
Library Progress International
Vol.44 No. 3, Jul-Dec 2024: P.14181-14191

Print version ISSN 0970 1052
 Online version ISSN 2320 317X

Original Article Available online at www.bpasjournals.com

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14181

Augmentation Of Efficient Task Offloading In Mobile Edge Environments
For Mobile Applications

Ms. Archana M. S 1 and Dr. N. Anandakrishnan 2

1 Research Scholar, P.G and Research Department of Computer Science, Providence College for Women,
Coonoor, The Nilgiri’s District.
2 Assistant Professor, Department of Computer Science, Providence College for Women,
Coonoor, The Nilgiri’s District.

.How to cite this article: Archana M. S, N. Anandakrishnan (2024) Augmentation Of Efficient Task Offloading
In Mobile Edge Environments For Mobile Applications. Library Progress International, 44(3), 14181-14191.

ABSTRACT
 Mobile edge computing (MEC) emerges as a cutting-edge technique that effectively alleviates the computational
burden on mobile devices through task offloading. In the realm of Mobile Edge Computing (MEC) augmented by
5G technology, the process of delegating computing tasks from edge devices to edge servers within the edge
network can significantly diminish latency. Overcoming the challenge of designing a well-balanced task
offloading strategy in a resource-limited multi-user with MEC environment to address users' requirements remains
a noteworthy concern. This paper introduces Greedy method based Genetic Algorithm (GA) for task offloading
proportion, channel bandwidth, and Mobile Edge Servers' (MES) computing resources. The method is designed
to handle scenarios where certain computing tasks can be partially offloaded to the MES. By considering the
limitations imposed by wireless transmission resources and Edge servers' processing capacity, GA is employed to
optimize the task completion time for users. The offloading strategy, which utilizes the combination of Greedy
with GA, is evaluated and compared against both the genetic algorithm (GA) and the Greedy method through a
series of simulation experiments demonstrates its effectiveness in reducing Energy Consumption, Delay time, and
ensuring fairness in Resource cost for users' task completion times.

Keywords: Mobile Edge Computing (MEC), task offloading, Genetic Algorithm (GA), Greedy method

1. Introduction
Within the radio access network of cellular networks, Mobile Edge Computing (MEC) is a ground-breaking

idea that brings processing and data storage closer to mobile devices and users. Due to network transmission
delays, traditional cloud computing involves delivering data to centralized remote computers for processing. The
"edge" of the network, or where data is generated and consumed, is where MEC deploys computational resources
in contrast. MEC accomplishes this by greatly reducing latency and enabling real-time processing for a variety of
applications, including augmented reality, video streaming, and IoT devices. Local edge servers at cellular base
stations or access points are used by MEC as a backup plan to distant data centers. With this architecture, users
will have better overall user experience, quicker response times, and better resource utilization.

Low latency, effective data offloading, and scalability are some advantages of MEC. It supports new
technologies like 5G and the Internet of Things, improves application performance, and makes the most use of
network resources. Mobile Edge Computing enables networks to provide services that are faster, more responsive,
and more dependable by bringing processing closer to the edge of the network.

The strategic process of task offloading in Mobile Edge Computing (MEC) involves moving computational
and data processing from mobile devices to edge servers that are situated at the network's edge. Applications with
high computing resource requirements or low latency can benefit from this technique's improved performance and
efficiency.

The following steps are part of the task offloading process: (i)Task analysis and division, (ii)decision-
making, (iii)data preparation, offloading, and result retrieval. Task offloading, in general, is a vital method in
Mobile Edge Computing that enhances application performance, reduces latency, and conserves resources,
matching with the requirements of computation-intensive and latency-sensitive applications on contemporary

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14182

wireless networks.
The rest of this paper is organized as follows. Section 2 introduces the related work of task computing

offloading. Section 3 deals with the system model of MEC architecture. Section 4 deals with the proposed model
and section 5 concludes the proposed work and provides guidance for the future work.

2. Literature Review
Computing offloading is the process of moving computing duties now carried out by MDs to expanded cloud

or grid platforms, supporting terminal devices in fulfilling user task demands, and redistributing computing results
to designated devices [1]. Users of the MEC system bypass the conventional method of sending data to a distant
central cloud for processing by using the MEC server as a middleman to call computer power closer to the local
region [2].

