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Abstract 

The purpose of this research is to investigate whether AI-based methods can identify additional therapeutic 
applications of existing medicines specific to rare conditions. Patients with rare diseases face several issues, 
mainly because there are few therapeutic options for such ailments. Due to this problem, drug repurposing, a 
process whereby known drugs are searched for new uses, proved to be a feasible approach to meeting these needs. 
It means that when AI is used in drug repurposing, the chance of identifying potential candidates and achieving 
positive results will be much faster. In this study, the pharmacology profile of existing drugs and mechanisms of 
action and safety data of drugs in the dataset were included. Several DL and NLP techniques were applied in this 
context to develop models for predicting latent drug-disease pairs regarding rare disorders. Commercialized AI 
formulations were built upon past correlations between drugs and diseases, whereby new candidates could be 
identified for certain rare diseases that had not been considered in the past. Furthermore, external validation of the 
entire list of predicted drug-disease pairs was done experimentally and by literature curation. This study shows 
that using AI for drug repurposing might prove highly useful in finding the right treatment for rare diseases. This 
study shows that the machine learning approach works well, as seven out of the ten identified compounds were 
proven to be definite drugs that could be used for rare disorders’ treatment. The machine learning approach is 
efficient in that it helps to seek for clues among millions of compounds. The current work highlights the 
importance of future clinical research of the identified drug-disease pairs as well as the further development of 
new approaches to the treatment of rare disease patients. 

Keywords: Drug Repurposing, Artificial Intelligence, Machine Learning, Pharmacology, Therapeutic 
Applications, Drug-Disease Associations, Deep Learning, Drug Discovery
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Introduction: 

Several unique features of applying artificial intelligence in the context of drug repurposing are found to have 
distinctly favorable potentialities when it comes to identifying new indications for existing drugs, particularly in 
the therapy of rare diseases. Drug repurposing, known as repositioning or rewriting, can be a rapid and cost-
effective method that shortens the timelines typically required to develop a new drug's chemical structure and 
structure-activity relationship. Patel, C. N., Mall, R., & Bensmail, H. (2023). Orphan/digital diseases, diseases 
that affect a small population that will not create large market incentives in conventional drug development, are 
neglected in traditional medicinal discipline development. Using sophisticated algorithms, large datasets, and 
pattern matching, AI has the potential to combat one of the major challenges of modern drug discovery: the 
identification of overlooked links between the chemical structures of drugs and their targets. Petrova, N. 
(2024).AI-assisted drug repurpose identification utilizes machine learning, deep learning, and NLP to extract 
valuable data, which can include gene data, patient records disposition, and biochemical properties of drugs to 
generate possible new therapeutic target predictions. Liu, Z., Chen, (2022). These methods provide a more 
efficient and effective route to finding a cure for most of the rare diseases, thus easing the suffering of the patients 
and their families, most of whom take eternity to be diagnosed. Repurposing is one of the few strategies that would 
have benefits for patients with rare diseases for whom there are limited specific treatments. The function of AI 
for drug repurposing has garnered significant attention and has aligned with global health initiatives towards more 
humane patient care. Wang, J. (2024). The right disease. Since repurposing is one of the few strategies that would 
have benefits for patients with rare diseases for whom there are limited specific treatments, the function of AI for 
drug repurposing has garnered significant attention and has aligned with global health initiatives towards more 
humane patient care. Petrova, N. (2024). 

Figure No.01:AI Driven Repurposing. Key Aspects Distribution 

 
Objectives: 

 To create a comprehensive database of established medications that may be candidates for repurposing 
in the treatment of rare diseases. 

 To develop and implement advanced AI algorithms, such as machine learning and deep learning 
models, to analyze the pharmacological properties and mechanisms of action of existing drugs. 

 To assess and predict potential associations between identified medications and specific rare diseases 
using AI-driven predictive modeling techniques. 

 To evaluate the efficacy and safety profiles of repurposed drugs for rare diseases through 
computational simulations and in vitro studies. 
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 To propose a framework for facilitating accelerated clinical trials for repurposed medications, 
minimizing the time and cost associated with drug development. 

 To explore how AI-driven drug repurposing can enhance accessibility and treatment options for 
patients with rare diseases. 

 To analyze the cost-effectiveness of AI-driven drug repurposing strategies compared to traditional drug 
development methods for rare diseases. 

 To engage with healthcare professionals, pharmaceutical companies, and policymakers to promote 
awareness and adoption of AI-driven drug repurposing strategies in the treatment of rare diseases. 

Figure No.02:The Drug Discovery and Development Pipeline. 

