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ABSTRACT 
Hyperspectral imaging (HSI) is essential for capturing images across various spectral bands and providing in-
depth spectral information. However, the high dimensionality of HSI data presents challenges, such as increased 
computational complexity and the curse of dimensionality. Band selection is a critical pre-processing step that 
addresses these challenges by identifying the most informative bands. This paper introduces a novel band selection 
method utilizing the Tabu Search algorithm (TSA), aimed at optimizing the selection of spectral bands to enhance 
classification performance. The proposed method assesses bands using a fitness function that maximizes variance 
and minimizes correlation among the chosen bands. Experimental results on Indian pine dataset and Pavia 
University Scenes, along with the K-Nearest Neighbor and Support Vector machine improves the classification 
accuracy while reducing computational demands.         
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1. INTRODUCTION 

Hyperspectral images (HSIs) play an important role in many applications such as remote sensing, urban 
planning[1], agriculture[2], medical imaging[3], food quality checking[4], environmental observation[5], 
Forensic Science[6] and natural resources[7] discovery. These applications demand the classification of HSI land 
cover and land use information. Hyperspectral sensors produce images with hundreds of bands, so that images are 
of high dimensionality[8]. Such high-dimensional images are difficult to visualize, store, and process; thus, they 
require dimensionality reduction techniques that can transform high-dimensional images into low-dimensional 
ones while retaining important information. 

Band selection aims to improve computational efficiency, enhance classification performance, and 
minimize the impact of irrelevant or redundant information. In recent years, metaheuristic optimization 
techniques, such as Tabu Search[9], and Artificial Bee Colony (ABC)[10],Ant Bee Colony (ABC), Genetic 
Algorithms (GA), Particle Swarm Optimisation (PSO), Cuckoo Search (CS) optimisation algorithm, Grey Wolf 
Optimisation (GWO), Differential Evolution (DE) and so on[11]  have gained popularity for band selection due 
to their ability to explore large search spaces and avoid local optima.  

In the analysis of hyperspectral imagery (HSI), dimensionality reduction (DR) techniques play a major 
role since several hundred bands are often available. The implementation of DR techniques allows for discarding 
redundant and noisy bands and producing a reduced representation of imagery. DR methods produce a set of 
derived features that are evaluated using different classification methods. For this reason, instead of selecting the 
lower number of bands to achieve a good trade-off between classification accuracy and computational costs, DR 
can be used to extract a higher-level feature representative of the input data, obtaining a better generalization of 
the classifier. Based on the selection strategy, DR techniques can be subdivided into two categories[11]: Individual 
band evaluation and band subset evaluation. Ranking methods and clustering methods are the examples of 
individual band evaluation. Exhaustive search, Greedy search and metaheuristic search are the examples of band 
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subset evaluation. 
Metaheuristic search algorithms, specifically population-based and neighborhood-based methods, are 

used to search for feature subsets. The neighborhood-based method focuses on identifying local optimal features 
using a single point at a time. Examples of neighborhood-based algorithms include Tabu Search (TS) and 
Simulated Annealing (SA). 

Tabu Search (TS) is a metaheuristic optimization algorithm introduced by Glover in 1986[12]. Unlike 
traditional local search methods that can get trapped in local optima, TS employs a tabu list—a memory structure 
that records recent moves or solutions to prevent the algorithm from revisiting them. This mechanism allows TS 
to explore the search space more effectively and escape local optima.  

A variety of machine learning classification algorithms have been proposed for HSIs, and the 
performance is further enhanced when the classifiers are combined into ensemble systems. Support Vector 
Machine (SVM)[13] is a powerful supervised learning algorithm used for classification and regression, which 
finds the optimal hyperplane that maximally separates classes in the feature space. It aims to maximize the margin 
between the closest data points (support vectors) and the hyperplane, ensuring robust classification.  Random 
Forest (RF)[14] is an ensemble learning algorithm used for classification and regression that constructs multiple 
decision trees during training and combines their predictions to improve accuracy and reduce overfitting. For 
classification, it outputs the majority class (mode) from all the trees, and for regression, it outputs the average of 
the predictions.  K-Nearest Neighbors (KNN)[15] is a simple, non-parametric algorithm used for classification 
and regression that classifies data points based on the majority class of their k nearest neighbors in the feature 
space. It computes distance (e.g., Euclidean) between data points and assigns the label based on the most common 
label among the closest neighbors. 

