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ABSTRACT

The Lognormal distribution serves as a fundamental model across various disciplines, offering a versatile
framework for analyzing positively skewed data. Lognormal distributions are frequently employed to represent
stock prices, as these prices cannot be negative and typically adhere to a multiplicative process. Additionally, this
distribution is utilized to model the time until failure for various products. It is also applicable in the analysis of
certain environmental variables, such as the concentrations of pollutants. In Bayesian estimation, the choice of
prior distribution significantly influences parameter estimation, particularly in scenarios with limited sample sizes.
Shrinkage Bayesian estimation methods have emerged as powerful tools to address the challenges of small sample
sizes by incorporating prior information effectively.

This research conducts a comparative analysis of shrinkage Bayesian estimation methods. Through
comprehensive simulations, we investigate the impact of these priors on parameter estimation accuracy by limited
sample sizes and initial parameter values.

simulation experiments showed that Shrinkage Bayesian estimator method give the best estimators with minimum
mean square error comparing with Maximum likelihood estimator.

Other simulations can be performed for estimation methods (shrinkage, moments, modified moments). shrinkage
Bayesian estimation methods can also be performed on (Weibull, Gamma distribution) distributions and the
results compared.

Keywords
Shrinkage Bayesian estimators, Lognormal Distribution, Maximum likelihood estimation method, simulation
experiments.

1-Research Problem

In numerous practical contexts, the estimation of parameters for the lognormal distribution is crucial, particularly
when addressing skewed datasets. Conventional techniques, such as Maximum Likelihood Estimation (MLE), are
frequently employed for this purpose; however, they may exhibit inefficiencies or biases, especially when sample
sizes are limited or when prior information is accessible. Bayesian estimation offers a methodology that allows
for the integration of prior knowledge, and the application of shrinkage techniques within Bayesian estimation
enhances the robustness and precision of parameter estimates by "shrinking" them towards a central value or by
amalgamating information from various sources.

2-Importance of the Research

The precision of parameter estimation in statistical models is of paramount importance, particularly in sectors
such as finance, engineering, and environmental science, where critical decisions are heavily dependent on the
accuracy of these estimates. Shrinkage Bayesian estimation techniques provide a means to integrate prior
knowledge, thereby enhancing estimation precision, especially in scenarios involving limited sample sizes or
incomplete datasets. This study aims to compare these methods specifically in the context of the lognormal
distribution, with the goal of determining which approaches produce the most dependable outcomes across various
conditions. The lognormal distribution finds extensive application in multiple domains, including finance (for
stock price modeling), environmental science (for pollutant concentration modeling), and engineering (for
reliability assessments). The accuracy of parameter estimation significantly influences decision-making in these
areas. This research will equip practitioners with a comprehensive understanding of the most appropriate
shrinkage Bayesian methods tailored to their specific requirements, ultimately facilitating more informed and
effective decision-making.

3-Research Objectives
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Conduct a comprehensive evaluation of different shrinkage Bayesian estimation techniques aimed at estimating
the parameters of the lognormal distribution. This assessment should focus on their effectiveness in terms of bias,
mean squared error (MSE), and coverage probability.

Engage in thorough simulation studies to compare the performance of the shrinkage Bayesian methods across
various scenarios, which will include differing sample sizes, shape parameters, and scale parameters of the
lognormal distribution. These simulations will provide insights into the robustness and dependability of each
estimation method.

4-Introduction

The Lognormal distribution stands as a cornerstone in statistical modeling, finding wide applications in fields
ranging from finance to biology due to its ability to represent positively skewed data. Parameter estimation for
the Lognormal distribution plays a pivotal role in various statistical analyses, influencing decisions and insights
drawn from data. In Bayesian estimation, the incorporation of prior information is paramount, particularly when
dealing with limited sample sizes or when prior knowledge about the parameters is available.

However, selecting appropriate prior distributions for Bayesian estimation poses a significant challenge,
especially in scenarios where prior information is scarce or when the sample size is small. Shrinkage Bayesian
estimation methods offer a promising avenue to address these challenges by effectively incorporating prior
information and improving the robustness of parameter estimates.