The use of machine-learning techniques to solve the compute offloading problem has advanced significantly
with the development of machine learning [3]. A Distributed Deep Learning-based Offloading (DDLO) approach
was put forth by Liang et al. [4] and used many simultaneous deep neural networks to provide offloading
decisions. An experience replay method was used to continuously update the network parameters. The authors
only took the static network scenario into account, however the system quickly generates decisions that are close
to ideal for offloading. For the complicated compute offloading problem in collaborative computing with
heterogeneous edge computing servers, Li et al. [5] suggested a deep reinforcement learning approach.

The offloading decision was optimized by the algorithm based on the task's characteristics and the network's
real-time status in order to reduce task delay; however, the authors only took task delay into account and ignored
energy expenditure. Using the DDQN (Double Deep Q Network) technique to dynamically produce offloading
decisions, Zhou et al. [6] applied deep reinforcement learning to examine the joint optimization problem of
computing offloading and resource allocation in dynamic multiuser MEC systems.

To increase RIS-UAV network capacity, reference [7] presented a DDQN-based trajectory and phase shift
optimization algorithm. With regard to building mobile node incentive mechanisms and content-caching strategies
for D2D offloading, a novel incentive-driven and deep Q network-based method (IDQNM) was put out in
reference [8].

The source [9] suggested a reward system based on reverse auction and delay limits. Two optimization
techniques—the greedy winner selection method (GWSM) and the dynamic planning winner selection method
(DPWSM)—were suggested with the goal of maximizing mobile network operators' income. The DQN algorithm
was enhanced, computing task completion times were slashed, and terminal energy consumption was decreased
thanks to a collaborative optimization method T. Yang and J. Yang [10] developed. By modeling resources as
"fluids" and allocating them via an auction procedure, Zhu et al. [11] suggested a dynamic resource allocation
technique based on K-means. The edge server's throughput was increased, and the transmission delay was
decreased. Task dependency has been ignored by the aforementioned methods, despite the fact that it is a real
phenomenon in real-world applications. The following are some sample research findings on dependent task
offloading mechanisms. A computational-offloading method based on genetic algorithms was proposed by Dong
et al. [12].

This technique used delay and energy consumption as assessment criteria, encoded the position and sequence
of work offloading, and constantly optimized the task offloading choice using variation and crossover operations.
However, it did not take edge server resource allocation into account. [13] investigated the fine-grained offloading
problem with several users and servers. The authors suggested an enhanced Non Dominated Sorting Genetic
Algorithm (NSGA-II) with the aim of decreasing the average delay since they saw the fine-grained offloading of
Internet of Things (IoT) devices as a multi constrained goal optimization problem. A delay-acceptance-based
offloading technique for multiuser jobs was put forth by Mao et al. [14].

The plan began by using a non-dominated genetic algorithm to find the best solution for each user in a single-
user scenario. Next, a probabilistic selection mechanism and non-dominated judging scheme improved
convergence speed. Finally, an adjustment plan based on the notion of time delay acceptance in stable matching
was proposed. With dependent task scenarios, the multiuser offloading issue was resolved. To lower the overall
energy consumption of IoT devices, Liu et al. [15] introduced an energy-efficient collaborative task-offloading
algorithm based on semi-definite relaxation and stochastic mapping. This approach generated offloading decisions
for dependent tasks in static network environments.

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14183

3. System Model

Our investigation revolves around the scenario encompassing multiple users and several MEC servers.

Across the entire network, User Equipments (UEs) establish connections via base stations and wireless channels.
To furnish computational services to UEs, multiple MEC servers are strategically positioned alongside these base
stations. In contrast, cloud servers are situated at the pinnacle of the core network, distant from the UEs. Unlike
the uncertainty in delay and extended data transmission distances associated with mobile cloud computing
employed by UEs for task offloading to cloud servers, MEC offers a more expeditious and efficient means of
delivering computational services to UEs, concurrently alleviating the strain on core networks [16]. Our study
exclusively concentrates on the challenge of computation offloading between the user layer and the edge layer. In
this context, users have the option to delegate tasks for processing to either local or MEC servers.

