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ABSTRACT 
The Lognormal distribution serves as a fundamental model across various disciplines, offering a versatile 
framework for analyzing positively skewed data. Lognormal distributions are frequently employed to represent 
stock prices, as these prices cannot be negative and typically adhere to a multiplicative process. Additionally, this 
distribution is utilized to model the time until failure for various products. It is also applicable in the analysis of 
certain environmental variables, such as the concentrations of pollutants. In Bayesian estimation, the choice of 
prior distribution significantly influences parameter estimation, particularly in scenarios with limited sample sizes. 
Shrinkage Bayesian estimation methods have emerged as powerful tools to address the challenges of small sample 
sizes by incorporating prior information effectively. 
This research conducts a comparative analysis of shrinkage Bayesian estimation methods. Through 
comprehensive simulations, we investigate the impact of these priors on parameter estimation accuracy by limited 
sample sizes and initial parameter values. 
simulation experiments showed that Shrinkage Bayesian estimator method give the best estimators with minimum 
mean square error comparing with Maximum likelihood estimator. 
Other simulations can be performed for estimation methods (shrinkage, moments, modified moments). shrinkage 
Bayesian estimation methods can also be performed on (Weibull, Gamma distribution) distributions and the 
results compared. 
 
Keywords  
Shrinkage Bayesian estimators, Lognormal Distribution, Maximum likelihood estimation method, simulation 
experiments. 
  
1-Research Problem 
In numerous practical contexts, the estimation of parameters for the lognormal distribution is crucial, particularly 
when addressing skewed datasets. Conventional techniques, such as Maximum Likelihood Estimation (MLE), are 
frequently employed for this purpose; however, they may exhibit inefficiencies or biases, especially when sample 
sizes are limited or when prior information is accessible. Bayesian estimation offers a methodology that allows 
for the integration of prior knowledge, and the application of shrinkage techniques within Bayesian estimation 
enhances the robustness and precision of parameter estimates by "shrinking" them towards a central value or by 
amalgamating information from various sources. 
2-Importance of the Research 
The precision of parameter estimation in statistical models is of paramount importance, particularly in sectors 
such as finance, engineering, and environmental science, where critical decisions are heavily dependent on the 
accuracy of these estimates. Shrinkage Bayesian estimation techniques provide a means to integrate prior 
knowledge, thereby enhancing estimation precision, especially in scenarios involving limited sample sizes or 
incomplete datasets. This study aims to compare these methods specifically in the context of the lognormal 
distribution, with the goal of determining which approaches produce the most dependable outcomes across various 
conditions. The lognormal distribution finds extensive application in multiple domains, including finance (for 
stock price modeling), environmental science (for pollutant concentration modeling), and engineering (for 
reliability assessments). The accuracy of parameter estimation significantly influences decision-making in these 
areas. This research will equip practitioners with a comprehensive understanding of the most appropriate 
shrinkage Bayesian methods tailored to their specific requirements, ultimately facilitating more informed and 
effective decision-making. 
3-Research Objectives 
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Conduct a comprehensive evaluation of different shrinkage Bayesian estimation techniques aimed at estimating 
the parameters of the lognormal distribution. This assessment should focus on their effectiveness in terms of bias, 
mean squared error (MSE), and coverage probability. 
Engage in thorough simulation studies to compare the performance of the shrinkage Bayesian methods across 
various scenarios, which will include differing sample sizes, shape parameters, and scale parameters of the 
lognormal distribution. These simulations will provide insights into the robustness and dependability of each 
estimation method. 
4-Introduction  
The Lognormal distribution stands as a cornerstone in statistical modeling, finding wide applications in fields 
ranging from finance to biology due to its ability to represent positively skewed data. Parameter estimation for 
the Lognormal distribution plays a pivotal role in various statistical analyses, influencing decisions and insights 
drawn from data. In Bayesian estimation, the incorporation of prior information is paramount, particularly when 
dealing with limited sample sizes or when prior knowledge about the parameters is available. 
However, selecting appropriate prior distributions for Bayesian estimation poses a significant challenge, 
especially in scenarios where prior information is scarce or when the sample size is small. Shrinkage Bayesian 
estimation methods offer a promising avenue to address these challenges by effectively incorporating prior 
information and improving the robustness of parameter estimates. 
In this research, we undertake a comprehensive comparative analysis of shrinkage Bayesian estimation methods 
for parameters of the Lognormal distribution through simulation experiments. The primary objective is to compare 
various shrinkage priors, precision, and robustness under different sample size and prior specification scenarios . 
By systematically examining a range of shrinkage priors, including hierarchical and empirical Bayes approaches, 
we aim to elucidate their relative efficacy in Lognormal parameter estimation. Through extensive simulations, we 
explore how these methods perform across varying levels of prior information availability and sample sizes, 
providing insights into their strengths and limitations. 
Many researches have been conducted on it 
The research of (Hamura, Y.) in (2023), In this paper, he considers the simultaneous estimation of Poisson 
parameters when auxiliary information from the aggregated data can be used. It uses standardized squared error 
and entropy loss functions. The Bayesian shrinkage estimator is derived based on the conjugate prior. It compares 
direct and Bayesian estimators for hazard functions with different priors constructed based on different subsets of 
observations. It creates the conditions for domination and demonstrates minimax and permissibility in a simple 
framework. [5] 
The research of (Bargoshadi, S. A., & Bevrani, H.) in (2024), The main goal of this work is to apply linear 
shrinkage estimation techniques and pretest shrinkage estimation to estimate the parameters of two 2-parameter 
Burr-XII distributions. Furthermore, predictions of future observations are performed using classical and Bayesian 
methods under a common type II review scheme. The efficiency of shrinkage estimation is compared with 
maximum likelihood and Bayesian estimation obtained by expectation estimation. For Bayesian estimation, both 
informative and non-informative prior distributions are considered. Additionally, various loss functions are 
considered, including squared error, linear exponential, and generalized entropy. Calculate approximate 
confidence, credibility, and maximum likelihood density intervals. Evaluate the performance of estimation 
methods.[2] 
The results of this research are expected to contribute to the further development of Bayesian estimation methods 
for lognormal distribution parameters and provide researchers and practitioners with information on selecting 
appropriate shrinkage priors to achieve robust parameter estimation in practical applications. guide. Furthermore, 
our results have the potential to improve the understanding of Bayesian inference techniques in the context of 
skewed data distributions and enable more accurate and reliable statistical analyzes in various research fields . 
 
