mode collapse happens when a vast number of results 
are the same, but complete mode collapse occurs when the GAN produces the similar output with a variety of inputs. 
Despite NE identification, mode collapse does not result in GAN convergence [11]. Several recently suggested GAN 
variations, such as WGAN (Wasserstein GAN), have been demonstrated to lessen mode collapse [12][13]. 
 
Gradient Vanishing. Adjusting GAN's preparation is necessary, and D and G should be synchronised to learn 
rationally together [14][10]. The condition D(x) = 1 and another D(G(z)) = 0 show that an extremely precise D can 
discriminate between actual and synthetic data. In this case, the loss function is nearing zero, resulting in nearly 
negligible gradients and little input to the G. An erroneous D, on the other hand, cannot discriminate between genuine 
and simulated data, supplying the G with nonsensical information. 
 
Stopping Problem. In theory, classic neural networks must optimise a loss function that monotonically decreases as 
the cost function increases. This does not occur since GANs must optimise the minimax game [15][16]. It is not 
feasible to infer the networks' state from their loss function, since neither of any specific pattern is followed by the 
loss function throughout GAN training. As a result, determining when the models have hit their maximum degree of 
training optimisation is difficult. 
 
Evaluation Metrices. Due to the uniqueness of GAN, there isn't a singular criterion for assessing the quality of the 
synthesised data [17]. There is no agreement across research since each GAN application is unique, which is one of 
the causes. No universal metric is there for evaluating the quality of the artificially created data due to unique nature 
of GANs and diversity of applications. GANs may be used to mimic any data distribution, several metrics are used to 
compare the origin and synthesised distributions [18]. Various metrics have been proposed, but there is no consensus, 
and the choice of metrics depends on the specific application and provide a bigger picture of GAN performance [11]. 
 
Instability. GAN planning involves combining two learned models to improve the total loss function. The model 
design is based on a loss scenario where two organizations compete to find their unique layout in a minimax game. 
The organization structure and goal-capability can lead to significant changes in one organization, causing further 
modifications. The timings at which both networks desynchronize their states are sensitive, as major variations in 
gradients can cause a model to lose its learning. Unstable periods can affect training efficiency [19][4]. Recent GAN 
designs focus on stabilizing their training, as improving network performance often involves stabilizing training. Most 
recent developments include more stable training to address these challenges. 
 

3. Variants of GAN  
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GANs have some drawbacks, including the mode collapse problem, oscillation between G and D during training, and 
instability as a player gains strength. The likelihood that the generated samples are real approaches zero when the 
quality of the samples is low because D gains the capacity to distinguish between authentic and fraudulent samples. 
As a consequence, G stops updating and produces a minor gradient of log(1 - D(G(z))). The selection of 
hyperparameters, including batch size, momentum, weight decay, and learning rate, is essential for the convergence 
of GAN training. The need for more diversified models to solve certain problems is one of the main concerns linked 
with GANs, which have led researchers to propose several variants of the concept. Some of these research advocate 
changing a GAN's training process, while others advocate changing a G or D model's structure. This section discusses 
the various GAN versions that have been put out over the years with their need for development. (Ref. Table 1) 
 
Conditional GAN. Synthetic data need not always be random. GANs may require modifications to create desired data 
sets. CGANs [20] can produce specific image components or marked photographs based on requirements. Mirza et al. 
used class-conditioning to make both the discriminator and generator networks conditional in a 2D GAN architecture. 
A conditional GAN is a learning strategy that focuses on using helper data. To generate realistic data, the C-GAN 
expands the standard GAN by taking auxiliary information (c) and input noise (z) for the generator to produce 
conditional data (G(z|c)), such as class labels, text, or images. C-GAN discriminator distinguishes generator samples 
from real data using auxiliary info c and real data x. Conditional variables control generator output, which a standard 
GAN cannot. Hidden representation 'C' adaptability assessed using framework with info from labels or other data 
modalities. For single-labeled CGANs, a spliced label is inputted into both the Generator and Discriminator to identify 
the required photos. C-GAN has limitations - labeled datasets are crucial and objects created vary based on conditions. 
They prohibit different conditions for producing a comparable object. 
 
DCGAN. DCGAN [21] is a GAN network design mostly made up of completely connected or convolution layers 
without max pooling. Downsampling and upsampling are accomplished by using transposed convolution and 
convolutional stride. To convert a 3x64x64 input image into a scalar probability that the input is from the genuine data 
distribution, the discriminator employs batch norm layers, strided convolution layers, and LeakyReLU activations. 
Bunch standardisation layers are used in both G and D to reduce noise and improve test results [22]. Redressed Straight 
Unit (LeakyReLU) improves DCGAN results on complex datasets like human faces and LSUN. DCGAN may collapse 
on some datasets with long training. The DC-GAN sets a benchmark for other GANs, with consistent training and 
excellent performance in creating high-quality images. 
 
InfoGAN. InfoGANs [23] are an extension of GANs that learn disentangled features with no supervision, making 
them effective for recognizing objects and faces. InfoGANs change GANs' purpose by increasing common data 
between fewer elements and perceptions. GANs have unlimited noise capability. The noise could be tangled with data, 
while deconstructing a domain matches semantic features. In InfoGANs, the noise vector is split into the portions: z 
(noise source) and c (latent code focusing on structured properties). This results in G(z) generator network having both 
c and z. To prevent disregard of latent code c, information-theoretic regularisation and extended information I are 
used. Mutual Information maximizes latent space and code by using tricky calculations of  P(c|x) (posterior). To boost 
the training, define conditional distribution (Q(c|x)) as an auxiliary distribution. InfoGANs offer output manipulation 
capability. InfoGANs can utilize various factors, including font tilt, thickness, and illumination direction, to 
manipulate the MNIST dataset.  
 