 Figure1: MEC System Architecture
Figure 1 illustrates the comprehensive System Architecture. Within this architecture, the uppermost tier

comprises a cloud server engaged in communication with the base station via a dedicated link. Multiple base
stations are distributed throughout the entire network. Adjacent to each base station, there exists an array of
compact MEC servers, facilitating inter-MEC server communication. At the end-user smart device level, tasks
have the option to undergo direct execution on the local server or to be transmitted through the data transfer unit
to a proximate MEC server for remote computation.

The system of entire network is partitioned into several discrete and independent regions. Our focus centers
on the computation offloading conditions within a specific region, and we operate under the subsequent
assumptions. Within each region, there are P User Systems (US) and E MEC servers. Each 𝑈S𝑖 (where 𝑖∈ {1, 2
…P}) undertakes the offloading of computational tasks to 𝑀𝐸𝐶𝑗 (where 𝑗∈ {1, 2 …E}) utilizing wireless
communication links.

Every user is tasked with executing computational assignments. Let Mi, j∈ {0, 1} denote the number of
integers used to determine the offloading strategy for task j on mobile device i. Specifically, when (Mi, j= 0), task
j on mobile device i is executed locally; conversely, when (Mi, j = 1), task j on mobile device i is transmitted to the
MEC server via a wireless channel.

3.1. Problem Formulation:
The objective of this study is to make informed decisions regarding task offloading within a subset of a

workflow application, focusing on minimizing energy consumption, delay, and resource costs. Numerous current

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14184

methodologies overlook the consideration of energy consumption and resource costs for tasks or subsets in both
cloud and edge environments.

The selected set M is represented as {𝑚ଵ,ଵ,𝑚ଵ,ଶ, 𝑚ଵ,ଷ … , 𝑚஺,஻}, and it serves as the offloading profile for

managing computational tasks across all mobile device users. As per the principles of the channel propagation
model, each user receives a dedicated bandwidth portion from the overall system allocation.

The rate at which the amount of tasks transmit from User systems (𝑈S𝑖) to MEC server (𝑀𝐸𝐶𝑗) can be
defined as

𝑑௜(𝑡𝑝௜) = 𝐵𝑙𝑜𝑔 ቆ1 +
௧௣೔௛೔,ೕ

௣
ഇ
೔,ೕ

ఠబ

ቇ ----- (1)

Where, 𝐵 is the channel bandwidth; 𝑡𝑝௜ represents transmission power of 𝑈S𝑖 ; ℎ௜,௝ is the channel gain from

𝑈S𝑖to 𝑀𝐸𝐶𝑗 ; 𝑝௜,௝ represents the path between 𝑈S𝑖and 𝑀𝐸𝐶𝑗 ; 𝜃 is the path loss exponent and 𝜔଴ represents the
channel noise function

In the scenario where all mobile devices opt to transfer their computational tasks to the wireless channel
simultaneously during a computation offloading interval, there exists a constraint on the achievable data rate
denoted as R.

∑ ∑ 𝑀௜,௝𝑑௜ ≤ 𝑅஻
௝ୀଵ

஺
௜ୀଵ ----- (2)

Each user i utilizing a mobile possesses N computational tasks. These tasks have the option to be processed
either locally on the device or remotely on the MEC server using wireless communication. Additionally, we denote
𝑈S𝑖, j as the individual on mobile device i who is seeking the execution of computation j.

Each computational task, denoted as j, is characterized by the tuple (𝐶𝑡 ௜,௝, 𝑇𝑊௜,௝), where 𝐶𝑡 ௜,௝ represents the

required number of CPU cycles to accomplish task j, and 𝑇𝑊௜,௝signifies the overall volume of off loadable data.
The computation of all offloaded tasks can be performed locally with respect to the time taken for the tasks are
expressed by

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒௟௢௖௔௟
௜,௝

=
஼௧೔,ೕ

஼௏௢௟೗೚೎ೌ೗
೔ ----- (3)

Where, 𝐶𝑉𝑜𝑙௟௢௖௔௟
௜ represents the Computing volume of the mobile ‘i’ performing locally.