5-Log normal distribution  
The lognormal distribution is a continuous probability distribution commonly used to model positive and partial 
variables. It is widely used in various fields such as finance, biology, and engineering, and data in these fields 
naturally follows an exponential growth pattern. 
The Lognormal distribution is characterized by two parameters: 
 the location parameter, μ, which represents mean of the natural logarithm of the variable, and the scale parameter, 
σ, which measures the spread or variability of the logarithm of the variable. Unlike the Normal distribution, which 
describes variables on the linear scale, the Lognormal distribution describes variables on the logarithmic scale. 
As a result, the Lognormal distribution allows for modeling variables that have strictly positive values and exhibit 
right-skewness. 
The probability density function (pdf) for the distribution is given by: - [4,6,8] 

𝑓(𝑦\𝜇, 𝜎) =
1

𝑦𝜎√2𝜋
 𝑒

ି
(ౢ౤(೤)షഋ)మ

మ഑మ    … (1) 

 



 Nadiha Abed Habeeb 
 
 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                 11242 

Where (𝑦 > 0) 
( μ)and (σ) are (location and scale )parameters respectively 
The cumulative distribution function (CDF) is:- 

𝐹(𝑦\𝜇, 𝜎) =
1

2
+

1

2
erf(

ln(𝑦) − 𝜇

𝜎√2
)   … (2) 

(erf) denotes error function . 
The Lognormal distribution is widely used due to its ability to model variables with asymmetric distributions and 
its relevance to real-world phenomena. Understanding and accurately estimating its parameters are crucial for 
various statistical analyses and decision-making processes in fields where Lognormally distributed data are 
encountered. 

 
Figure 1: Lognormal Density Plots with (𝜇 = 0)[3] 
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Figure 2: Lognormal Density Plots with (𝜇 = 1)[3] 
6-Estimation method 
Estimating parameters of a distribution is a crucial task in statistical analysis, especially when dealing with real-
world data that exhibit positive skewness. Several methods can be employed for Lognormal parameter estimation, 
including   
1.6-Maximum Likelihood Estimation (MLE) 
 MLE is a widely used method for estimating the parameters of the lognormal distribution. Given a data set, MLE 
attempts to find parameters that maximize the likelihood function, which measures the probability of observing 
the given data given a hypothetical distribution. In the lognormal distribution, the likelihood function is based on 
the product of the probability density function (pdf) values for each observation. MLE estimates of the lognormal 
distribution parameters (μ and σ) can be obtained by maximizing this likelihood function. 
likelihood function of the lognormal distribution for a series of random variables with size (n) is: - [9] 