PixtoPix. GANs, such as the pix2pix [24] architecture, are more effective in producing high-quality images. The 
generator uses an encoder-decoder architecture with convolutional layers that are down-sampled and up-sampled to 
resize images. The generator network maintains the image's dimensions and size using only one convolutional layer 
block before downsampling. The U-Net architecture has undergone significant advancements since then. The proposed 
discriminator design penalizes structure at the patch scale using a patch-wise approach. The final output of the patch 
GAN determines whether each patch of  N × N in an image is authentic or forge. The Patch GAN discriminator 
requires fewer training parameters, operates faster, and can be used with any image size. Pix2pix GAN projects include 
images converted from black and white to color, animated drawings to photographs of realistic people, semantic labels 
to images translated from photos of cityscapes, and architectural labels to images of facades. 
 
Cycle GAN. A DL architecture called CycleGAN [6] makes it possible to translate images to images without the 
requirement for paired training sets. To learn mapping between two image domains, it makes use of two GANs. The 
model is trained to extract features from the source domain and create new images from the target domain that have 
those same features. CycleGAN is a method that trains two GANs' generators independently, using the discriminator 
of the second GAN to create a source domain image from a target domain image, and the generator of the first GAN 
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to create a target domain image from a source domain image. A cycle-consistent loss is used to produce images 
identical to genuine images from the target domain. To make sure that the features of the source domain images are 
maintained during translation to the target domain, an identity mapping component is included. Two generator models 
and two discriminator models are trained simultaneously in CycleGAN, an expansion of the Pix2Pix architecture. The 
same model can be used to convert images in the opposite direction (from source to target imagery) using unpaired 
datasets. The two generator models that make up the model architecture are Generator-A, that produces images for the 
primary domain and Generator-B, which produces images for the second domain. 
 
SRGAN. SRGAN [25] uses GANs to improve the quality of the images of upscaled photos. This GAN architecture 
consists of a G and D, which generate high-resolution images and differentiate between the real and produced high-
resolution images. SRGAN adds a perceptual loss function to enhance the resulting photos' perceived quality. This 
function computes the perceptual loss using features from a pre-trained deep neural network to ensure high-level 
semantic characteristics in the produced images. SRGAN has applications in creative picture improvement, super-
resolution of images, and video super-resolution, improving the visual experience. Despite challenges such as 
generalization, model artifacts, and training complexity, SRGAN offers a complex method for producing realistic, 
high-quality images from lower-resolution inputs, making it a significant development in image super-resolution. 
 

BigGAN. BigGAN [26] is a Generative Adversarial Network (GAN) designed for large-scale high-fidelity natural image 
synthesis. It excels in generating diverse, realistic images conditioned on specific classes due to its hierarchical class-
conditional structure and a novel truncation trick. BigGAN surpasses previous models in Inception Scores and 
addresses challenges in large-scale training of GAN, offering potential for improved image synthesis and a deeper 
understanding of large-scale model training dynamics in artificial intelligence. The model trains larger neural networks 
with more parameters, resulting in impressively detailed images. The related model, Bi-Directional BigGAN 
(BigBiGAN), aims to expand the display by increasing the age-free picture age limit. The work scales up with an 
eightfold increase in batch size for GAN training, demonstrating that larger batches yield increased gradients per 
iteration, resulting in better outcomes in fewer stages. Despite BigGAN's outstanding performance, the variety of 
generated images is lower than real images of comparable size, especially for vast datasets like ImageNet. BigBiGAN 
enhances unconditional picture creation and representation learning capabilities showing greater accuracy scores in 
freshet inception distance and inception-score for unconditional findings. 

 
PROGAN. Tero et al. introduced the Progressive Growing GAN (PG-GAN), [4] a generative adversarial network 
with multiple scales. In this approach, both the D and the G start training with images of low-resolution and 
progressively move to higher resolutions. The PG-GAN has demonstrated superior performance over non-progressive 
GANs in terms of quality, stability, and variance. It benefits from quickly convergent first layers, the ability to train a 
small number of layers at once, and a significant reduction in training time. Despite its success, the PG-GAN struggles 
with the mode collapse problem, where imbalances in training can lead to the generator producing identical samples. 
The Progressive Growing GAN tackles this by starting training with a low resolution, such as 4 x 4, and gradually 
increasing complexity and depth by adding more layers. This iterative process results in a network capable of 
generating high-quality, large-scale images, such as 1024 × 1024 pixels. Throughout the training phase, the resolution 
progresses from 4 x 4 to 8 x 8, and then to 16 x 16, ensuring a stable learning curve for both networks. This concept 
allows for the creation of higher-quality images in less time. However, when dealing with limited GPU resources, a 
bottleneck arises as the network expands, requiring more memory, despite the initial lower resolution's attempt to 
avoid GPU memory limits. 
 
Style GAN. A major modification to the generator model is introduced by StyleGAN [5], an extension of the GAN 
architecture. It adds noise (a source of variation), applies style control at each iteration, and uses a mapping network 
to map latent space points to a middle latent space. With the use of noise and style vectors that can be adjusted at 
different levels of detail, this model produces faces that are highly lifelike and photorealistic. A continuously 
expanding training regime is used by StyleGAN, which follows Progressive GAN in its use of an alternate generator 
architecture taken from style transfer literature. Instead, then using randomly generated latent variables, it produces 
from a fixed value tensor. It also uses a regularization technique called mixing regularization, which blends two 
different styles of latent variables together during training. It has been used for advanced applications like artifact 
removal and creating superior facial pictures. 
 