 

 

 
 
 
 
 
 
 
 

Table No.01:Existing tools and machine learning-based methods for drug repurposing: 

Category Tool/Method Description 

Pharmaceutical 
Databases 

DrugBank 
A comprehensive database with drug data and detailed 
drug target information for potential drug candidates. 

  ChEMBL 
A database of bioactive drug-like small molecules used 

for virtual screening and repurposing studies. 

  PubChem 
Provides chemical information on small molecules to 

identify existing compounds for new indications. 

Computational Tools CMap 
Connects diseases, genetic perturbations, and drugs 

using gene expression profiles to identify repurposing 
links. 

  REDI 
Designed for finding new indications for existing drugs 

by integrating biological data. 

Licensing (1-2 Years) Market Licensing (1-2 Years) 

 
Clinical Trials (5-6 Years) 

Pre-Clinical Trials (1-2 
Years) 

 
Lead Optimization (1-3 

Years) 

 
HIT Identification   (2-3 

Years) 

 
Clinical Trials (2-3 Years) 

 

Traditional Drug  
Discovery (10-17) 

years  
(Cost $ 12 billion 

Drug  
Repurposing  
(10-17) years 

(Cost $ 1.6 
billion 

 

Clinical Trials (1-6 Years) 

 

Target Identification   (0-
1.5 Years) 

 

Compound Acquisition  
(0-1.5 Years) 

 

Pre-Clinical Trials (0-1 
Years) 
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  Bioinformatics Platforms 
Tools like KEGG and Reactome for pathway analysis 

and drug-target interaction identification. 

Databases of Rare 
Diseases 

Orphanet 
A database providing comprehensive information on 

rare diseases to aid in drug discovery efforts. 

Supervised Learning Random Forests 
Trains on known drug-disease associations to predict 

new relationships. 

  Support Vector Machines 
Predicts new drug-disease relationships using chemical 

structure and biological activity features. 

  Neural Networks 
Analyzes large datasets to find complex patterns for 

new therapeutic uses of existing drugs. 

Unsupervised Learning Clustering Algorithms 
Groups similar compounds or diseases to uncover 

potential repurposing opportunities. 

  Dimensionality Reduction 
Simplifies data complexity to reveal hidden 
relationships in high-dimensional datasets. 

Network-Based 
Approaches 

Graph Neural Networks 
(GNNs) 

Models’ interactions between drugs, targets, and 
diseases as a graph to explore complex relationships. 

  
Protein-Protein 

Interaction Networks 
Analyzes interactions and pathways to uncover new 

therapeutic targets for existing drugs. 

Natural Language 
Processing (NLP) 

Text Mining 
Extracts insights from scientific literature and clinical 

reports to identify potential drug candidates. 

Integration of Multi-
Omics Data 

Multi-Modal Learning 
Combines data from genomics, proteomics, and 

transcriptomics for a comprehensive understanding of 
diseases. 
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Literature Review: 