𝐿(𝜇, 𝜎ଶ/𝑦) = ෑ[𝑓(𝑦௜/𝜇, 𝜎ଶ)]    … (3)

௡

௜ୀଵ

 

= ෑ((2𝜋𝜎ଶ)ି
భ

మ𝑦௜
ିଵ  𝑒

ష(ౢ౤൫೤೔൯షഋ)మ

మ഑మ )

௡

௜ୀଵ

   … (4) 

= ((2𝜋𝜎ଶ)ି
೙

మ ෑ   𝑒
ష(ౢ౤൫೤೔൯షഋ)మ

మ഑మ

௡

௜ୀଵ

     𝑦௜

ିଵ

)   … (5) 

the natural log of the likelihood function: 

ℒ ቆ𝜇,
𝜎ଶ

𝑦
ቇ = −

𝑛

2
ln(2𝜋𝜎ଶ) − ෍ ln(𝑦௜) −

∑ [ln(𝑦௜)]ଶ௡
௜ୀଵ

2𝜎ଶ

௡

௜ୀଵ

+
∑ 𝜇 ln(𝑦௜)௡

௜ୀଵ

𝜎ଶ
−

𝑛𝜇ଶ

2𝜎ଶ
   … (6) 

the gradient of ℒ with respect to (𝜇) and (𝜎ଶ) and set it equal to 0 
Thus, the maximum likelihood estimators are:- 

𝜇̂ =
∑ ln (𝑦௜)௡

௜ୀଵ

𝑛
   … (7) 

𝜎ොଶ =
∑ [ln(𝑦௜) −

∑ ୪୬ (௬೔)೙
೔సభ

௡
]ଶ௡

௜ୀଵ

𝑛
   … (8) 
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2.6-Shrinkage Bayesian estimators 
Shrinkage estimators play a crucial role in Bayesian statistics as they enhance parameter estimation by leveraging 
prior information. These estimators are particularly valuable in scenarios involving high-dimensional data or a 
large number of parameters to estimate relative to the sample size. 
The concept behind shrinkage estimators involves pulling the estimates towards a central value, typically the mean 
of the prior distribution. This process effectively reduces the variance of the estimator, resulting in more reliable 
and robust estimates, especially when the sample size is limited. 
There exist various types of shrinkage estimators, each employing different loss functions. Bayesian shrinkage 
estimators, in particular, combine information from the data (likelihood function) with prior information (prior 
distribution) to derive a posterior distribution of the parameters. This posterior distribution represents an updated 
belief about the parameters after observing the data. 
Shrinkage Bayesian estimator depend on MLE estimators  
the posterior distribution of the parameter (𝜗) is the gamma distribution  (𝐺(𝑛, 𝑡)which has  
the following probability density function: - [1] 

𝑓(𝜗/𝑛) =
௧೙ణ೙షభ௘షഁ೟

୻(௡)
    … (9)         

The shrinkage Bayesian estimators depend on the loss function such that: - 
1-Shrinkage Bayesian estimator with square loss function (SBE1)  
𝐿ଵ൫𝜗, 𝜗መ௦൯ = [𝜗 − 𝜗መ௦]ଶ    … (10) 
the posterior risk function for  (𝜗)will be   

𝜌ଵ൫𝜗, 𝜗መ௦ଵ൯ = 𝐸ణ[𝜗 − 𝜗መ௦ଵ]ଶ = 𝜗መ௦ଵ

ଶ
− 2𝜗መ௦ଵ

𝑛

𝑡
+

𝑛(𝑛 + 1)

[𝑡]ଶ 
   … (11) 

𝜕𝜌ଵ൫𝜗, 𝜗መ௦ଵ൯

𝜕𝜗መ௦ଵ

= 2𝜗መ௦ଵ

ଶ
− 2

𝑛

𝑡
 

𝜕𝜌ଵ൫𝜗, 𝜗መ௦ଵ൯

𝜕𝜗መ௦ଵ

= 0 

the generalized Bayesian estimator of the parameter(𝜗) under the squared error loss function will be  

𝜗መ௦ଵ =
𝑛

𝑡
   … (12) 

For (𝜗 = 𝛼) 