Hyper3DNet Lite[16] is a lightweight deep learning architecture designed for hyperspectral image 
classification, focusing on efficiency and reduced computational cost. It combines 3D convolutions to capture 
spatial-spectral features and 2D convolutions for deeper feature extraction while maintaining a compact model 
size. The architecture is particularly suited for resource-constrained environments, achieving high classification 
accuracy with fewer parameters and less processing power.  
2. BACKGROUND AND LITERATURE REVIEW 

In order to process and analyse hyperspectral images, several advanced techniques are often required to overcome 
their associated challenges. One of the most important challenges when analysing hyperspectral images is their 
high dimensionality. This high dimensionality not only requires powerful and efficient techniques to process and 
analyse the data, but it also has a negative impact on the classification performance. Several techniques have been 
proposed to address this high-dimensional issue.  
[17]This study introduces two hybrid metaheuristic search-based feature selection algorithms, namely ACTFRO 
(Ant Colony Optimization and Tabu Search with Fuzzy Rough set) and GATFRO (Genetic Algorithm and Tabu 
Search with Fuzzy Rough set), for cancer classification. These methods combine global and local optimal feature 
selection strategies, enhancing the selection of relevant features from microarray gene expression data. Using 
datasets like SRBCT, DLBCL, Breast cancer, and Leukemia, the proposed methods demonstrated superior 
performance in terms of classification accuracy, sensitivity, and computational efficiency, outperforming existing 
algorithms in the selection of optimal feature subsets 
[9]This paper presents a novel dimensionality reduction algorithm combining tabu search optimization and the 
Compactness-Separation Coefficient (CSC). The algorithm effectively determines the optimal number of features. 
When integrated with classifiers like SVM and RVM, it demonstrates superior performance to Monte Carlo 
feature reduction method in terms of classification accuracy and computational efficiency. Using an SVM 
classifier, the method selected 95 bands with 30 training samples, achieving 96.98% accuracy. Increasing the 
training samples to 60 resulted in the selection of 97 bands and an improved accuracy of 98.29%. With an RVM 
classifier, the method selected 95 bands with 30 training samples, achieving 78.02% accuracy. Increasing the 
training samples to 60 resulted in the selection of 97 bands and an improved accuracy of 78.76%.  
[18]This method combines a Genetic Algorithm (GA) with Tabu Search (TS) to enhance feature selection for 
object-based classification of high-resolution remote sensing images. This hybrid approach, known as GATS, 
aims to mitigate the premature convergence of GA by incorporating TS, which provides superior initial solutions 
and helps escape local optima. Experiments were conducted using WorldView-2 and QuickBird images, 
comparing the GATS method to standard GA, multistart TS, and the ReliefF method. The results demonstrated 



    Bijukumar S P, Meera Nair, Nandhini U 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                 10130 
 

that GATS improved classification accuracy, outperforming the other methods in terms of precision and efficiency  
[19]This method, Hyper3DNet, is a reduced-cost convolutional neural network designed for hyperspectral image 
(HSI) classification. It utilizes a combination of 3D convolutions for spectral feature extraction and 2D separable 
convolutions for spatial encoding, resulting in fewer parameters and lower computational costs than traditional 
models. The method was evaluated on various hyperspectral datasets, including Indian Pines, Pavia University, 
Salinas, EuroSAT, and Kochia leaves. In all cases, it achieved an accuracy rate exceeding 99%. Results indicated 
that Hyper3DNet achieved state-of-the-art classification performance with reduced complexity, making it a 
suitable choice for efficient HSI processing. 
[16]This method consists of two main steps: first, a filter-based inter-band redundancy analysis (IBRA) is 
employed to evaluate the collinearity between spectral bands, effectively reducing redundancy and narrowing the 
search space. The second step involves a greedy spectral selection (GSS) that ranks the remaining bands based on 
their information entropy, followed by training a compact Convolutional Neural Network (CNN) to assess 
classification performance. The authors validate their approach using two datasets (Kochia and Indian Pines), 
demonstrating that their method yields better results than traditional feature selection techniques. 
3. PROPOSED METHOD 

The proposed methodology aims to address the joint classification and dimensionality reduction tasks on 
hyperspectral images by integrating Tabu Search optimization into the Hyper3DNet Lite classifier. The underlying 
algorithmic framework is built around the potential of exploiting the global search capabilities enabled by the 
implementation of a Tabu-based global optimizer, which is leveraged to guide the Hyper3DNet Lite classifier 
towards its optimal solution. Combining dimensionality reduction with classification can help to improve 
performance by reducing the impact of redundant information. The Tabu Search optimizer is iteratively applied 
to the subspace of the hyperspectral images to identify the most relevant spectral bands, effectively eliminating 
irrelevant features in the process.   
A. Tabu Search Algorithm 

Tabu search is a well-established method for solving optimization problems[18]. It iteratively improves 
the solution until an optimal one is found. It uses a list of forbidden moves to guide the search process effectively. 
By preventing revisiting and reusing unpromising solutions, it improves efficiency. Tabu search also selects 
successful moves as part of a group of high-performing solutions. 