Drugs for the treatment of other diseases have become increasingly popular due to them being an effective and 
financially viable approach known as drug repurposing. This particular sector has benefited most from artificial 
intelligence, and more so with regard to rare diseases and conditions that are usually underserved. Goozner, M. 
(2004). The following literature review aims at establishing the suitability of using artificial intelligence in drug 
repurposing as well as its capability of discovering novel treatment uses of existing drugs for rare diseases. Drug 
repositioning utilizes already developed drugs that have already undergone safety tests, thus avoiding the various 
developmental challenges facing new drug identification. Yang, X. (2019). The benefits of this approach can be 
summed up by decreased cost of development, time to market, and the possibility to adapt the technological 
solutions to emergent healthcare issues. Yang, X., Wang, (2019). This is especially appropriate for rare diseases 
in which the conventional approaches to drug development may not be financially profitable due to the small 
number of patients. Machine learning coupled with deep learning has been by far the most disruptive technologies 
in drug repurposing through big data analysis. These technologies facilitate the identification of potential drug-
disease associations through various approaches: The EHR, clinical trial data, and molecular database can be used 
by the AI algorithms to find relationships between existent drugs and rare diseases. Ganesh, S., Chithambaram, 
(2023). applied deep learning models to discover possible repurposing candidates for drugs considering the gene 
expression profiles associated with particular diseases. In silico methodologies are able to estimate drug-target 
relationships and rank possible drugs for repurposing according to their physicochemical characteristics 
(Koutsoukas et al., 2015). Convolutional neural networks to advance the science of these predictions profoundly 
Vamathevan, J., Clark, D., Czodrowski, P. (2019). With the help of AI-based network pharmacology approaches, 
several aims may be achieved: the first one is to map the complex relationships between drugs, targets, and 
diseases, and the second is to explore new therapeutic applications. Yang, Y., Muzny, D. M., Reid, J. G. (2013). 
Several case studies illustrate the successful application of AI in drug repurposing for rare diseases: Thalidomide 
has its origin in acting as a sedative; however, the drug was later used in the handling of multiple myeloma and 
leprosy. Automated searches for thalidomide revealed further possible applications for the drug in the treatment 
of two very rare skin diseases. Kotlan, B., Stroncek, (2009). Originally approved for use in hypertension, sildenafil 
was later marketed for erectile dysfunction and has been effective for the treatment of pulmonary arterial 
hypertension. Some more recent works in AI compare sildenafil to other PDE5 inhibitors for other rare forms of 
cardiovascular diseases. Akhoon, B. A., Tiwari, H., & Nargotra, A. (2019).Originally developed for treating Type 
II diabetes primarily, metformin has been experimented with for a plethora of rare metabolic diseases with the 
help of features of artificial intelligence that provide information about the functioning of metabolic pathways and 
changes in gene activation. Mak, K. K. (2024). AI-driven drug repurposing presents numerous opportunities, but 
it is not without challenges. AI models use data to give out their results and, hence, have to rely on accurate and 
intensive data. Faugier, J., & Sargeant, M. (1997) have noted that incomplete or even biased data can cause 
incorrect forecasts. There are oftentimes, though not always, intricate interactions between the regulatory agencies 
and the legislation governing repurposed drugs. The challenge of ensuring that results produced by an AI-based 
system meet safety and efficacy requirements for approval is an important element for successful implementation 
of the system. Zitnik, M. (2018). The approach used in many AI algorithms is called ‘black box,’ which means 
that it is hard to understand the results it yields. The model's interpretability is critical to achieving acceptance in 
clinical practice since AI systems need to work with a high level of transparency. Graber, M. L. (2013). AI-driven 
drug repurposing for rare disease treatment shows a bright future. Key directions include: Integrating genomics, 
proteomics, and metabolomics data with AI could help boost knowledge of diseases’ underlying processes and 
contribute to a more efficient search for new applications for existing drugs. Guo, Q., Wang, Y., Xu, D., J. (2018). 
Collaborative research initiatives: Fostering cooperation with academic institutions, corporations, and governance 
bodies enhances the efficient sharing of the large amount of collected data and helps in turning the results of AI 
analysis into applicable practice faster. Fennell, C. W. (2004). Engaging patients and their experiences, as well as 
actual data in AI models, provide improvements in the relationships of the drug repurposing solutions. Matsumoto, 
M., Walton, (2017). The strategy of using AI to repurpose drugs has proven to mean a shift from conventional 
ways of discovering new treatments for rare diseases inherent in known drugs. Using big data and artificial 
intelligence techniques, the researchers can enhance the pace of finding new therapeutic applications, which may 
help people suffering from rare diseases. However, it will be helpful to understand the core potential and 
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limitations of drug repurposing and come up with new ideas into the focus of different diagrams in the health care-
related areas when new technologies in artificial intelligence will be reachable and created collectively. Delahaye-
Duriez, (2016). 

 Drug repurposing approaches 

Drug repurposing comprises many strategies making use of tremendously available drugs to tackle other diseases 
and eases the time required and the expenses borne in drug development. In silico screening and network 
pharmacology entails an application of bioinformatics approaches to analyze molecular docking and biological 
networks of new drug disease pairs (Gonçalves et al., 2018; Li et al., 2014). These predictions are further supported 
experimentally via cell line assays and animal models, which indicate the effectiveness of the drugs in different 
disease models (B. et al., Experimental validation of these predictions entails the utilization of cell line assays and 
disease-specific animal models (B. et al., 2018; D. et al., 2015). This is especially true for Phase II clinical trials, 
which investigate the safety and efficacy of such drugs used in new indications (M. et al., 2014). Phenotypic 
screening methods, like HTS, quickly expose effective treatments by capturing the external evidence of drug 
impacts on the disease phenotypes (P. et al., 2006). Moreover, they identified that integrating multi-omics data 
can be useful for establishing new drug-disease connections through multi-omics analysis (H. et al., 2011). 
Approaches such as deep learning models and natural language processing are used to sieve through big data to 
find possibilities for repurposing from literature and clinical data (K. et al., 2021; D. et al., 2021). Lastly, through 
crowdsourcing and collaboration that is encouraged through open innovation platforms and hackathons, it creates 
group and innovative wisdom in the drug repurposing (J. et al., 2017; M. et al., 2019). These combined strategies 
constitute a strong model and important paradigm in offsetting unmet medical requirements, most notably in the 
field of rare diseases.  