𝛼ො௦ଵ =
𝑛

∑ ln (𝑦௜)௡
௜ୀଵ

    … (13) 

𝛽መ௦ଵ =
𝑛

∑ [ln(𝑦௜) −
∑ ୪୬ (௬೔)೙

೔సభ

௡
]ଶ௡

௜ୀଵ

   … (14) 

the shrinkage estimator is 
𝜗መ௦௛ଵ = 𝜏൫𝜗መ௦ଵ − 𝜗଴൯ + 𝜗଴    … (15) 
𝜌ଵ൫𝜗, 𝜗መ௦௛ଵ൯ = 𝐸[𝜗 − 𝜗መ௦௛ଵ]ଶ 
𝜌ଵ൫𝜗, 𝜗መ௦௛ଵ൯ = 𝐸ణ[𝜏൫𝜗መ௦ଵ − 𝜗଴൯ + 𝜗଴ − 𝜗]ଶ 

𝜌ଵ൫𝜗, 𝜗መ௦௛ଵ൯ = [𝜏𝜗መ௦ଵ]ଶ + (2𝜏 + 2𝜏ଶ)𝜗଴𝜗መ௦ଵ + [1 − 𝜏]ଶ𝜗଴
ଶ − 2𝜏𝜗መ௦ଵ

𝑛

𝑡
+ 2(𝜏 − 1)

𝑛

𝑡
𝜗଴ +

𝑛(𝑛 + 1)

[𝑡]ଶ 
   … (16) 

𝜕𝜌ଵ൫𝜗, 𝜗መ௦௛ଵ൯

𝜕𝜏
= 2𝜏𝜗௦௛ଵ

ଶ + 2(1 − 2𝜏)𝜗଴𝜗መ௦ଵ − 2(1 − 𝜏)𝜗଴
ଶ −

2𝑛(𝜗መ௦ଵ + 𝜗଴)

𝑡
 

𝜕𝜌ଵ൫𝜗, 𝜗መ௦௛ଵ൯

𝜕𝜏
= 0 

𝜏 =
𝑡(𝜗଴

ଶ − 𝜗଴ ቀ
௡

௧
ቁ + 𝑛(

௡

௧
+ 𝜗଴)

𝑡(
௡

௧
− 𝜗଴)ଶ

   … (17) 

generalized Bayesian shrinkage estimator for loss function will be: - 

𝜗መ௦௛ଵ = ቌ
𝑡(𝜗଴

ଶ − 𝜗଴ ቀ
௡

௧
ቁ + 𝑛(

௡

௧
+ 𝜗଴)

𝑡 ቀ
௡

௧
− 𝜗଴ቁ

ଶ ቍ ቀ
𝑛

𝑡
− 𝜗଴ቁ + 𝜗଴     … (18) 

2-Bayesian Shrinkage Estimator with LINEX Loss Function (SBE2) 
With [5] 
𝐿ଶ(∆) = 𝑒௔∆ − (𝑎∆ + 1)   … (19) 
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Such that  (∆=
ణ෡ೞ೓మ

ణ
) 

𝜌ଶ൫𝜗, 𝜗መ௦ଶ൯ = 𝐸௕ ቈ𝑒
௔൬

ഛ෡ೞ೓మ
ഛ

ିଵ൰
− 𝑎 ቆ

𝜗መ௦௛ଶ

𝜗
− 1ቇ − 1቉  … (20) 

𝜌ଶ൫𝜗, 𝜗መ௦ଶ൯ = 𝑒௔𝐸௕ ቈ𝑒
௔൬

ഛ෡ೞ೓మ
ഛ

൰
቉ − 𝑎𝜗መ௦௛ 𝐸௕ ൬

1

𝜗
൰ + 𝑎 − 1 

With  
𝜗~𝐺𝑎𝑚𝑚𝑎 𝑑𝑖𝑠𝑡. (𝑛, 𝑡) 
ଵ

ణ
 𝑖𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎 𝑑𝑖𝑠𝑡. (𝑛, 𝑡)  with the following probability density function: - 

𝑓 ൬
1

𝜗
൰ =

[𝑡]௡

Γ(𝑛)
𝜗ି(௡ାଵ)𝑒ି[

೟

ഛ
]𝜗   … (21) 