In this research, we undertake a comprehensive comparative analysis of shrinkage Bayesian estimation methods
for parameters of the Lognormal distribution through simulation experiments. The primary objective is to compare
various shrinkage priors, precision, and robustness under different sample size and prior specification scenarios.
By systematically examining a range of shrinkage priors, including hierarchical and empirical Bayes approaches,
we aim to elucidate their relative efficacy in Lognormal parameter estimation. Through extensive simulations, we
explore how these methods perform across varying levels of prior information availability and sample sizes,
providing insights into their strengths and limitations.

Many researches have been conducted on it

The research of (Hamura, Y.) in (2023), In this paper, he considers the simultaneous estimation of Poisson
parameters when auxiliary information from the aggregated data can be used. It uses standardized squared error
and entropy loss functions. The Bayesian shrinkage estimator is derived based on the conjugate prior. It compares
direct and Bayesian estimators for hazard functions with different priors constructed based on different subsets of
observations. It creates the conditions for domination and demonstrates minimax and permissibility in a simple
framework. [5]

The research of (Bargoshadi, S. A., & Bevrani, H.) in (2024), The main goal of this work is to apply linear
shrinkage estimation techniques and pretest shrinkage estimation to estimate the parameters of two 2-parameter
Burr-XII distributions. Furthermore, predictions of future observations are performed using classical and Bayesian
methods under a common type II review scheme. The efficiency of shrinkage estimation is compared with
maximum likelihood and Bayesian estimation obtained by expectation estimation. For Bayesian estimation, both
informative and non-informative prior distributions are considered. Additionally, various loss functions are
considered, including squared error, linear exponential, and generalized entropy. Calculate approximate
confidence, credibility, and maximum likelihood density intervals. Evaluate the performance of estimation
methods.[2]

The results of this research are expected to contribute to the further development of Bayesian estimation methods
for lognormal distribution parameters and provide researchers and practitioners with information on selecting
appropriate shrinkage priors to achieve robust parameter estimation in practical applications. guide. Furthermore,
our results have the potential to improve the understanding of Bayesian inference techniques in the context of
skewed data distributions and enable more accurate and reliable statistical analyzes in various research fields.

5-Log normal distribution

The lognormal distribution is a continuous probability distribution commonly used to model positive and partial
variables. It is widely used in various fields such as finance, biology, and engineering, and data in these fields
naturally follows an exponential growth pattern.

The Lognormal distribution is characterized by two parameters:

the location parameter, i, which represents mean of the natural logarithm of the variable, and the scale parameter,
o, which measures the spread or variability of the logarithm of the variable. Unlike the Normal distribution, which
describes variables on the linear scale, the Lognormal distribution describes variables on the logarithmic scale.
As aresult, the Lognormal distribution allows for modeling variables that have strictly positive values and exhibit
right-skewness.

The probability density function (pdf) for the distribution is given by: - [4,6,8]

_(n(y)-w?
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Where (y > 0)

(wand (o) are (location and scale )parameters respectively
The cumulative distribution function (CDF) is:-
FOMo) =5 + ety o)
,0) == —er
VAV 273 e

(erf) denotes error function.

The Lognormal distribution is widely used due to its ability to model variables with asymmetric distributions and
its relevance to real-world phenomena. Understanding and accurately estimating its parameters are crucial for
various statistical analyses and decision-making processes in fields where Lognormally distributed data are
encountered.
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Figure 1: Lognormal Density Plots with (u = 0)[3]

Library Progress International | Vol.44 No.3 | Jul-Dec 2024 11242



Nadiha Abed Habeeb

u equals 1
= |
™
o
= |
| b
) .
s 7 | 4 g
| i b
II - J-- W
."r .--""-\.'_ . ! i
|I i "--_,_J \\
I\ Fo——— i,
= | Gk ST
=
T T T T T T T
o 1 2 3 4 5 ]

Figure 2: Lognormal Density Plots with (u = 1)[3]

6-Estimation method

Estimating parameters of a distribution is a crucial task in statistical analysis, especially when dealing with real-
world data that exhibit positive skewness. Several methods can be employed for Lognormal parameter estimation,
including

1.6-Maximum Likelihood Estimation (MLE)