Tabu Search (TS) is a metaheuristic optimization algorithm for solving optimization problems. It 
iteratively improves the solution until an optimal one is found[12]. It uses a list of forbidden moves to guide the 
search process effectively. By preventing revisiting and reusing unpromising solutions, it improves efficiency. 
Tabu search also selects successful moves as part of a group of high-performing solutions. 
Pseudocode 
Step 1. Initialization: Randomly select an initial solution comprising a subset of bands. 
Step 2. Neighbourhood Generation: Generate neighbouring solutions by swapping bands in the current       
solution with other bands not in the subset. 
Step 3. Evaluation: Compute the fitness of each neighbouring solution using the fitness function. 
Step 4. Selection: Choose the best non-tabu neighbour as the new current solution. 
Step 5. Tabu List Update: Add the recent move to the tabu list to prevent cycling back to recent solutions. 
Step 6. Termination: Repeat steps 2-5 until a maximum number of iterations is reached or convergence criteria 
are met. 
Fitness Function 

A crucial component of the Tabu Search algorithm is the fitness function, which evaluates the quality of 
a candidate solution (i.e., a set of selected bands). The fitness function provided aims to evaluate a subset of 
spectral bands in hyperspectral imaging by balancing two objectives 

1. Maximizing the average normalized variance: Bands with higher variance contain more information 
and can better distinguish between different materials or classes. 

2. Minimizing the average correlation: Reducing redundancy by selecting bands that are less correlated 
ensures that each band contributes unique information. 

The fitness function can be mathematically expressed as: 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝛼. 𝑉′ഥ − 𝛽. 𝐶̅ 
where: 
- S is the set of selected band indices. 
- α and β are weighting coefficients (e.g., α = 0.8, β = 0.2). 

- 𝑉′ഥ   is the average normalized variance of the selected bands. 

-  𝐶̅  is the average correlation between pairs of selected bands. 
 

I. Steps for computing Average Normalized Variance (𝑉′ഥ ) 
For each selected band sєS: 
1. Compute the variance 𝑉௦ over all pixels: 

𝑉௦ =
1

𝑁
෍(𝑥௜,௦ − 𝜇௦)ଶ

ே

௜ୀଵ

 

     - N is the total number of pixels (samples). 
     - 𝑥௜,௦  is the spectral value of pixel i at band s. 

     - 𝜇௦  is the mean spectral value of band s:  

       𝜇௦ =
ଵ

ே
∑ 𝑥௜,௦

ே
௜ୀଵ  

2.  Normalize the variances by the maximum variance among the selected bands:   

    𝑉′௦ =
௏ೞ

୫ୟ୶
ೞꜪೄ

௏ೞ
 

3. Compute the average normalized variance:      

    𝑉′ഥ =
ଵ

|ௌ|
∑ 𝑉′ௌ௦єௌ  

     -|𝑆| is the number of selected bands. 

II. Steps for computing Average Correlation 𝐶̅ 
For each unique pair of selected bands (s, t) where s, t є S and s < t: 
1. Compute the covariance between bands s and t: 

𝐶𝑜𝑣௦,௧ =
1

𝑁
෍(𝑥௜,௦ − 𝜇௦)(𝑥௜,௧ − 𝜇௧)

ே

௜ୀଵ

 

-𝜇௧  is the mean spectral value of band t. 
2. Compute the standard deviations of bands s and t: 

𝜎௦ = ඥ𝑉௦, 𝜎௧ = ඥ𝑉௧ 

3. Compute the correlation coefficient between bands s and t: 

𝐶௦,௧ =
𝐶𝑜𝑣௦,௧

𝜎௦𝜎௧

 

4. Compute the average correlation across all unique band pairs: 

𝐶̅ =
2

𝑛(𝑛 − 1)
෍ 𝐶௦,௧

௦,௧єௌ
௦ழ௧ 

 

- n represents the number of bands and 
௡(௡ିଵ)

ଶ
   is the number of unique pairs  

The weighting parameters α and β control the relative importance of maximizing variance and minimizing 
correlation. This fitness function can be used within optimization algorithms (e.g., Tabu Search, Genetic 
Algorithms) to evaluate and select the optimal subset of bands that maximize information content and minimize 
redundancy. 
B. Hyper 3DNet Lite Classifier 