EBGAN. EBGAN [27] focuses on addressing the assessment metric issue by using an energy value as the estimate 
metric. An energy-based model always provides a mapping between the scalar values (also known as "energy") and 
each unique point in the input space. An energy function, upon which the discriminator is based, displays low energy 
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on actual data and high energy on fake data. The energy function is therefore dissimilar from the discriminator 
probability function of a standard GAN. Furthermore, EBGAN incorporates an additional calamity capacity for the 
Generator. When both model capabilities are considered, the Discriminator strives to generate low energy values, 
whilst the Generator attempts to do the opposite.  
 
BEGAN. BEGAN [28] addresses the assessment problem using boundary balance architectures. BEGAN uses the 
Wasserstein distance to calculate real loss between real and simulated image reconstruction losses, while BE-GAN 
achieves equilibrium between supremacy and diversity using their 'boundary equilibrium GAN'. BEGAN's training is 
speedy and stable, balancing quality and diversity by maintaining an equilibrium threshold. It also uses an autoencoder 
to stabilize the training process and ensure quality sample creation. 
 
WGAN. An extension of the GAN that improves model stability and offers a loss function correlated with the quality 
of generated images is the Wasserstein Generative Adversarial Network (WGAN) [19]. By reducing the Earth-Mover 
distance approximation, WGAN produces less mode collapse and more stable training. The probability distribution of 
the generator (Pg) and the probability distribution derived from actual images (Pr) are the two main probability 
distributions that are used. To get realistic, high-quality output, the objective is to make sure that these probability 
distributions are close to one another. Three main techniques are proposed by mathematical statistics in machine 
learning to determine the distance amid these probability distributions: the JS divergence, the Wasserstein distance, 
and the Kullback-Leibler divergence. Initially employed in basic GAN networks, Jensen-Shannon divergence has 
gradient-related problems that might cause training to become unstable. In order to solve these recurrent problems and 
enhance the stability of WGAN training, the Wasserstein distance is employed. 
 
LSGAN. LSGAN (Least Squared Generative Adversarial Networks) [29] address difficulties that develop after 
applying WGANs. This method produces higher-quality pictures than previous GANs and has a steadier training 
process. Even if the outlier samples are accurately identified, the least-square function penalises them more, helping 
eliminate vanishing gradient issues. LSGANs were presented to address difficulties that develop after applying 
WGANs, thus enhancing picture quality. LSGAN presented a novel loss function for the Discriminator model, 
allowing it to run smoothly over unsaturated gradients. Using the sigmoid cross entropy loss function, LSGAN solves 
the vanishing gradient issue that emerges during the learning stage, during backpropagation, which was present in all 
basic structure GANs. Using a least-square loss function, LSGANs penalized distant data on the same side of the 
decision boundary, producing picture quality improvements with noticeably better stability throughout the course of 
the learning phase. 
 
BIGAN. A method BIGAN [30] is proposed for reprojecting data into the latent space utilizing these acquired feature 
representations in order to learn the semantics of data distribution and its inverse mapping. The BIGAN discriminator 
D complements the G in the conventional GAN model by differentiating simultaneously in the data and latent spaces 
(tuples (x,E(x)) versus (G(z),z)), in addition to differentiating in the data space (x versus G(z)), where the encoder 
output is represented by E(x) and z represents the generator input. In this case, GANs are used to teach the 
BidirectionalGAN encoder E how to flip the generator G. Many aspects, including learning, gradient, network 
topology, technique, and many performance measurements, can be used to compare the outcomes. 
 
DUALGAN. The DualGAN and CycleGAN architectures are remarkably similar [31]. For the purpose of training its 
models, DualGAN and CycleGAN do not require paired data. The network design and the goal function's evolution 
both demonstrate this. An error term for reconstruction is defined and used to train every pair of D and G. Similar to 
how it is done in CycleGAN for the reconstruction error goal, the difference between the factual data sample and the 
equivalent recovered sample is determined. DualGAN has been modified and used multiple times [32][33]. 
 
DGGAN. The Dynamically Grown GAN (DGGAN) [34] method is a revolutionary approach that combines gradient-
based training with architecture search approaches to determine the best growing strategy, network unit selection, and 
generator-discriminator balance. It alternates between training the new design and optimizing the generator and 
discriminator architecture. The DGGAN approach makes optimization easier by gradually expanding the architecture 
and design space through architecture searches. It enables the discriminator and generator to grow independently or 
in tandem dynamically, producing various unusual balances. DGGAN complements progressive growth with 
architecture search, making it easier to train GANs with complicated structures and high resolutions. The method 
extends parent architectures to new, child architectures, using weight inheritance during the training phase. This weight 
inheritance approach makes the optimization challenges of child designs easier and shortens the time needed for 
training each new candidate. 



 Shweta Sinha, Satya Bhushan Verma 

 
 

Library Progress International| Vol.44 No.3 |July-December 2024   8188 
 

 
Self-Attention GAN(SAGAN). The issue of images' local spatial information is addressed by the SAGAN [35] 
architecture. For example, because the network's receptive field isn't large enough, covering pictures with distinct 
components associated in diverse portions of the image might be tough. In SAGAN, age of various highlights is 
calculated by bearing in mind signals from all photographs. Also, SAGAN D may assess the image's feature 
consistency. Self-awareness layers are used in SAGAN and they may be able to capture the geometric and structural 
characteristics of multiclass datasets. Each convolution's feature maps are divided into a one-one convolution in terms 
of query, key, and value to create the layer's output, could teach the network long-term dependencies. 
 