MLE is a widely used method for estimating the parameters of the lognormal distribution. Given a data set, MLE
attempts to find parameters that maximize the likelihood function, which measures the probability of observing
the given data given a hypothetical distribution. In the lognormal distribution, the likelihood function is based on
the product of the probability density function (pdf) values for each observation. MLE estimates of the lognormal
distribution parameters (i and 6) can be obtained by maximizing this likelihood function.
likelihood function of the lognormal distribution for a series of random variables with size (n) is: - [9]
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the gradient of £ with respect to (1) and (¢2) and set it equal to 0
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2.6-Shrinkage Bayesian estimators
Shrinkage estimators play a crucial role in Bayesian statistics as they enhance parameter estimation by leveraging
prior information. These estimators are particularly valuable in scenarios involving high-dimensional data or a
large number of parameters to estimate relative to the sample size.
The concept behind shrinkage estimators involves pulling the estimates towards a central value, typically the mean
of the prior distribution. This process effectively reduces the variance of the estimator, resulting in more reliable
and robust estimates, especially when the sample size is limited.
There exist various types of shrinkage estimators, each employing different loss functions. Bayesian shrinkage
estimators, in particular, combine information from the data (likelihood function) with prior information (prior
distribution) to derive a posterior distribution of the parameters. This posterior distribution represents an updated
belief about the parameters after observing the data.
Shrinkage Bayesian estimator depend on MLE estimators
the posterior distribution of the parameter () is the gamma distribution (G (n, t)which has
the following probability density function: - [1]

tngn-1 e—Bt
f@/n) = T ()
The shrinkage Bayesian estimators depend on the loss function such that: -
1-Shrinkage Bayesian estimator with square loss function (SBE1)
Ly(9,95) = [9—9]* ..(10)
the posterior risk function for (9)will be

2 . n nn+1)

P1(19,1§s1) =Ey[v - 1§s1]2 = l§sl - 21931? + T - (11)
ap1(19,1§s1) .5 2 n
————> =29y —2-—
61951 t
6P1(19:1951) _
094,
the generalized Bayesian estimator of the parameter(9) under the squared error loss function will be
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generalized Bayesian shrinkage estimator for loss function will be: -
£ = () +nC+90)\ /n
(— - 190) +9, ..(18)
n 2 t
t(3=)
2-Bayesian Shrinkage Estimator with LINEX Loss Function (SBE2)

With [5]
L,(A) =e™ — (aA+1) ..(19)
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Such that (A= “:h2)

02(9,952) = E, [e“(ﬁfs"z—l) —a (’9;"2 - 1) - 1] - (20)
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Then generalized Bayesian estimator under LINEX loss function will be: -
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The Bayesian Shrinkage Estimator under LINEX Loss Function will be: -
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7-Simulation experiments
The simulation experiments depend on generating samples that follow a Lognormal distribution according to the
following simulation parameters
(ny =50 ,n, =75,n3=100) ,(a; =05 ,a,=1,a03=05), (1 =03,,=0.6,;=09) and the
estimation methods (MLE,SH1,SH2)
Comparing simulation results with the following criteria's:-[7]
§ =Min(|9 =9|) ..(26)
Such that
(8) Represent minimum absolute deference
(9) Represent true value for the parameter