The energy consumed to perform the computational task locally by a mobile ‘i’ can be represented by

𝐸𝐶௟௢௖௔௟
௜,௝

= 𝑣௜ ∗ 𝐶𝑡 ௜,௝ ----- (4)

Where, 𝑣௜ is the amount of energy consumed in each CPU cycles by the mobile device ‘i’.
According to the MEC server, a mobile device user i selects to send computational task j to aMobile Edge

Server (MEC) via the wireless channel. The duration of task execution during offloading is influenced by the
transmission time, encompassing the time taken by mobile device users to offload the computation task, along
with the time for the task to be processed on the MEC servers—referred to as task execution time.

The complete duration of offloading, calculated as the combined value of transmission time, execution time,
and the energy expended during transmission which is calculated using the given formula;

𝑇_𝑡𝑖𝑚𝑒௧௥௔௡௦,௘௫௘௖
௜,௝

=
்ௐ೔,ೕ

ௗ೔ +
஼௧೔,ೕ

ொ஼೛೚ೢ
೔ ----- (5)

𝐸𝐶௧௥௔௡௦
௜,௝

= 𝑡𝑝௜ ்ௐ೔,ೕ

ௗ೔ ----- (6)

Where, 𝑀𝐸𝐶௣௢௪
௜ is the computational capacity, quantified as the count of CPU cycles per second, allocated

to user i on the designated edge server.
The local execution delay of each offloading task can be calculated by

𝐷𝑒𝑙𝑎𝑦௟௢௖
௜,௝

=
்ௐ೔,ೕ

஼௉ೆ ಶ
೔ ----- (7)

Where, 𝐶𝑃௎ா
௜ is computing ability of UE for each task.

Each mobile device user is responsible for both execution time and energy consumption. Moreover, the
management of distributing available resources on the edge server is also conducted. This issue of offloading is
characterized as an optimization problem in the Greedy algorithm:

𝑚𝑖𝑛൫∑ ∑ ൫𝐸𝐶௧௥௔௡௦
௜,௝

+ 𝐸𝐶௟௢௖௔௟
௜,௝

൯஻
௝ୀଵ

஺
௜ୀଵ ൯, ------ Optimization Problem (OP 1)

 the problem and the constrained values for reducing the energy are;
∑ ∑ 𝑀௜,௝𝑑௜ ≤ 𝑅஻

௝ୀଵ
஺
௜ୀଵ , ∀𝑖, 𝑗 ----- (Constrained 1)

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14185

∑ ∑ ൫𝐸𝐶௧௥௔௡௦
௜,௝

+ 𝐸𝐶௟௢௖௔௟
௜,௝

൯ < 𝐸௠௔௫
஻
௝ୀଵ

஺
௜ୀଵ ----- (Constrained 2)

∑ ∑ 𝐶𝑃௎ா
௜஻

௝ୀଵ
஺
௜ୀଵ ≤ 𝐶𝑃௎ா

௠௔௫ -----(Constrained 3)

∑ ∑ 𝐷𝑒𝑙𝑎𝑦௟௢௖
௜,௝

 ≤ 𝐷𝑒𝑙𝑎𝑦௠௔௫
௜,௝஻

௝ୀଵ
஺
௜ୀଵ ----- (Constrained 4)

The objective of the optimization task involves minimizing energy consumption among mobile device users
through the utilization of task offloading techniques. This is subject to the constraint 1, which represents the data
rate capacity. The constraint 2, ensures that energy consumption from both the Edge server and the mobile device
remains below the specified maximum, denoted as𝐸௠௔௫. The Constraint 3 shows that the MEC computing
resources allocated to each user should not be larger than the computing resources of MEC itself and the

Constrained 4 represents that the local delay always less than 𝐷𝑒𝑙𝑎𝑦௠௔௫
௜,௝ .

4. Proposed Method

4.1. Greedy Based Genetic Algorithm (GBGA) method:

The optimization problem stated in equation (OP1) is characterized as non-convex, posing a challenge for
conventional greedy approaches to solve. A heuristic technique known as the Genetic Algorithm (GA) [17] is
introduced. Unlike directly manipulating individual object parameters, GA assesses numerous solutions within
the exploration space. Benefitted by its robust global search capacity, GA employs genetic operations including
gene selection, crossover, and mutation [18] to efficiently and precisely address intricate problems while avoiding
getting trapped in local optima.