StarGAN. StarGAN [36] is a scalable method for translating images between several domains using a single 
architecture. StarGAN allows for concurrent training of various datasets with distinct domains within a only network, 
resulting in high-quality translated images and flexibility to translate an input image to any desired target domain. The 
method has been proven in tasks like face expression synthesis and facial attribute transfer. StarGAN's multi-task 
learning setting allows it to produce images with superior visual quality. It also uses multiple datasets with different 
domain labels to handle all available labels. The goal is to create engaging image translation applications across 
various fields using a simple mask vector to access datasets with different domain labels.
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S.N
o. 

Authors
/ 
Year 

Variants  Applications  Objective Function Architecture  Type of 
Learning  

1.  Mehndi 
Mirza, 
Simon 
Osinder
o 
(2014) 
[20] 

Conditi
onal 
GAN 

Image to 
Image 
Translation, 
Convolution 
Face 
Generation, 
Video 
Generation, 
Text to 
Image 

Minimize 
adversarial loss, 
ensuring realistic 
samples, with 
additional task-
specific objectives 
for conditioning 

Multilayer 
Perceptron 
Structure 

Supervise
d 
Learning 

2.  Radfor
d et al. 
(2015) 
[21] 

DCGA
N 

Image 
Generation, 
Image to 
Image 
Translation, 
Super 
Resolution 
Imaging   

Discover the 
representation 
hierarchy in both G 
and D, from object 
pieces to scenes. 

Convolution 
Network 
with 
constraint 

Unsupervi
sed 
Learning 

3.  Xi 
Chen et 
al. 
(2016) 
[23] 

InfoGA
N 

Disentangle
d 
representatio
ns, facial 
expressions, 
style 

maximum mutual 
information to 
create a 
disentangled 
representation. 

Multilayered 
Perceptron 

Unsupervi
sed 
Learning 

4.  Phillip 
Isola et 
al. 
(2017) 
[24] 

PixtoPi
x 

Maps from 
satellite 
images, 
colorizes 
grayscale 
photos, 
versatile 

Adversarial loss for 
realism, loss for 
pixel-wise 
similarity, guiding 
paired image 
translation 

U-Net 
generators, 
PatchGAN 
discriminato
r 

Supervise
d 
Learning 

5.  Zhu et 
al. 
(2017) 
[6] 

Cycle 
GAN 

Unpaired 
image 
translation, 
style 
transfer, 

blend of adversarial 
loss, cycle-
consistency loss, 
and potentially 
identity loss. 

Convolution
al 

Unsupervi
sed 
Learning 

6.  Christia
n Ledig 
et al. 
(2017) 
[25] 

SRGAN Enhancing 
image 
resolution in 
medical 
imaging, 
surveillance, 
artistic 
restoration. 

Minimize 
adversarial, 
perceptual, content 
losses for realistic 
super-resolution 
images. 

Deep 
residual 
network 
with 
adversarial 
and 
perceptual 
loss. 

Unsupervi
sed 
learning. 
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7.  Andrew 
Brock, 
et al. 
(2019) 
[26] 

BigGA
N 

High-fidelity 
image 
synthesis, 
diverse 
class-
conditional 
generation. 

Minimize 
adversarial loss, 
generate high-
fidelity images, 
conditioned on 
specific classes, 
utilizing large-scale 
infrastructure. 

Scaled GAN 
architecture, 
hierarchical 
class 
embeddings. 

Unsupervi
sed 
learning 

8.  Tero 
Karras 
et al., 
(2018) 
[4] 

ProGA
N 

High-
resolution 
image 
synthesis, 
progressive 
growing, 

Adversarial Loss: 
Similar to vanilla 
GANs 

multi-
resolution 
layers. 

Unsupervi
sed 
Learning 

9.  Tero 
Karras 
et al. 
(2019) 
[5]  

Style 
GAN 

Photorealisti
c image 
synthesis, 
deepfake 
generation, 
artistic style 
transfer 

Minimize 
perceptual loss, 
match feature 
statistics, enforce 
disentangled latent 
space 

PG-GAN 
with style-
based 
generator, 
mapping 
network, and 
stochastic 
variation 

Unsupervi
sed 
learning 

10.  Junbo 
Zhao et 
al. 
(2017) 
[27] 
 

EBGA
N 

Anomaly 
detection, 
image 
reconstructio
n, 
unsupervise
d learning, 
feature 
learning 
through 

Minimize 
autoencoder 
reconstruction 
error, energy 
function, and 
adversarial loss. 

autoencoder 
architecture, 
reconstructiv
e loss, and 
discriminato
r 
emphasizing 
energy 
function 
minimizatio

Unsupervi
sed 
learning 

11.  David 
Berthel
ot 
(2017) 
[28] 

BEGA
N 

Facial 
expression 
synthesis, 
image-to-
image 
translation 

Minimize generator 
and discriminator 
losses with 
equilibrium. 

encoder-
decoder 
architecture, 
emphasizing 
balance in G 
and D 
training. 

Unsupervi
sed 
Learning 

12.  Martin 
Arjovsk
y 
(2017) 
[19] 

WGAN higher-
fidelity 
image 
synthesis 

Wasserstein 
distance as the 
training objective, 
leading to better 
convergence 
properties 

Critic 
instead of 
discriminato
r, weight 
clipping or 
gradient 
penalty to 
enforce 
Lipschitz 

Unsupervi
sed 
Learning 

13.  Mao et 
al. 
(2017) 
[29] 

LSGAN Realistic 
image 
synthesis, 
stable 
training for 
GANs, 
improved 
quality in 
medical 
image 
generation, 

Least Squares Loss 
replaces the 
traditional 
adversarial loss, 
aiming to address 
mode collapse and 
instability issues. 