Hyper3DNetLite is a simplified, lightweight version of Hyper3DNet, designed for reduced 
computational cost and memory usage. It retains the dual structure of 3D feature extraction and 2D spatial 
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encoding but with fewer layers and parameters. It's optimized for efficiency and suited for resource-limited 
devices, while the original Hyper3DNet offers higher performance at the expense of more resources. Hyper3DNet-
Lite is designed for hyperspectral image classification using 3D convolutional kernels. To handle the large size 
of hyperspectral data, we used a chain of 2D convolutional neural networks, sharing parameters between layers. 
This design reduces the model's size, making it more efficient and avoiding the need for large input sizes during 
testing.  As an exploratory study in hyperspectral classification, the Hyper3DNet Lite model performs relatively 
well compared to the U-Net model [9]. It is encouraged that the study of the Hyper3DNet Lite model be taken 
over by other researchers. For datasets with only a few spectral bands, the simpler design of Hyper3DNet-Lite 
works well. These simpler datasets don't need very complex models, so we can avoid using too many parameters, 
which helps prevent overfitting[20] 

TABLE 1 
HYPER3DNET-LITE ARCHITECTURE FOR THE IP DATA SET 

Layer Name Kernel Size Stride Size Output Size 

Input - - (1, 200, 5, 5) 

Conv3D + ReLU (3, 3, 3) (1, 1, 1) (16, 200, 5, 5) 

Conv3D + ReLU (3, 3, 3) (1, 1, 1) (16, 200, 5, 5) 

Reshape - - (3200, 5, 5) 

SepConv2D + ReLU (5, 5) (1, 1) (320, 5, 5) 

SepConv2D + ReLU (3, 3) (1, 1) (256, 5, 5) 

SepConv2D + ReLU (3, 3) (1, 1) (256, 5, 5) 

Global Average Pooling - - 256 

Dense - - 
Classes (16 for IP 
Dataset) 

 
The integration of the Tabu Search optimizer with the Hyper3DNet Lite classifier is expected to yield several 
benefits. First, the global search capabilities of Tabu Search can help guide the Hyper3DNet Lite classifier towards 
its optimal hyperparameter settings, potentially improving its classification accuracy. Second, the dimensionality 
reduction step facilitated by the Tabu Search optimizer can help reduce the impact of spectral redundancy and 
irrelevant features, leading to more efficient and robust classification performance. 
4. DATASETS DESCRIPTION 

The proposed method was evaluated on two widely used hyperspectral datasets, Indian Pines Contains 
145×145 pixels and 220 spectral reflectance bands in the wavelength range 0.4–2.5 µm. After removing water 
absorption bands, 200 bands are used[21]. University of Pavia Consists of 610×340 pixels with 103 spectral bands 
covering the spectral range from 0.43 to 0.86 µm. The algorithm was configured to select 5 bands from each 
dataset[22].  The selected bands were used for classification using hyper3DNetLite Classifier. 

 

 

 

Figure 1: 3D Hyper spectral image of IP dataset          Figure 2: 3D Hyper spectral image of PU dataset 
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5. RESULTS AND DISCUSSION 

In this work we analysis the performance of Tabu search algorithm for band selection and Hyper 3D Net Lite 
classifier for classification in two data sets IP and PU. We compare the performance of Hyper3D Net Lite 
classifiers with various classifiers namely SVM, RF and KNN. Tabu search algorithm identify the most relevant 
bands with the help of its fitness function. Here we use combination of variance and correlation to compute the 
fitness value. Variance is used to calculate the dependency of all pixels in the spectrum and the correlation is used 
to compute the relation among different spectrums. Variance measure helps to select bands with high information 
and correlation helps to avoid the redundancy among the spectral bands. The spectral behaviour of IP and PU are 
different thus we use two parameters α and β to control the fitness values of each group of bands.  

  

Figure 3: Pixel Representation Across All Bands of 
the Indian Pines (IP) Dataset 

Figure 4: Pixel Representation Across Selected Bands 
of the Indian Pines (IP) Dataset 

In the case of the IP dataset, the values of the fitness function parameters are set to α = 0.2 and β = 0.8, indicating 
that more weight is given to the correlation components. As shown in Figure 3, the initial bands are more 
distributed, and the proposed method selects bands 17, 31, 40, 41, and 89. 