(9) Represent the estimated value for the parameter
MSE = Zh=al070F 5oy
.
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( MSE) Represent mean square error
(r ) Represent number of iteration
8-Experimental Results
After completing the simulation experiments, the following results were obtained
Table (1) first parameter estimators and the best method to estimate it
a | B | n AmLe Asp1 Asp2 [ best
0.5]03] 50]0.502155 | 0.498209 | 0.501056 | 1.06E-03
0.5]03] 75]0.500136 | 0.499941 | 0.499857 | 5.85E-05
0.5 1 0.3 ] 100 | 0.500003 | 0.500003 | 0.499984 | 2.72E-06
0.5]10.6 | 50]0.597319 | 0.498996 | 0.500357 | 3.57E-04
0.5]0.6| 75]0.563788 | 0.499883 | 0.500183 | 1.17E-04
0.5 1 0.6 | 100 | 0.533381 | 0.500003 | 0.500002 | 1.66E-06
0.5]0.9] 50]0.538938 | 0.499519 | 0.502016 | 4.81E-04
0.5]09] 75]0.516913 | 0.499739 | 0.500027 | 2.67E-05
0.510.9]100 | 0.535674 | 0.499974 | 0.500013 | 1.33E-05
1]103] 500.999801 | 1.000481 | 0.998359 | 1.99E-04
0.3 | 7510.999934 | 1.00004 | 0.999986 | 1.43E-05
0.3 | 100 | 0.999982 | 0.999998 | 1.000028 | 1.93E-06
0.6 | 50 | 1.419507 | 1.000165 | 0.999109 | 1.65E-04
0.6 | 75]1.042923 | 0.99999 | 1.000223 | 9.61E-06
0.6 | 100 | 1.103148 | 1.00002 | 0.999997 | 2.31E-07
09| 50| 1.211894 | 1.001656 | 1.001579 | 0.001579
0.9 75| 1.041806 | 1.000133 | 0.999829 | 1.33E-04
1]0.9]100 | 1.072302 | 0.999993 | 1.000004 | 1.07E-07
1.5 03] 501 1.499797 | 1.497603 | 1.498686 | 2.03E-04
1.5]103 ] 75| 1.500207 | 1.500195 | 1.499912 | 8.83E-05
1.5 0.3 100 | 1.499998 | 1.50001 | 1.499998 | 1.80E-06
1.5]0.6 | 50| 1.772489 | 1.501783 | 1.500591 | 5.91E-04
1.5]10.6| 75| 157779 | 1.500043 | 1.49985 | 4.29E-05
1.5 0.6 | 100 | 1.600765 | 1.499999 | 1.499988 | 1.16E-06
1.5]09] 50| 1.73851 | 1.497833 | 1.498886 | 1.11E-03
1.5]09 | 75|1.698424 | 1.49974 | 1.499884 | 1.16E-04
1.5 0.9 | 100 | 1.690641 | 1.499992 | 1.499996 | 3.66E-06

[Ny U, U JUNENY NS [N N

L[ | WD D [ | = [L [ = [LI [N W [B D[ D [ [ = |2 [ | D[ | D[N |W

From the previous table and according to the estimates of the first parameter, the best estimation method is (SH2)
with (48%)
Table (2) second parameter estimators and the best method to estimate it

a | B n Bure Bsia Bsiz 8 best
05103 50 | 0.311022 | 0.300751 | 0.298689 | 7.51E-04 2

0.5]03] 75]0.297503 | 0.300181 | 0.299976 | 2.45E-05
0.510.3]100]0.291682 | 0.300006 | 0.300015 | 6.05E-06
0.5]10.6 ] 50]0.590871 | 0.599306 | 0.598154 | 0.290871
0.5]10.6] 75]0.582855 | 0.599948 | 0.599965 | 0.282855
0.5 1 0.6 | 100 | 0.599396 | 0.599998 | 0.600007 | 0.299396
0.5]10.9] 5010.903305 | 0.900197 | 0.901802 | 0.600197
0.5]109] 7510.923548 | 0.90008 | 0.900017 | 0.600017
0.510.91100|0.901504 | 0.899992 | 0.899994 | 0.599992
0.3 | 50| 0.308574 | 0.29749 | 0.299302 | 0.291426
0.3 | 75 0.285951 | 0.299786 | 0.300158 | 0.299842
0.3 | 100 | 0.293517 | 0.299981 | 0.299979 | 0.300019
0.6 | 50| 0.637851 | 0.60111 | 0.600548 | 5.48E-04
0.6 | 75| 0.598435 | 0.600105 | 0.600044 | 4.43E-05
0.6 | 100 | 0.587017 | 0.600003 | 0.600024 | 2.82E-06
09| 50| 0.886351 | 0.900066 | 0.901602 | 0.286351
0.9 | 75]0.923318 | 0.899935 | 0.900201 | 0.299935
0.9 | 100 | 0.924103 | 0.90002 | 0.899999 | 0.299999
03| 50 0.3076 | 0.299334 | 0.300841 0.5924
0.3 | 750.302792 | 0.300042 | 0.299727 | 0.597208