Improved 
convergence 
and stable 
adversarial 
training with 
the Least 
Squares 
Loss-based 
discriminato
r  

Unsupervi
sed 
Learning 
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Table 1. Variants Of GAN 
Depending on the focus of their improvements, GAN variants have their own features. Labels are used by the latent 
space in cGAN as supplementary information to improve discrimination and data production. While ACGAN 
(Auxiliary Classifier Generative Adversarial Network) [37] learns representation with labels by means of an auxiliary 
classifier, InfoGAN seeks to optimize the mutual info between labels and generating data. While LSGAN employs 
the a-b coding strategy in the least squares approach to solve gradient vanish in GAN, WGAN computes loss using 
Wasserstein distance to solve mode collapse. BEGAN employs an autoencoder-based architecture for fair adversarial 
training, while DCGAN uses a deep CNN-based architecture for high-quality pictures and videos. SAGAN employs 
a self-attention mechanism for global long-range dependency and ProGAN progressively increases the depth of D and 
G in drill to produce images of high-resolution. 

14.  Donahu
e et al. 
(2016) 
[30] 

BIGAN Cross-modal 
learning, 
image-to-
image 
translation, 
joint 
generation 
and 
recognition 
tasks, 

Includes Encoder 
that maps data to 
latent 
representation 

Convolution
al 

Unsupervi
sed 
Learning 

15.  Li et al. 
(2017) 
[31]  

DUAL
GAN 

Medical 
image 
synthesis for 
diverse 
datasets, 
weather 
condition 
translation 
for 
autonomous 
vehicles, 
realistic 

Minimize domain 
gap through 
adversarial loss, 
cycle consistency, 
and identity 
preservation for 
effective cross-
domain image 
translation. 

Two 
generators 
and 
discriminato
rs for 
bidirectional 
image 
translation, 
minimizing 
domain gap 

Unsupervi
sed 
Learning 

16.  Liu et 
al. 
(2021) 
[34] 

DGGA
N 

Enhancing 
image 
realism, 
medical 
image 
synthesis, 
style 
transfer, 
anomaly 
detection, 

optimizes generator 
and discriminator 
adversarial losses, 
high-quality image 
synthesis with 
dynamically grown 
capacity and 
diverse 
representations. 

a generator 
with 
dynamically 
increasing 
capacity 

Unsupervi
sed 
adversaria
l and 
dynamic 
learning. 

17.  Zhang 
et al. 
(2019) 
[35] 

SAGA
N 

synthesizing 
realistic 
facial 
features, 
aiding in 
facial 
recognition, 
identity 
verification, 

optimize a hybrid 
objective function 
combining 
adversarial loss and 
self-attention 
regularization for 
improved image 
synthesis quality 

a generator 
with self-
attention 
modules, 
enhancing 
image 
synthesis by 
capturing 
global 

Unsupervi
sed 
adversaria
l and 
attention 
learning. 

18.  Choi et 
al. 
(2018) 
[36] 

STARG
AN 

multimodal 
image 
translation, 
where it can 
be used for 
diverse 
tasks. 

blend of the 
adversarial loss, 
domain 
classification loss, 
and reconstruction 
loss. 

a complex 
architecture 
including a 
discriminato
r, a generator 
and a 
domain 
classifier. 

Unsupervi
sed 
Learning 
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4. GAN in biometrics 

Generative Adversarial Networks (GANs) are revolutionizing biometric security by improving human trait 
authentication and recognition. GANs are broadly used in biometrics for various tasks, including image completion, 
quality enhancement, style transfer, random realistic biometric sample creation, and identity-aware image 
reconstruction. Biometric characteristics like iris patterns, fingerprints, and facial features are crucial in contemporary 
security systems. Combining GANs with biometrics promises more private, effective, and safe solutions. GANs 
address issues like heterogeneous datasets, privacy concerns, and reliable recognition models. They make it easier to 
transfer domain pieces from an existing dataset and produce realistic patterns, which are difficult for model-based 
creation. Biometric traits use GANs to generate synthetic datasets, which are important resources for biometric 
recognition model training and testing. GANs solve issues with scarce real-world datasets, privacy concerns, and the 
requirement for representative and diverse samples. They create artificial samples that maintain key components of 
biometric traits without disclosing private information about actual people, protecting privacy and enhancing 
performance. GANs can handle small amounts of data and create diversity by producing variances in biometric 
features, essential for training reliable biometric identification models across diverse populations. They can also help 
with cross-modal biometrics by creating synthetic samples in one modality using information from another modality. 
 
Related work 
Various recent GAN variants and their modified versions have been used for the field of biometric traits, few of the 
related works are given in the section. 
 
Minaee et al, for the purpose of creating an artificial handprint, fingerprint, and iris, respectively presented IrisGAN 
[38], FingerGAN [39] and PalmGAN [40] The foundation of all these models is DCGAN. FingerGAN and PalmGAN 
employ a total variation loss in addition to the DCGAN loss. It takes a while to train the models, and the output results 
are heavily noisy. G-GANISR was projected by Shamsolmoali et al. [41] to provide high-resolution data by utilizing 
the concept of super-resolution. Two generators were employed in place of a network of single generators. This 
strengthens the model and facilitates improved training. The network is skilled using a loss function that is derived 
from the least squares approach. This approach produces biometric data that are blurry and have a bad structure. 
Woung et al. [42] improved images to help identify subjects even when they are far from the camera's front. Cascaded 
SR-GAN was employed in order to improve. The SALR-VIPeR, SALR-PRID, and CAVIAR databases were utilized 
to train the GAN. Hu et al. [43] used GiGGAN to create a gait model that they suggested from every angle. This makes 
it possible to alter elements that could impact the identification process, such as clothing, lighting, etc. To train their 
GAN, they employed the OU-ISIR, MultiView Large Demographic Dataset. 
 