We employ the GBGA method to determine computational offloading choices due to its precise resolution
of mathematical challenges and quicker processing duration compared to alternative heuristic methods. Our novel
approach enhances resource usage by appropriately sequencing and allocating workflow tasks, consequently
potentially reducing overall resource expenses.

4.1.1. Population Initialization and Assessment
Within the framework of the genetic algorithm, the starting point involves populating a collection of

individual solutions, each comprised of genetic components. This method, a type of metaheuristic algorithm, is
adept at generating high-quality solutions for various challenges, including optimization and search tasks. In this
specific section, the population's initialization process is elaborated upon, alongside the subsequent determination
of fitness values, which transpires as follows:

a. Initialization
During the Initialization stage, our GBGA algorithm is employed to initiate a range of potential solutions

concerning the offloading of a subset of the workflow application to the edge environment. This subset
encapsulates a group of dependent tasks acquired during the workflow application partitioning process, serving
to uphold task interdependencies. The possible set of solutions used in the search space is called population and
its composition is expounded upon as follows:

𝑃𝑜𝑝𝑢 = {𝐶ℎଵ, 𝐶ℎଶ, … , 𝐶ℎ௠ , … 𝐶ℎே} ------ (8)
Where, N is the size of the initial population, where m=1, 2… N.
The individual chromosome in the population can be calculated as

𝐶ℎ௠ = 𝑦௠
ଵ , 𝑦௠

ଶ , … 𝑦௝
௞ , … , 𝑦௠

௡ ------ (9)

Where j= {1, 2… n}, here n is the total number of sub values of mobile devices from the equation (9).

If 𝑦௝
௞ = 0 implies that the sub values of 𝑈S𝑖is offloadedto the MEC devices and 𝑦௝

௞ = 1 implies that the sub

values of 𝑈S𝑖is offloaded to the server
b. Fitness Function:
Within the context of the GBGA approach, the computation of the fitness function plays a crucial role in

identifying the most optimal solution from the available alternatives. In the case of each chromosome, our
approach systematically assesses the fitness function, aiming to concurrently minimize both delay and energy
consumption.

c. Fitness Score Function:
Our GBGA methodology assesses potential solutions to determine the optimal one by employing the fitness

function. The genetic algorithm computes the fitness value through the utilization of the objective function. Within
the framework of the GBGA strategy, the objective function FS (𝑈S𝑖) is constructed with a focus on two

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14186

components: minimizing total time and reducing energy consumption.

𝐹𝑆൫𝑈𝑆௜,௝൯ = ቄ𝑚 × ൣ∑ 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒௟௢௖௔௟
௜,௝

+ ∑ 𝑇_𝑡𝑖𝑚𝑒௧௥௔௡௦,௘௫௘௖
௜,௝௧

௜,௝ୀଵ
௧
௜,௝ୀଵ ൧ + ቂ𝑛 × ൣ∑ 𝐸𝐶௟௢௖௔௟

௜,௝
+௧

௜,௝ୀଵ

∑ 𝐸𝐶௧௥௔௡௦
௜,௝௧

௜,௝ୀଵ ൧ቃቅ ------- (10)

From the equation (10), the values of variables m and n undergo modifications in accordance with the
attributes of the provided application. Within the genetic algorithm framework, a pair of chromosomes is chosen
from the population using the roulette wheel method to execute genetic operations like mutation or crossover. The
introduced genetic operation creates a new population, which in turn contributes to the formation of another
population set. This iterative process persists until either the optimal solution is achieved or the predefined
maximum iteration count is reached.