Drug-centric 

Concerning drug repurposing, drug-based strategies include mainly aspects related to these drugs and their mode 
of action. This methodology stresses the definition of various pharmacological features, biochemical mechanisms, 
and targets for determined drugs. One can utilize vast repositories and unique computational platforms to look for 
appetizing repurposing targets based on the interactions between drugs and targets or metabolic pathways 
regulated by these targets. For example, in silico screening employs a molecular docking approach to estimate the 
effectiveness of existing drugs to interact with new targets related to different diseases, providing valuable 
information regarding potential expanded therapeutic uses (Gonçalves et al., 2018). Moreover, network 
pharmacology considers the effects that a drug may have on a biological network and seeks multi-target effects 
that may result in new indications for a drug (Li et al., 2014). High-throughput screening allows the screening of 
existing small molecules against different disease models, which enhances the direct discovery of efficacious 
treatment for ailments that were not initially targeted by those drugs (P. et al., 2006). The human narrative of this 
drug-centric perspective employs machine learning, one of the most effective methods of analyzing vast data sets 
of drug interactions, clinical outcomes, and literature to potentially ignore therapeutic possibilities (K. et al., 
2021). Furthermore, drug-centric drug repurposing directly focuses on properties of existing drugs, which makes 
this approach more productive for the creation of drugs, especially in cases when the development of new drugs 
is not feasible, for example, in the treatment of orphan diseases.  

Disease-centric 

Disease-repurposing strategies rely on recognizing the characteristics and pathogenesis of diseases in order to find 
drugs that could be used for their treatment. This approach places emphasis on the disease genes, signaling 
pathways, and biologic processes whereby investigators can systematically identify which of the known drugs 
affect these targets as desired to obtain a therapeutic effect. When studying diseases at the molecular and genetic 
level, researchers can then use what drugs are already available and which affect the same pathway or process. 
For instance, a disease-oriented approach may entail characterizing disease-related gene marker expression and 
then scanning the use of small molecules that affect such paths positively (H. et al., 2011). This approach 
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commonly utilizes omics platforms—genomics, proteomics, metabolomics., etc.—to build up a molecular picture 
of disease and repurpose candidates. Since disease-centric approaches rely on the drug activity in models that 
closely mimic the human condition, phenotypic screening methods that measure drug effects on the disease 
models are highly applicable. This method of screening points at compounds that facilitate preferred phenotypic 
alterations in cell lines or animal models of the disease (P. et al., 2006). Further, by incorporating the analysis of 
patients’ clinical results, it is possible to understand which treatment options out of numerous existing drugs might 
be effective within a specified patient cohort depending on their disease indicators (M. et al., 2019). For additional 
disease-centric drug repurposing with the help of machine learning and artificial intelligence, huge datasets can 
be analyzed to identify which of the chemicals could be utilized against other targets in the case of new diseases 
(K. et al., 2021). By concentrating less on the drug and more on the disease, this approach enhances a systematic, 
efficient repurposing technique in an effort to bring forward optimum treatments to diseases with limited 
therapeutic outcomes. 

Mitigating limitations of drug repurposing with AI 

Drug repurposing seems to be more effective and initially cheaper than the classic approach to drug development, 
which nevertheless has some constraints. Then the repurposed drugs may have lower target specificity, and the 
drugs may produce more side effects and may not be so effective. Moreover, the range of compounds that can be 
targeted might be limited, and repositioning of drugs may take more refining to serve a fresh purpose. Moreover, 
issues concerning intellectual property rights and the requirement of further trials act as problems. These 
imperatives can present some significant problems, but AI algorithms can be useful when facing these challenges. 
AI can process large daily streams of bio and chemical data and reveal new and unsuspected links between drugs, 
targets, and potential therapeutic uses. This translates to several advantages for AI,  