Model-based reconstruction from minutiae with added styletransfer (e.g. Cycle GAN) and conditional GANs can be used 
to achieve fingerprint synthesis with a pre-defined identity [44]. Using a minute template, a conditional GAN (pix2pix) 
reconstructs a fingerprint. StyleGAN2 and a convolutional minutiae-to-vector encoder together enable attributes-
aware, identity-preserving fingerprint reconstruction from minutiae. Due to their ability to learn faces from a single 
still image, refined GAN models allow for unconstrained face detection. A deep convolutional GAN is used in the 
Iris-GAN method to generate an iris from random data. For iris synthesis, conditional GAN (pix2pix) is utilized with 
the goal of enhancing data to increase iris recognition accuracy. 

 
Face Recognition Using GAN Variants. GANs have been extensively used for face recognition. One common 
application is generating synthetic face images to augment datasets for improved training and to address challenges 
related to imbalanced data. Studies employ GANs for pose-invariant face recognition. By generating images with 
different poses, GANs enhance the strength of face recognition systems to variations in head orientation. GANs have 
enabled facial attribute manipulation, allowing researchers to modify attributes like gender, age and facial expressions 
in facial images for various applications, including age progression and emotion recognition. (Ref. Table 2) 
 
Zhu et al. [24] introduced CycleGAN, a framework used for image-2-image translation tasks without matching data. 
It's significant in applications where mapping between different facial attributes is needed. In facial recognition, it aids 
in translating facial attributes across images without the need for paired datasets, enabling applications like expression 
synthesis. Antipov, G., et al. [45] specifically explores the use of GANs for face aging, a crucial component in various 
applications including forensics and missing person identification. Zhang, Z., et al. [46] discusses the use of 
Conditional Adversarial Autoencoders, a variant of GANs, for age progression and regression in facial images. The 
authors demonstrate the ability to synthesize facial images of different ages aiding age-invariant face recognition. 



 Shweta Sinha, Satya Bhushan Verma 

 
 

Library Progress International| Vol.44 No.3 |July-December 2024   8193 
 

Huang, R., [47] addresses the challenge of synthesizing frontal views of faces, which is vital for facial recognition 
systems. It focuses on both local and global features of the face crucial for various facial recognition applications. 
Zhang, et al. [48] introduced StackGAN++ that utilizes a stacked GAN architecture for producing images with high 
resolution. In face recognition, it contributes to generating detailed and realistic facial images, enhancing the quality 
of training datasets. Choi et al. [36] proposed StarGAN that enables the translation of facial attributes across different 
domains, offering a unified framework for diverse facial recognition applications. It allows the transformation of facial 
features like age, gender, and expression seamlessly. He, R., et al. [49] proposed Wasserstein CNN, while primarily 
focusing on face recognition, this paper uses GANs to learn invariant features, making it more robust to various 
lighting conditions, including near-infrared (NIR) and visible light. Karras, T., et al. [4] introduces PGGAN 
(Progressive Growing GANs) that offers high-resolution image synthesis. In facial recognition, this technique enables 
the production of detailed and realistic facial images, contributing to the improvement of recognition models. Wu et 
al. [50] proposes a PP-GAN, Privacy-Protective-GAN architecture to address privacy issues during de-identification. 
It includes validation and regulator modules, maintains structural similarity, and offers a useful framework for 
customization. 
 
GANs have revolutionized the creation of realistic face images but despite their potential, effective detection faces 
challenges such as exposing the wide variance in these images, resisting adversarial attacks, and ensuring interpretable 
decision-making for non-experts. Human performance in GAN-face identification is limited, achieving only 50% to 
60% accuracy compared to AI technologies [51]. Various sophisticated GAN models, including BigGAN, PG-GAN, 
StyleGAN, and StyleGAN, have been developed to create realistic face images with diverse characteristics. However, 
GANs lack encoders or inference functions, restricting them to generated images. GAN inversion techniques have 
emerged to bridge the gap between actual and artificial facial images, enhancing the quality of produced images. 
ProGANs can benefit from StyleGANs' results to the extent that some datasets, like human face images, are 
indistinguishable from genuine ones. StyleGAN allows for style mixing and high-quality image creation through 
combining existing images and separating image features for greater control. Allows for image feature modification 
across different levels. StyleGAN texture sticking was a major problem. Generated images had a distinct texture, 
which was noticeable in interpolated versions - like the hair on a face remained consistent despite movement. 
 
Alias-Free GAN [52] introduced an architecture to solve texture sticking, creating a smooth interpolation of generated 
images. This results in a set of realistic and continuous images. Upgraded Pseudonym Free GAN and StyleGAN 
blending enable human face movements such as changing position, orientation, and smile. 
 
Generalized Facial Recognition GAN models [53] exhibit resolution flexibility, but their efficacy hinges on training 
photos. Handling higher-dimensional images poses challenges due to exponential neural development. GANs' ability 
to synthesize facial images with novel poses has led to the development of frontalization techniques like DR-GAN 
and LB-GAN [54]. For instance, DR-GAN creates synthetic faces from input photos in any orientation, while LB-
GAN adjusts the yaw angle of an input face image to a target angle using learned poses. However, IP-GAN faces 
challenges in learning identification and pose disentanglement when trained on unconstrained datasets. 
 