4.1.2. Genetic Operations

The genetic procedure is tasked with extracting the optimal solution among the potential options. Within
the GBGA methodology, an efficient computation of the fitness score occurs during the selection, crossover, and
mutation stages to enhance decision-making regarding offloading. The calculation of the fitness score to secure
the best possible solution through various processes, encompassing selection, crossover, and mutation, is outlined
below:

a. Selection: The selection of a chromosome is a crucial factor in generating subsequent populations to
achieve the optimal solution. Within the GBGA methodology, the roulette wheel selection technique is
employed to choose the parent chromosome. The calculation for chromosome selection in the genetic
algorithm during recombination is outlined as follows:

𝑆𝑒𝑙௜ =
ிௌ൫௎ௌ೔,ೕ൯

∑ ிௌ൫௎ௌ೔,ೕ൯ೄ
೛సభ

 ----- (11)

b. Crossover: Crossover is employed to generate a high-quality offspring. To create the next population
generation with improved solution quality, the crossover phase of the genetic algorithm merges the two
chosen individuals such as P1 and P2

𝐹𝑆൫𝑈𝑆௜,௝
௉ ൯ = ∑ {[𝑚 × 𝑇𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒௜,௝] + [𝑛 × 𝐸𝐶௜,௝]}௧

௜,௝ୀଵ ------ (12)

Utilizing equation (12), the GBGA technique produces an offspring, Ch1, by evaluating the fitness value
of individual genes in the parent chromosomes. Subsequently, genes with superior fitness values from
the parents are replicated into the offspring.

c. Mutation: The arrangement of genes within the chromosomes is adjusted to achieve the optimal solution,
aiming to minimize the waiting time of the subset. The process involves selecting gene 𝑔௦ within the
chromosome and sequentially examining for its immediate successor 𝑔௦௨௖ until the end of thequeue is
reached. In the event that another gene 𝑔௥ is positioned between 𝑔௦ and𝑔௦௨௖ .

If its precursor exists before 𝑔௦ this mutation process alters the positions of both 𝑔௦ and 𝑔௥ .
This mutation process is iteratively applied until the position of gene 𝑔௦ becomes equal to 𝑔௥ିଵ.

Algorithm: GBGA Algorithm for effective task offloading:
Inputs: Population size 𝑁 , No. of Iterations ‘I’, Mutation Probability 𝑚௣, Crossover

Probability 𝑐௣.
Output: Finding the optimal decision from 𝑃𝑜𝑝𝑢for offloading the tasks

1 Randomly set the populations𝑃𝑜𝑝𝑢.
2 Set the input values
3 For i=1 to N do
4 𝑃𝑜𝑝𝑢 = 𝑃𝑜𝑝𝑢[𝑖];
5 Assess the fitness value of an each individual in 𝐶ℎ௠ using the equation (10)
6 Update the 𝑃𝑜𝑝𝑢 at each iteration
7 While stopping criterion is not met do /* Until the Optimal Solution*/
8 For i=1 to N do
9 Calculate the selection of new chromosomes using the equation (11)
10 Perform Crossover of a chromosomes using the equation (12)
11 Make to find the mutation based on the successor value of the subset 𝑔௦

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14187

12 𝑛𝑒𝑤[𝑖] = 𝑃𝑜𝑝𝑢[𝑖] + +
13 Evaluate the fitness function for 𝑛𝑒𝑤[𝑖]
14 Select the best individuals to get the new generation of population through the mutation function
15 End for
16 End
17 Return optimal offloading policy

Algorithm 1 elucidates the comprehensive procedure of the GBGA approach, which effectively governs the

decision-making process for offloading communications between User devices and mobile edge servers. The
initial phase of our algorithm involves populating a set of potential solutions within predetermined dimensions.
Following this, parameters such as crossover probability, mutation probability, and the number of iterations are
established to facilitate the identification of these potential solutions.

Next, an assessment is made by evaluating execution time, energy consumption, and time delay of the subset

across diverse environments, with the aim of computing its fitness function through employment of the genetic
algorithm. Within the population of possible solutions, a pair of parents is selected using the roulette wheel
selection technique. By combining the genetic material of these selected parents, we generate offspring of superior
quality, thereby enhancing the overall search proficiency.

The development of high-caliber offspring is achieved through the replication of genes from parents

exhibiting greater fitness value, denoted as 𝐹𝑆൫𝑈𝑆௜,௝൯. Subsequently, the refinement of the generated offspring

transpires by implementing mutation-dependent task operations inherent to the genetic algorithm. Through this
mutation process, gene positioning within the chromosome is readjusted in accordance with associated decisions,
ultimately minimizing waiting times.