𝐸 ൬
1

𝜗
൰ =

𝑡

𝑛 − 1
 

𝜌ଶ൫𝜗, 𝜗መ௦ଶ൯ = 𝑒௔ (
𝑡

𝑡 − 𝑎𝜗መ௦ଶ

)௡ − 𝑎𝜗መ௦ଶ ൤
𝑡

𝑛 − 1
൨ + 𝑎 − 1 

𝜕𝜌ଶ൫𝜗, 𝜗መ௦ଶ൯

𝜕𝜗መ௦ଶ

= 𝑎𝑛[𝑡]௡  𝑒ି௔[𝑡 − 𝑎𝜗መ௦ଶ]ି(௡ାଵ) −
𝑎[𝑡]

𝑛 − 1
 

𝜕𝜌ଶ൫𝜗, 𝜗መ௦ଶ൯

𝜕𝜗መ௦ଶ

= 0 

Then generalized Bayesian estimator under LINEX loss function will be: - 

𝛽መ௦ଶ =
1

𝑎
(෍ 𝐿𝑜𝑔(1 − 𝑦௜)

௡

௜ୀଵ
− (𝑛 ෍ 𝐿𝑜𝑔(1 − 𝑦௜)

௡

௜ୀଵ

௡ିଵ

𝑒ି௔))
భ

೙శభ    … (22) 

The Bayesian Shrinkage Estimator under LINEX Loss Function will be: - 

𝜌ଶ൫𝜗, 𝜗መ௦௛ଶ൯ = 𝐸௕ ቆ𝑒
௔൬

ഛ෡ೞ೓మ
ഛ

ିଵ൰
ቇ − 𝑎𝜗መ௦௛ଶ𝐸௕ ൬

1

𝜗
൰ + 𝑎 − 1 

𝜌ଶ൫𝜗, 𝜗መ௦௛ଶ൯ = 𝑒ି௔(
𝑡

𝑡 − 𝑎𝜗መ௦௛ଶ

)௡ − 𝑎𝜗መ௦௛ଶ

𝑡

𝑛 − 1
+ 𝑎 − 1 

the shrinkage estimator is defined as 
𝜗መ௦௛ଶ = 𝜏൫𝜗መ௦ଶ − 𝜗଴൯ + 𝜗଴    … (23) 

𝜌ଶ൫𝜗, 𝜗መ௦௛ଶ൯ =
𝑒ି௔(𝑡)௡

[𝑡 − 𝑎𝜏൫𝜗መ௦ଶ − 𝜗൯ − 𝑎𝜗଴]௡
− 𝑎

𝑡

𝑛 − 1
𝜏൫𝜗መ௦ଶ − 𝜗൯ − 𝑎𝜗଴

𝑡

𝑛 − 1
 

𝜕𝜌ଶ൫𝜗, 𝜗መ௦௛ଶ൯

𝜕𝜏
=

𝑎𝑛൫𝜗መ௦ଶ − 𝜗൯𝑒ି௔(𝑡)௡

[𝑡 − 𝑎𝜏൫𝜗መ௦ଶ − 𝜗൯ − 𝑎𝜗଴](௡ାଵ)
− 𝑎

𝑡൫𝜗መ௦ଶ − 𝜗൯

𝑛 − 1
 

𝜕𝜌ଶ൫𝜗, 𝜗መ௦௛ଶ൯

𝜕𝜏
= 0 

We get  

𝜏 =
[𝑡 − 𝑎𝜗଴] − [𝑛(𝑛 − 1)𝑡௡ିଵ𝑒ି௔]

భ

೙శభ

𝑎[
ଵ

௔
[𝑡 − [𝑛𝑡௡ିଵ𝑒ି௔]

భ

೙శభ −  𝜗଴]
    … (24) 

𝜗መ௦௛ଶ = ቌ
[𝑡 − 𝑎𝜗଴] − [𝑛(𝑛 − 1)𝑡௡ିଵ𝑒ି௔]

భ

೙శభ

𝑎[
ଵ

௔
[𝑡 − [𝑛𝑡௡ିଵ𝑒ି௔]

భ

೙శభ −  𝜗଴]
ቍ ൬

1

𝑎
ቂ𝑡 − [𝑛𝑡௡ିଵ𝑒ି௔]

భ

೙శభቃ − 𝜗଴൰ + 𝜗଴    … (25) 