  

Figure 5: Pixel Representation Across All Bands of the 
Pavia University (PU) Dataset 

Figure 6: Pixel Representation Across All Bands of 
the Pavia University (PU) Dataset 

 
Figure 2, illustrating the PU dataset, shows that all bands are equally distributed. Therefore, we set the fitness 
function parameters to α = 0.8 and β = 0.2, giving more weight to the correlation components. The proposed 
method selects bands 16, 21, 65, 75, and 76. 
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TABLE 2  
CLASSWISE CLASSIFICATION RESULT OF IP DATASET 

Class Class Name 
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T
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1  Alfalfa  46 14 0 14 9 14 7 10 10 

2 Corn-notill  1428 428 168 428 265 428 265 419 413 

3 Corn-mintill 830 249 90 249 144 249 151 262 258 

4 Corn 237 71 10 71 26 71 28 76 76 

5 Grass-pasture 483 145 64 145 117 145 127 148 147 

6 Grass-trees 730 219 210 219 208 219 211 222 222 

7 
Grass-pasture-
mowed  28 8 0 8 5 8 6 8 8 

8 Hay-windrowed 478 143 142 143 140 143 139 147 147 

9 Oats  20 6 0 6 2 6 1 4 4 

10  Soybean-notill 972 292 110 292 218 292 220 295 288 

11 Soybean-mintill  2455 737 638 737 576 737 561 737 728 

12 Soybean-clean 593 178 39 178 71 178 68 155 149 

13  Wheat  205 61 58 61 55 61 59 59 59 

14 Woods  1265 380 375 380 359 380 356 394 385 

15 
Buildings-Grass-
Trees-Drives  386 116 18 116 56 116 40 111 110 

16 Stone-Steel-Towers 93 28 23 28 24 28 23 28 28 

Total 10249 3075 1945 3075 2275 3075 2262 3075 3032 
 

TABLE 3 
CLASSWISE CLASSIFICATION RESULT OF PU DATASET 

Class Class Name 
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1 Asphalt 6631 1989 1802 1989 1785 1989 1753 1997 1989 

2 Meadows 18649 5595 5547 5595 5318 5595 5283 5509 5493 

3 Gravel 2099 630 173 630 348 630 364 631 624 

4 Trees 3064 919 754 919 774 919 776 909 905 

5 
Painted 
metal sheets 1345 403 399 403 399 403 397 429 429 

6 Bare Soil 5029 1509 399 1509 746 1509 724 1525 1469 

7 Bitumen 1330 399 174 399 284 399 299 432 426 

8 

Self-
Blocking 
Bricks 3682 1105 979 1105 899 1105 864 1115 1106 
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9 Shadows 947 284 284 284 283 284 284 286 286 

Total 42776 12833 10511 12833 10836 12833 10744 12833 12727 
 

 
 
 
 

Table 2 and 3 shows the class wise classification accuracy of IP and PU data sets in various classifiers. The results 
show the proposed band selection method is good for Hyper 3d Net Classifier, it predicts most of the class very 
accurately in both data sets.  

TABLE 4 
CLASSIFICATION ACCURACIES OF SELECTED METHODS OF IP DATASET   

  SVM RF KNN Hyper3DNet Lite 

Accuracy 63.25 73.98 73.56 98.6 

Precision 64.13 73.48 73.17 98.8 

Recall 63.25 73.98 73.56 99.1 

Figure 7: Class wise Classification Accuracy of IP Dataset 
 

 
Figure 8: Class wise Classification Accuracy of PU Dataset 
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F1 Score 59.72 73.37 72.81 98.94 
 

TABLE 5 
CLASSIFICATION ACCURACIES OF SELECTED METHODS OF PU DATASET   

  SVM RF KNN Hyper3DNet Lite 

Accuracy 81.44 84.52 83.72 99.17 

Precision 82.09 84.06 83.26 99.42 

Recall 81.44 84.52 83.72 99.09 

F1 Score 78.34 83.81 83.1 99.25 

Tables 4 and 5 present the overall accuracy of the IP and PU datasets across various classifiers. The accuracy 
obtained by our proposed methodology supervised classification methodology exceeds the accuracy obtained by 
the baseline methods. 
6. CONCLUSION AND FUTURE WORK 

This study proposed a novel Tabu Search-based method for hyperspectral band selection and Hyper 3D Net Lite 
Classifier for classification. This method effectively balances variance maximization and correlation 
minimization, leading to improved classification accuracy and computational efficiency. Hyper3DNet-Lite is a 
computationally efficient classifier that maintains high accuracy despite its reduced complexity. The experimental 
results demonstrated that the proposed approach was very effective for image and spectral dimensionality 
reduction and that the classifier outperformed state-of-the-art spectral approaches in most cases. Two public 
datasets with different characteristics were used for evaluation, and all of the results were very promising. In the 
future, we intend to undertake a large-scale study with additional datasets to assess the effectiveness of our 
developed methodology. Finally, we will focus on extending this approach to other optimization criteria, such as 
incorporating spatial information in the selection process. This model is capable of providing consistent 
performances in shorter times could be used in real-world applications. 
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