This sequence of steps is reiterated until the stipulated condition is met, thus ensuring the iterative
progression of the algorithm.

4.2. Simulation Results & Discussion
Within this segment, we perform thorough simulations to assess the effectiveness of the Greedy with Genetic

algorithm across various scenarios. Our simulation environment is created using Matlab R2022a.

4.2.1. Simulation Parameter:

Simulation Parameter Value

Channel bandwidth 150kHz

Number of tasks 500-5000

Data size of tasks 250~1000 Kb

Computation capacity of MEC server 3GHz

Computation capacity of US 0.5-1 GHz

Distance between US and MEC server 50~100 m

Distance of MEC servers 50~100 m

Number of MECs 2-7

Path loss 2

Transmission power of US 2W

4.2.2. Evaluation Metrics:

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14188

 Energy Consumption: Energy consumption pertains to the energy utilized while executing workflow
tasks within the Mobile Edge or Cloud environment.

 Delay: The delay can be calculated using :
Total Delay = Propagation Delay + Transmission Delay (Mobile-to-Server) + Processing

Delay + Queuing Delay + Network Delay + Execution Time + Transmission Delay (Server-to-
Mobile)

 Resource Cost: Calculate the computational resources required to execute the offloaded task on the edge
server. This can include CPU cycles, memory usage, and other processing-related costs such as Data transmission
cost, Queuing cost and waiting cost.

4.2.3. Evaluation Results:

Figure 2: Energy Consumption
The utilization of the Greedy-GA method demonstrates a comparison between energy consumption and the

number of tasks is shown in Figure 2. The task is derived from various applications and encompasses task ranges
between 100 and 500. The analysis indicates that an increase in task rate leads to increased energy consumption.
In contrast, the existing approach known as the greedy algorithm, and Genetic Algorithm maximizes energy
consumption as the task quantity rises. Similarly, the Greedy-GA approach also exhibits an uptick in consumption
with growing task numbers, yet this value remains lower than that of the Greedy, GA approach. This discrepancy
arises from the fact that the Greedy and GA approach primarily concentrates on minimizing latency. On the
contrary, our proposed methodology Greedy-GA addresses both on time and energy usage.

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14189

Figure 3: Delay

Figure is show as the delay with number of tasks. As the quantity of mobile devices rises, the average delay
for each approach (excluding no offloading) experiences an upward trend, attributed to the potential load
escalation at the edge nodes. The proposed algorithm, adept at managing uncertain edge load dynamics, manages
to achieve a 7.5% reduction in average delay compared to both the Greedy method and GA when the number of
mobile devices reaches 500.

 Figure 4: Resource Cost
Figure 4 depicting the curve of average resource costs across various workloads reveals an unfavorable

correlation between number of workload and average resource cost. In contrast, our proposed algorithm maintains
consistent stability in average resource costs, while the Greedy and GA methods exhibit notable fluctuations. As
workload increases, there is a gradual decrease in resource costs, potentially leading to a point where user
processing capacity cannot suffice for demands. Furthermore increased offloading quantities empower the MEC
server can encourage the users with lower costs for increased task offloading, ultimately benefiting the system.
At approximately 400 units of user workload, the curve for average resource cost begins to raise ground, driven
by the necessity for users to align offloading with their processing capacities.

5. Conclusion:
The GBGA approach facilitates decision-making for offloading in either cloud or Edge environments.

Initially, our focus is on the computation offloading of intricate, interdependent fine-grained tasks, which model
user-generated mobile applications. Subsequently, our attention shifts to the optimization of execution delay and
energy consumption for applications originating from User Equipment (UE). Employing a genetic algorithm, our
GBGA approach strives to identify an optimal solution from a range of possibilities. However, it's worth noting
that the scope of this article's scenario remains relatively straightforward.

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14190

Remarkably, our methodology excels at minimizing energy consumption, resource costs, and total delay
compared to existing algorithms. Through simulation results, we demonstrate the efficacy of our proposed
algorithm in achieving resource allocation and energy consumption reduction. This superiority is evident when
compared to both Greedy and Genetic Algorithm (GA) approaches in the context of UE energy consumption
reduction.