7-Simulation experiments  
The simulation experiments depend on generating samples that follow a Lognormal distribution according to the 
following simulation parameters  
(𝑛ଵ = 50  , 𝑛ଶ = 75 , 𝑛ଷ = 100 ) ,(𝛼ଵ = 0.5  , 𝛼ଶ = 1 , 𝛼ଷ = 0.5 ), (𝛽ଵ = 0.3  , 𝛽ଶ = 0.6 , 𝛽ଷ = 0.9 ) and the 
estimation methods (MLE,SH1,SH2) 
Comparing simulation results with the following criteria's:-[7] 
 𝛿 = 𝑀𝑖𝑛൫ห𝜗 − 𝜗መห൯  … (26)     
Such that  
(𝛿) Represent minimum absolute deference 
(𝜗) Represent true value for the parameter 
(𝜗መ) Represent the estimated value for the parameter  

𝑀𝑆𝐸 =
∑ [ణିణ෡]మೝ

೓సభ

௥
    … (27)  
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( 𝑀𝑆𝐸) Represent mean square error 
(𝑟 ) Represent number of iteration  
8-Experimental Results  
After completing the simulation experiments, the following results were obtained 
Table (1) first parameter estimators and the best method to estimate it 

𝛼 𝛽 𝑛 𝛼ොெ௅ா 𝛼ොௌுଵ 𝛼ොௌுଶ 𝛿ఈ 𝑏𝑒𝑠𝑡 
0.5 0.3 50 0.502155 0.498209 0.501056 1.06E-03 3 
0.5 0.3 75 0.500136 0.499941 0.499857 5.85E-05 2 
0.5 0.3 100 0.500003 0.500003 0.499984 2.72E-06 2 
0.5 0.6 50 0.597319 0.498996 0.500357 3.57E-04 3 
0.5 0.6 75 0.563788 0.499883 0.500183 1.17E-04 2 
0.5 0.6 100 0.533381 0.500003 0.500002 1.66E-06 3 
0.5 0.9 50 0.538938 0.499519 0.502016 4.81E-04 2 
0.5 0.9 75 0.516913 0.499739 0.500027 2.67E-05 3 
0.5 0.9 100 0.535674 0.499974 0.500013 1.33E-05 3 

1 0.3 50 0.999801 1.000481 0.998359 1.99E-04 1 
1 0.3 75 0.999934 1.00004 0.999986 1.43E-05 3 
1 0.3 100 0.999982 0.999998 1.000028 1.93E-06 2 
1 0.6 50 1.419507 1.000165 0.999109 1.65E-04 2 
1 0.6 75 1.042923 0.99999 1.000223 9.61E-06 2 
1 0.6 100 1.103148 1.00002 0.999997 2.31E-07 2 
1 0.9 50 1.211894 1.001656 1.001579 0.001579 3 
1 0.9 75 1.041806 1.000133 0.999829 1.33E-04 2 
1 0.9 100 1.072302 0.999993 1.000004 1.07E-07 3 

1.5 0.3 50 1.499797 1.497603 1.498686 2.03E-04 1 
1.5 0.3 75 1.500207 1.500195 1.499912 8.83E-05 3 
1.5 0.3 100 1.499998 1.50001 1.499998 1.80E-06 1 
1.5 0.6 50 1.772489 1.501783 1.500591 5.91E-04 3 
1.5 0.6 75 1.57779 1.500043 1.49985 4.29E-05 2 
1.5 0.6 100 1.600765 1.499999 1.499988 1.16E-06 2 
1.5 0.9 50 1.73851 1.497833 1.498886 1.11E-03 3 
1.5 0.9 75 1.698424 1.49974 1.499884 1.16E-04 3 
1.5 0.9 100 1.690641 1.499992 1.499996 3.66E-06 3 

 
From the previous table and according to the estimates of the first parameter, the best estimation method is (SH2) 
with (48%)   
Table (2) second parameter estimators and the best method to estimate it 

𝛼 𝛽 𝑛 𝛽መெ௅ா  𝛽መௌுଵ 𝛽መௌுଶ 𝛿ఉ 𝑏𝑒𝑠𝑡 
0.5 0.3 50 0.311022 0.300751 0.298689 7.51E-04 2 
0.5 0.3 75 0.297503 0.300181 0.299976 2.45E-05 3 
0.5 0.3 100 0.291682 0.300006 0.300015 6.05E-06 2 
0.5 0.6 50 0.590871 0.599306 0.598154 0.290871 1 
0.5 0.6 75 0.582855 0.599948 0.599965 0.282855 1 
0.5 0.6 100 0.599396 0.599998 0.600007 0.299396 1 
0.5 0.9 50 0.903305 0.900197 0.901802 0.600197 2 
0.5 0.9 75 0.923548 0.90008 0.900017 0.600017 3 
0.5 0.9 100 0.901504 0.899992 0.899994 0.599992 2 