—_

== RN [ = [R[W W [N W [—= [N [W [N = [ == [N W
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1.5]10.3 1100 | 0.310106 | 0.299989 | 0.29998 | 0.589894
1.5]0.6 | 50 | 0.580539 | 0.600028 | 0.597834 | 0.299972
1.5]10.6 | 75 0.593113 | 0.599843 | 0.599754 | 0.300157
1.5 0.6 | 100 | 0.590893 | 0.599994 | 0.599988 | 0.300006
1.5]09 ] 50| 0.98943 | 0.899383 | 0.900427 | 4.27E-04
1.5]109 | 75| 0.882366 | 0.899859 | 0.900389 | 1.41E-04
1.510.9 | 100 | 0.895338 | 0.900016 | 0.900009 | 9.05E-06

WIN W[ (NN —

From the previous table and according to the estimates of the second parameter, the best estimation method is
(SH1) with (41%)
Table (3) mean square error for first parameter estimators and the best method
a | B n | MSEayz | MSEasy, | MSEagy, MIN, best
0.5]03] 50| 1.80E-05 | 1.74E-05 | 8.41E-06 | 8.41E-06
0.5]103] 75| 1.35E-07 | 1.64E-07 | 7.36E-08 | 7.36E-08
0.5]03]100 | 1.45E-09 | 1.14E-09 | 1.89E-09 | 1.14E-09
0.5]0.6| 50| 3.44E-02 | 1.88E-05 | 1.64E-05 | 1.64E-05
05]10.6| 75| 1.45E-02 | 1.28E-07 | 2.66E-07 | 1.28E-07
0.5]0.6 100 | 4.17E-03 | 2.26E-09 | 1.62E-09 | 1.62E-09
0.5]109] 50| 6.04E-03 | 1.42E-05 | 1.25E-05 | 1.25E-05
05109 75| 1.27E-03 | 1.86E-07 | 1.34E-07 | 1.34E-07
0.5]0.9]100 | 5.97E-03 | 2.76E-09 | 2.56E-09 | 2.56E-09
1]103] 50| 242E-05| 1.45E-05 | 1.31E-05 | 1.31E-05
03| 75| 147E-07 | 6.02E-08 | 7.17E-08 | 6.02E-08
0.3 100 | 541E-09 | 1.23E-09 | 3.17E-09 | 1.23E-09
0.6 | 50| 0.596561 | 2.02E-05 | 5.34E-06 | 5.34E-06
0.6 | 75| 7.18E-03 | 8.45E-08 | 2.27E-07 | 8.45E-08
0.6 | 100 | 2.24E-02 | 1.13E-09 | 1.92E-09 | 1.13E-09
09| 50| 0.168349 | 2.43E-05 | 1.10E-05 | 1.10E-05
09| 75| 1.54E-02 | 2.09E-07 | 1.20E-07 | 1.20E-07
1]109]100 | 2.40E-02 | 1.16E-09 | 2.28E-09 | 1.16E-09
1.5]103] 50| 9.74E-06 | 2.36E-05 | 1.19E-05 | 9.74E-06
1.5]103| 75| 1.64E-07 | 1.15E-07 | 1.92E-07 | 1.15E-07
1.5]10.3 (100 | 2.33E-09 | 1.68E-09 | 2.38E-09 | 1.68E-09
1.5]10.6 | 50| 0.307735 | 1.59E-05 | 1.94E-05 | 1.59E-05
1.5]10.6| 75| 3.37E-02 | 2.49E-07 | 1.66E-07 | 1.66E-07
1.5 0.6 | 100 | 0.036037 | 1.68E-09 | 2.12E-09 | 1.68E-09
1.5[109| 50| 0.145603 | 1.81E-05 | 1.85E-05 | 1.81E-05
1.5]109| 75| 8.87E-02 | 2.59E-07 | 1.38E-07 | 1.38E-07
1.5]10.9 ] 100 | 6.63E-02 | 1.60E-09 | 1.63E-09 | 1.60E-09 2
From the previous table and according to the estimates of the first parameter, the best estimation methods are
(SH1 & SH2) with (48%) for each one of them
Table (4) mean square error for second parameter estimators and the best method
a | B n_ | MSEBuy1g | MSEBgy, | MSEBsy, | MINg best
0.5]103]| 50| 7.48E-04 | 1.47E-05 | 1.22E-05 | 1.22E-05
0.5]103] 75| 1.25E-03 | 2.76E-07 | 2.34E-07 | 2.34E-07
0.5]0.3]100 | 7.27E-04 | 2.04E-09 | 1.42E-09 | 1.42E-09
0.5]0.6| 50| 4.62E-03 | 8.14E-06 | 2.16E-05 | 8.14E-06
05]10.6| 75| 7.92E-03 | 8.31E-08 | 2.49E-07 | 8.31E-08
0.5]0.6 | 100 | 5.59E-04 | 1.03E-09 | 2.49E-09 | 1.03E-09
0.5]109]| 50| 3.17E-02 | 9.77E-06 | 2.08E-05 | 9.77E-06
0.5]109]| 75| 6.80E-03 | 2.92E-07 | 2.10E-07 | 2.10E-07
0.5]109]100| 1.17E-02 | 1.76E-09 | 2.65E-09 | 1.76E-09
1]103] 50| 2.09E-03 | 3.07E-05 | 4.15E-06 | 4.15E-06
03| 75| 6.40E-04 | 1.02E-07 | 2.15E-07 | 1.02E-07
0.3 1100 | 6.27E-04 | 1.50E-09 | 1.95E-09 | 1.50E-09
0.6 | 50| 1.96E-02 | 1.80E-05 | 2.11E-05 | 1.80E-05
0.6 | 75| 3.22E-03 | 1.12E-07 | 2.50E-07 | 1.12E-07
0.6 | 100 | 5.07E-03 | 1.87E-09 | 1.80E-09 | 1.80E-09