Fingerprint Recognition Using GAN Variants. GANs contribute to fingerprint recognition by enhancing the quality 
of fingerprint images. This includes removing noise, enhancing ridge patterns, and improving minutiae extraction. 
They are also utilized in fingerprint database augmentation, allowing for the generation of synthetic fingerprint images 
to enrich training datasets. (Ref. Table 2) 
 
DeepMasterPrint [55], in order to build a master fingerprint, suggested a GAN model built using the evolutionary 
strategy of covariance matrix adaption and Wasserstein distance; nevertheless, this model was unable to produce clear 
images. Fahim and Jung [56] introduced a lightweight GAN Network for large-scale fingerprint generation (LGN-
LSFG). It employs spectral normalization and conditional loss doping to provide robust model training. The model 
performs poorly for iris and palmprints, but it produces good results for fingerprint generation. Huang et al. [57], 
utilized GAN to enhance fingerprint images from criminal scenes. They employed PatchGAN for identification in 
addition to traditional GAN architecture for recognition. They employed the NISTSD27 latent fingerprint dataset to 
assess their method. Minaee and Abdolrashidi [39] by using the same DC-GAN architecture, also worked on producing 
fingerprint images. To create the photos, they employed the PolyU and FVC 2006 Fingerprint Databases. Takahashi 
et al. [58] employed CycleGAN to normalize images in order to make them suitable for recognition. Joshi et al. [59] 
investigated latent image enhancement with GAN. They trained their architectures using the IIITD-MOLF and IIITD-
MSLFD Datasets. Joshi et al. [60] introduces a fingerprint deblurring model called FDeblur-GAN, using a multi-stage 
framework of stack GAN and conditional GANs. It includes a ridge extractor model and a database of blurry 



 Shweta Sinha, Satya Bhushan Verma 

 
 

Library Progress International| Vol.44 No.3 |July-December 2024   8194 
 

fingerprints. The model achieved a 95.18% accuracy rate in matching deblurred and ground truth fingerprints. 
Improvements were achieved through various parameters. Pankaj Bamoriya et al, [61] demonstrated that Generative 
networks based on deep learning have transformed the creation of synthetic biometric data, opening up new 
possibilities for training and developing biometric systems. The proposed DSB-GAN uses a convolutional 
autoencoder and GAN model to generate realistic biometrics for fingerprint, iris, and palmprint, ensuring data 
availability and diversity compared to state-of-the-art methods. Moon et al. [62] used Pix2Pix model to increase the 
accuracy of reconstruction. Nonetheless, the reconstruction's matching precision of the fingerprints were noticeably 
worse than the original photos of fingerprints. 
 
Iris Recognition. GANs are used to generate synthetic iris images, assisting in iris recognition systems' training and 
testing, and providing a solution for data scarcity in this biometric modality. They have improved iris spoofing 
detection by generating realistic synthetic images of spoof attacks, facilitating the development of more robust anti-
spoofing algorithms. (Ref. Table 2) 
 
Zou et al. [63], in their research on false iris recognition, created fake iris images using 4DCycle-GAN. Minaee and 
Abdolrashidi [38], developed realistic iris pictures with DCGAN. They generated images using the IIT Delhi Iris 
Database and the CASIA Iris Dataset. Kashihara [64] prior to identifying the iris, enhanced the pictures using Super-
resolution GAN (Biometric4-SRGAN). Kakani et al., [65] presented a technique for creating an ID-preserving 
synthetic iris database using segmentation, identification, and generative adversarial learning. It validates the accuracy 
of generated images using AUC and compares them with previous studies. Bhuiyan and Czajka, [66] presented a 
Conditional StyleGAN-based model for iris synthesis trained on over 350 post-mortem iris samples. Following 
ISO/IEC 29794-6 guidelines, the model produces multiple within-class and between-class images, providing expert 
forensic human examiners with unprecedented deformations for various post-mortem intervals, potentially improving 
dataset accuracy and model weights. 
 
Palmprint Recognition. Palmprint recognition, which uses the unique patterns seen in the skin of the palm, has 
developed into a non-intrusive and effective biometric technique. The incorporation of GANs adds a new level to 
palmprint recognition, even if standard recognition systems have seen great success. This is because it makes it 
possible to create synthetic palmprints for better training and testing. With its specific benefits in terms of stability 
and uniqueness, palmprint recognition has become a dependable biometric modality. GANs have become more well-
known due to their capacity to produce realistic and varied synthetic data with the introduction of deep-learning 
techniques. This paper investigates the use of GANs in palmprint recognition, going over the difficulties, 
achievements, and possible directions for using GANs to improve the precision and resilience of palmprint recognition 
systems. (Ref. Table 2) 
 
Minaee et al. [40] by using DCGANs attempted to produce realistic palm images. The PolyU Plamprint Database was 
utilized to train the GAN. Wang et al.'s method [67] trained a generative adversarial network using a huge number of 
palmprint images, but it was time-taken and required a large quantity of images. This paper uses a single palmprint 
image, which can be easily obtained, as the required image in the attacks, reducing the training time and improving 
the visual quality. 
 