1 0.3 50 0.308574 0.29749 0.299302 0.291426 1 
1 0.3 75 0.285951 0.299786 0.300158 0.299842 3 
1 0.3 100 0.293517 0.299981 0.299979 0.300019 2 
1 0.6 50 0.637851 0.60111 0.600548 5.48E-04 3 
1 0.6 75 0.598435 0.600105 0.600044 4.43E-05 3 
1 0.6 100 0.587017 0.600003 0.600024 2.82E-06 2 
1 0.9 50 0.886351 0.900066 0.901602 0.286351 1 
1 0.9 75 0.923318 0.899935 0.900201 0.299935 2 
1 0.9 100 0.924103 0.90002 0.899999 0.299999 3 

1.5 0.3 50 0.3076 0.299334 0.300841 0.5924 1 
1.5 0.3 75 0.302792 0.300042 0.299727 0.597208 1 
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1.5 0.3 100 0.310106 0.299989 0.29998 0.589894 1 
1.5 0.6 50 0.580539 0.600028 0.597834 0.299972 2 
1.5 0.6 75 0.593113 0.599843 0.599754 0.300157 2 
1.5 0.6 100 0.590893 0.599994 0.599988 0.300006 2 
1.5 0.9 50 0.98943 0.899383 0.900427 4.27E-04 3 
1.5 0.9 75 0.882366 0.899859 0.900389 1.41E-04 2 
1.5 0.9 100 0.895338 0.900016 0.900009 9.05E-06 3 

 
From the previous table and according to the estimates of the second parameter, the best estimation method is 
(SH1) with (41%)   
Table (3) mean square error for first parameter estimators and the best method  

𝛼 𝛽 𝑛 𝑀𝑆𝐸𝛼ெ௅ா 𝑀𝑆𝐸𝛼ௌுଵ 𝑀𝑆𝐸𝛼ௌுଶ 𝑀𝐼𝑁ఈ  𝑏𝑒𝑠𝑡 
0.5 0.3 50 1.80E-05 1.74E-05 8.41E-06 8.41E-06 3 
0.5 0.3 75 1.35E-07 1.64E-07 7.36E-08 7.36E-08 3 
0.5 0.3 100 1.45E-09 1.14E-09 1.89E-09 1.14E-09 2 
0.5 0.6 50 3.44E-02 1.88E-05 1.64E-05 1.64E-05 3 
0.5 0.6 75 1.45E-02 1.28E-07 2.66E-07 1.28E-07 2 
0.5 0.6 100 4.17E-03 2.26E-09 1.62E-09 1.62E-09 3 
0.5 0.9 50 6.04E-03 1.42E-05 1.25E-05 1.25E-05 3 
0.5 0.9 75 1.27E-03 1.86E-07 1.34E-07 1.34E-07 3 
0.5 0.9 100 5.97E-03 2.76E-09 2.56E-09 2.56E-09 3 

1 0.3 50 2.42E-05 1.45E-05 1.31E-05 1.31E-05 3 
1 0.3 75 1.47E-07 6.02E-08 7.17E-08 6.02E-08 2 
1 0.3 100 5.41E-09 1.23E-09 3.17E-09 1.23E-09 2 
1 0.6 50 0.596561 2.02E-05 5.34E-06 5.34E-06 3 
1 0.6 75 7.18E-03 8.45E-08 2.27E-07 8.45E-08 2 
1 0.6 100 2.24E-02 1.13E-09 1.92E-09 1.13E-09 2 
1 0.9 50 0.168349 2.43E-05 1.10E-05 1.10E-05 3 
1 0.9 75 1.54E-02 2.09E-07 1.20E-07 1.20E-07 3 
1 0.9 100 2.40E-02 1.16E-09 2.28E-09 1.16E-09 2 

1.5 0.3 50 9.74E-06 2.36E-05 1.19E-05 9.74E-06 1 
1.5 0.3 75 1.64E-07 1.15E-07 1.92E-07 1.15E-07 2 
1.5 0.3 100 2.33E-09 1.68E-09 2.38E-09 1.68E-09 2 
1.5 0.6 50 0.307735 1.59E-05 1.94E-05 1.59E-05 2 
1.5 0.6 75 3.37E-02 2.49E-07 1.66E-07 1.66E-07 3 
1.5 0.6 100 0.036037 1.68E-09 2.12E-09 1.68E-09 2 
1.5 0.9 50 0.145603 1.81E-05 1.85E-05 1.81E-05 2 
1.5 0.9 75 8.87E-02 2.59E-07 1.38E-07 1.38E-07 3 
1.5 0.9 100 6.63E-02 1.60E-09 1.63E-09 1.60E-09 2 