w
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WD L1 (D[R [N [ [ [R DL [ [D[W || [ [W (N |W [N W

WN[D[D[D|WN[W[NN|DN[W[Ww

— | = | = [ = [ —
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1]09| 50| 7.20E-03 | 1.60E-05 | 1.53E-05 | 1.53E-05

1109 75| 4.27E-03 | 1.04E-07 | 1.79E-07 | 1.04E-07

1109|100 | 4.02E-03 | 1.77E-09 | 1.91E-09 | 1.77E-09
1.5/03] 50| 9.42E-04 | 1.76E-05 | 2.00E-05 | 1.76E-05
1.5/03] 75| 5.51E-04 | 9.30E-08 | 1.87E-07 | 9.30E-08
1.5/03]100 | 1.01E-03 | 1.55E-09 | 1.88E-09 | 1.55E-09
1.5/06| 50| 6.29E-03 | 1.82E-05 | 2.39E-05 | 1.82E-05
1.5/06]| 75| 4.60E-03 | 1.51E-07 | 1.98E-07 | 1.51E-07
1.5/0.6 100 | 4.77E-03 | 1.31E-09 | 2.08E-09 | 1.31E-09
1.5/09] 50| 1.91E-02 | 7.23E-06 | 2.47E-05 | 7.23E-06
1.5/09]| 75| 5.50E-03 | 1.41E-07 | 3.00E-07 | 1.41E-07
1.5]0.9]100 | 4.02E-03 | 2.53E-09 | 1.06E-09 | 1.06E-09 3
From the previous table and according to the estimates of the first parameter, the best estimation method is (SH1)
with (70%)

DD [N (D[N [DN [N [ [D |W

B MLE mSH1 mSH2

MSE - 2nd MSE - 1st 2nd parameter  1st parameter
parameter parameter

The Figure (3 ) represents the number of times each method is distinguished

For all experiments the best method was (SH1) by using Minimum absolute deference and Mean square error

criteria.

9-Conclusions and suggestions

Simulation results showed that shrinkage Bayesian estimators gives best results comparing with maximum

likelihood estimation method for different sample size and initial values of the parameter of log normal

distribution

Simulation results indicated that the estimation technique was influenced by both the sample size and the initial

values of the distribution parameters. Additionally, the superiority of the (SH1) method was demonstrated in the

majority of simulation experiments. Alternative estimation methods for different distributions (Weibull, Gamma)
could be utilized, and their results could be contrasted with (moment method, modified moment).
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