Table 2: GAN variants used in Biometric Traits 

Biometric Trait Author Year Model 

Face Zhu et al. [24] 2017 Cycle GAN 

Face Antipov et al. [45] 2017 Conditional GAN 

Face Zhang et al. [46] 2017 Conditional Adversarial Autoencoder 

Face Huang et al. [47] 2017 Global and Local Perception GAN 

Face Zhang et al. [48] 2017 StackGAN++ 

Face Choi et al. [36] 2018 StarGAN 
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5. Discussion 

Research efforts in accurate detection of GAN-generated fake images have yielded promising results, with 
categorization into spatial domain and frequency domain methods. In the spatial domain, steganalysis based on photo 
response non-uniformity (PRNU) patterns, saturation cues, neural-network-based detectors, and spectral artifact 
patterns have been proposed. Conditional GANs, such as TV-GAN [68] and AP-GAN [69], utilize additional data for 
image creation, such as infrared images, thermal images, semantic labels, and bi-directional translation between 
thermal and visible images. Overall, spectral anomaly mitigation for most GANs remains challenging despite these 
efforts and proposed methods. 
 
Although biometric identification systems are safe and reliable, they can be attacked in a number of ways, according 
to Dargan and Kumar [70] including direct or indirect assaults directed at template matching modules and feature 
extraction techniques. Certain biometric identification methods, including face, iris, fingerprint, palmprint, ECG, and 
voice recognition, are vulnerable to certain types of attacks. Artificial intelligence (AI) produces deepfakes, which are 
easily fooled by human sight. Countermeasures have been proposed by researchers to guard against gathered or 
fraudulent data entering biometric recognition systems. 
 
Multimodal systems improve user authentication accuracy, security, and dependability by fusing several biometric 
features. Multimodal biometric systems are attracting researchers for attack prevention and security, with vein pattern 
recognition being a recent trend. Choosing the right combination of biometric modalities, determining how many traits 
to use, utilizing a fusion framework and effective recognition algorithms, taking into account biometric trait capture, 
device accuracy and reliability, designing a real-time application-specific system, creating application-specific data 
sets, and creating better data acquisition tools based on the combination of biometric traits used are some of the trade-
offs that must be taken into account when implementing multimodal biometric authentication systems. User 
acceptability is also essential for a successful implementation. 
 
For the purpose of training facial recognition systems, realistic image generator StyleGAN can be used to generate 
high-quality facial images. Its capacity to manipulate latent space and separate high-level features can improve a 
variety of facial aspects, supporting the augmentation of biometric datasets. Nevertheless, it encounters difficulties in 
resolving mode collapse problems. CycleGAN may be used to generate age-progressed photos or rejuvenated facial 
biometric data, as well as activities related to face aging or deaging. By converting facial traits across age groups, it 
helps create more comprehensive biometric datasets, albeit it might need to be carefully adjusted for certain biometric 

Face He et al. [49] 2018 WGAN 

Face Karras et al. [4] 2018 PGGAN 

Face Wu et al. [50] 2019 Privacy Protective GAN 

Fingerprint P. Bontrager, et al. [55] 2018 WGAN 

Fingerprint Fahim and Jung [56] 2020 Lightweight GAN 

Fingerprint Huang et al. [57] 2020 PatchGAN 

Fingerprint Minaee and Abdolrashidi [39] 2018 FingerGAN 

Fingerprint Takahashi et al. [58] 2019 Cycle GAN 

Fingerprint Joshi et al. [59] 2019 GAN 

Fingerprint Joshi et al. [60] 2021 CGAN+Stack GAN 

Fingerprint Bamoriya P. et al. [61] 2022 DSBGAN 

Fingerprint Moon et al. [62] 2021 Pix2pix 

Iris Zou et al. [63] 2018 4D Cycle GAN 

Iris Minnae et al. [38] 2018 IrisGAN 

Iris Kashihara [64] 2020 SRGAN 

Iris Kakani et al. [65] 2023 GAN 

Iris Bhuiyan and Czajka [66] 2023 Conditional Style Gan 

Palmprint Minaee et al. [40] 2020 DCGAN 

Palmprint Wang et al. [67] 2020 DCGAN 
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features. BigGAN, a large-scale high-fidelity picture synthesis tool, can improve the training of biometric 
identification systems. Though it may have trouble producing a broad range of biometric qualities in some cases, its 
capacity to manage larger neural networks with more parameters makes it appropriate for producing precise biometric 
traits. A multidomain model called StarGAN is able to simultaneously provide multimodal biometric data such as 
fingerprints, iris patterns, and facial features. It works well in situations where multiple biometric features must be 
produced at the same time, even though managing different modalities might be challenging. By building complexity 
from lesser resolutions, PG-GAN's progressive training method may produce high-resolution biometric pictures. By 
offering a steady learning curve and shortening training times, it can overcome difficulties in producing high-fidelity 
biometric data; nevertheless, scaling up may present difficulties due to GPU resource limitations.  
 

6. Conclusion 
The paper provides understanding of recent developments in the field of GAN. It highlights their challenges and 
advantages compared to traditional algorithms. GANs, operating on the minimax game concept, have significantly 
advanced image processing and extended their influence to field of biometrics. The report emphasizes the importance 
of understanding the strengths and weaknesses of GANs, addressing challenges like gradient disappearance and mode 
collapse. To optimize GANs for various applications, the paper suggests exploring new objective functions and 
enhancing traditional network structures. The research given in this paper finds a need of a Universal GAN that works 
with all biometric datasets and features. Facilitating the creation of multi-modal systems, it must provide a single 
framework for combining diverse biometric features. Cross-modal integration must be facilitated, increasing the 
comprehensiveness of biometric recognition systems. In addition to optimizing computational resources, protecting 
privacy, enhancing adversarial robustness, and streamlining research and development, it can manage a wide range of 
features and generalize across demographics. Furthermore, by providing protection against potential manipulations, it 
may enhance the security of synthetic biometric data. While discussing the recent GAN applications and different 
architectures' performance, the paper suggests the need of the best suitable model for most of the biometric traits as 
the future work. 
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