From the previous table and according to the estimates of the first parameter, the best estimation methods are 
(SH1 & SH2) with (48%) for each one of them    
Table (4) mean square error for second parameter estimators and the best method  

𝛼 𝛽 𝑛 𝑀𝑆𝐸𝛽ெ௅ா  𝑀𝑆𝐸𝛽ௌுଵ 𝑀𝑆𝐸𝛽ௌுଶ 𝑀𝐼𝑁ఉ 𝑏𝑒𝑠𝑡 
0.5 0.3 50 7.48E-04 1.47E-05 1.22E-05 1.22E-05 3 
0.5 0.3 75 1.25E-03 2.76E-07 2.34E-07 2.34E-07 3 
0.5 0.3 100 7.27E-04 2.04E-09 1.42E-09 1.42E-09 3 
0.5 0.6 50 4.62E-03 8.14E-06 2.16E-05 8.14E-06 2 
0.5 0.6 75 7.92E-03 8.31E-08 2.49E-07 8.31E-08 2 
0.5 0.6 100 5.59E-04 1.03E-09 2.49E-09 1.03E-09 2 
0.5 0.9 50 3.17E-02 9.77E-06 2.08E-05 9.77E-06 2 
0.5 0.9 75 6.80E-03 2.92E-07 2.10E-07 2.10E-07 3 
0.5 0.9 100 1.17E-02 1.76E-09 2.65E-09 1.76E-09 2 

1 0.3 50 2.09E-03 3.07E-05 4.15E-06 4.15E-06 3 
1 0.3 75 6.40E-04 1.02E-07 2.15E-07 1.02E-07 2 
1 0.3 100 6.27E-04 1.50E-09 1.95E-09 1.50E-09 2 
1 0.6 50 1.96E-02 1.80E-05 2.11E-05 1.80E-05 2 
1 0.6 75 3.22E-03 1.12E-07 2.50E-07 1.12E-07 2 
1 0.6 100 5.07E-03 1.87E-09 1.80E-09 1.80E-09 3 
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1 0.9 50 7.20E-03 1.60E-05 1.53E-05 1.53E-05 3 
1 0.9 75 4.27E-03 1.04E-07 1.79E-07 1.04E-07 2 
1 0.9 100 4.02E-03 1.77E-09 1.91E-09 1.77E-09 2 

1.5 0.3 50 9.42E-04 1.76E-05 2.00E-05 1.76E-05 2 
1.5 0.3 75 5.51E-04 9.30E-08 1.87E-07 9.30E-08 2 
1.5 0.3 100 1.01E-03 1.55E-09 1.88E-09 1.55E-09 2 
1.5 0.6 50 6.29E-03 1.82E-05 2.39E-05 1.82E-05 2 
1.5 0.6 75 4.60E-03 1.51E-07 1.98E-07 1.51E-07 2 
1.5 0.6 100 4.77E-03 1.31E-09 2.08E-09 1.31E-09 2 
1.5 0.9 50 1.91E-02 7.23E-06 2.47E-05 7.23E-06 2 
1.5 0.9 75 5.50E-03 1.41E-07 3.00E-07 1.41E-07 2 
1.5 0.9 100 4.02E-03 2.53E-09 1.06E-09 1.06E-09 3 

From the previous table and according to the estimates of the first parameter, the best estimation method is (SH1) 
with (70%)   

 
The Figure (3 ) represents the number of times each method is distinguished 
For all experiments the best method was (SH1) by using Minimum absolute deference and Mean square error 
criteria. 
 9-Conclusions and suggestions  
Simulation results showed that shrinkage Bayesian estimators gives best results comparing with maximum 
likelihood estimation method for different sample size and initial values of the parameter of log normal 
distribution   
Simulation results indicated that the estimation technique was influenced by both the sample size and the initial 
values of the distribution parameters. Additionally, the superiority of the (SH1) method was demonstrated in the 
majority of simulation experiments. Alternative estimation methods for different distributions (Weibull, Gamma) 
could be utilized, and their results could be contrasted with (moment method, modified moment). 
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