Furthermore, our ongoing research endeavors will encompass the incorporation of user mobility and
dynamic computation offloading. These extensions will be pursued using optimization techniques alongside
efficient offloading strategies.

References
[1] Fang, J.; Shi, J.; Lu, S.; Zhang, M.; Ye, Z. An Efficient Computation Offloading Strategy with Mobile

Edge Computing for IoT. Micromachines 2021, 12, 204.
[2] Shan, X.; Zhi, H.; Li, P.; Han, Z. A Survey on Computation Offloading for Mobile Edge Computing

Information. In Proceedings of the 2018 IEEE 4th International Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing,
(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), Omaha, NE, USA,
3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018.

[3] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, “A survey on the computation offloading
approaches in mobile edge computing: a machine learning-based perspective,” Computer Networks,
vol. 182, no. 9, article 107496, 2020.

[4] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed deep learning-based offloading for

mobile edge computing networks,” Mobile Networks and Applications, vol. 27, pp. 1123–1130, 2022.
[5] Y. Li, F. Qi, Z. Wang, X. Yu, and S. Shao, “Distributed edge computing offloading algorithm based on

deep reinforcement learning,” IEEE Access, vol. 8, pp. 85204–85215, 2020.
[6] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforcement learning for energy-efficient

computation offloading in mobile-edge computing,” IEEE Internet of Things Journal, vol. 9, no. 2, pp.
1517–1530, 2022.

[7] H. Zhang, M. Huang, H. Zhou, X. Wang, N. Wang, and K. Long, “Capacity maximization in RIS-UAV
networks: a DDQN-based trajectory and phase shift optimization approach,” IEEE Transactions on
Wireless Communications, vol. 99, pp. 1–1, 2022.

[8] H. Zhou, T. Wu, H. Zhang, and J. Wu, “Incentive-driven deep reinforcement learning for content
caching and D2D offloading,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp.
2445–2460, 2021.

[9] H. Zhou, X. Chen, S. He, J. Chen, and J. Wu, “DRAIM: a novel delay-constraint and reverse auction-
based incentive mechanism for WiFi offloading,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 4, pp. 711–722, 2020.

[10] T. Yang and J. Yang, “Deep reinforcement learning method of offloading decision and resource
allocation in MEC,” Computer Engineering, vol. 47, no. 8, pp. 37–44, 2021.

[11] X. Zhu, M. Wu, and G. Wang, “Dynamic resource allocation strategy based on K-means,” Computer
Engineering and Design, vol. 42, no. 4, pp. 901–907, 2021.

[12] D. O. Hao, Z. H. Haiping, L. I. Zhongjin, and H. Liu, “Computation offloading for service workflow in
mobile edge computing,” Computer Engineering and Applications, vol. 55, no. 2, pp. 36–43, 2019.

[13] C. U. Yu-ya, Z. H. De-gan, Z. H. Ting, Y. A. Peng, and Z. H. Hao-li, “A multi-user fine-grained task
offloading scheduling approach of mobile edge computing,” Acta Electronica Sinica, vol. 49, no. 11,
pp. 2202–2207, 2021.

[14] Y. Mao, T. Zhou, and P. Liu, “Multi-user task offloading based on delayed acceptance,” Computer
Science, vol. 48, no. 1, pp. 49–57, 2021.

[15] F. Liu, Z. Huang, and L. Wang, “Energy-efficient collaborative task computation offloading in cloud-
assisted edge computing for IoT sensors,” Sensors, vol. 19, no. 5, pp. 1105–1105, 2019.

[16] Qiuping, L.; Junhui, Z.; Yi, G. Computation offloading and resource management scheme in mobile
edge computing. Telecommun. Sci. 2019, 35, 36.

 Archana M. S, N. Anandakrishnan

Library Progress International| Vol.44 No.3 | Jul-Dec 2024 14191

[17] Galletly, J. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms; Oxford University Press: New York, NY, USA, 1999.

[18] Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J.
Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy
function. J. Comput. Chem. 2015, 19, 1639–1662.