AI-powered prediction and minimization of off-target effects in drug repurposing 

Drug retaking, the use of known drugs for other diseases, is a potential strategy for the rapid reapproval of drug 
discovery. Nonetheless, the question of the safety of reused drugs in the intended new application remains a 
significant issue. On-target consequences may occur when the given molecule interacts with other molecules aside 
from the intended target; hence, side effects may occur. In here, AI appears prominently and affirmatively as a 
useful tool for predicting and thus guarding against untoward collateral consequences. Still, AI algorithms can 
operate on massive data sets, including drug-target relationships, protein structures, and side effects. This makes 
it possible for new drug repurposing to outline possible off-target effects for a given drug, thus easing clinical trial 
safety and efficiency. For instance, Baricitinib, initially used to treat rheumatoid arthritis patients, has potential to 
be used in treating COVID-19 because of its anti-inflammatory and antiviral effects. The second example is 
lopinavir/ritonavir, an HIV drug that was investigated as a therapeutic candidate for its ability to inhibit a critical 
SARS-CoV-2 protein (protease). AI analysis ascertained side effects on liver function, thereby defining its 
effectiveness. This opens a way towards the design of new, more selective inhibitors for SARS-CoV-2 and avoids 
problems of using drugs originally utilized for other purposes. 

AI-powered drug optimization strategies for repurposing 

AI in drug repurposing ensures that off-target effects are avoided and that drug efficiency and comfort are 
improved, thus changing the field of pharmacology and individualized medicine. Here’s a breakdown of how AI 
is impacting this field and the methodologies being applied: On big datasets of molecular interactions, ML 
algorithms applied, AI can find out new off-target interactions that may be overlooked by classical methods. These 
models employ structural and functional data to identify likely biological targets that the drug can modulate in 
order to lower the probability of undesired effects. Among DL techniques, CNNs and RNNs are more accurate in 
analyzing drug-protein interactions. It is these networks that can reveal elaborate patterns in molecular structures 
and rule out or explain drug actions on unintended targets. Deep generative models, including generative 
adversarial networks (GANs) and variational autoencoders (VAEs), support the creation of changes to the existing 
drugs, which reduce side effects without compromising the potency of the medications. Natural Language 
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Processing (NLP): Off-target interactions are obtained from mining medical literature, clinical trial data, and drug 
databases using NLP models. Thus, through drug-target relations extraction, NLP helps to prioritize potential 
drugs for repurposing to minimize side effects. Computational molecular docking identifies how a drug will bind 
with multiple targets with help from artificial intelligence. Virtual screening, together with data mining and 
prediction, selects druglike molecules that are likely to have fewer side effects. AI helps to identify and repurpose 
drugs faster by not requiring much laboratory work to be done. Such a speed is especially significant for addressing 
critical health concerns (such as COVID-19). Due to the reduction of side effects associated with repurposed 
drugs, patient compliance and improved survival rates can be achieved, based on complex diseases such as cancer 
and neurological disorders. AI is capable of repurposing drugs and recommending them according to genotype, 
molecular markers, and the environment and can sync the prescribed drugs with patient characteristics. Some AI 
models highly depend on good-quality data and diversity, while their performance can be limited by a lack of 
comparable datasets. There is an urgent need to build and disseminate open-access databases. Decision-making 
by artificial intelligence in drug repurposing should involve tremendous accountability, and therefore, there should 
always be transparency in the algorithms used. Integration with clinical trials: It is equally important to have AI-
predicted clinical trial designs as well as monitor actual impacts to continue proving and improving these 
technologies. AI-heritage in predictive and analytical possibilities contributes to overcoming the invariance in 
drug repurposing, making it more efficient, targeted, and safer for organisms; it opens the door to more flexible 
and responsive models of medicinal production. 

 
Figure No.02: AI – Powered and Minimization of off Target Effects in Drug Repurposing 

 

Drug repurposing, leveraging existing drugs for new therapeutic applications. 
Drug repurposing, a practice of using a particular drug for another purpose different from which it was initially 
developed, appears to be efficient in terms of time and costs. Compared with the development of new chemical 
entities, researchers can avoid many early development issues associated with drugs for minor metabolites, such 
as a significant amount of preclinical work and first-in-human dosing. It not only efficiently accelerates and 
decreases the expensive process of arrival to new treatments but also offers the motivation to meet the unfulfilled 
medical requirements, particularly in cases of rare and orphan diseases for which conventional generic drug 
development appears to be economically unviable. Previously developed drugs have favorable pharmacokinetics 
and toxicity profiles that allow reducing the discovery risks for new applications, as efficacy is already proven. 
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New approaches in computational technologies like machine learning and bioinformatics in supplementing 
potential new indications from big-data bases of drug interactions, patients, and molecular target outcomes. 
Additionally, the worldwide concern for immediate solutions to new diseases like COVID-19 served as another 
instance pushing for the concept of repurposing drugs as a sustainable solution to easily shift from older diseases 
to newer diseases. On the other hand, while drug repurposing has many benefits, there are some disadvantages, 
as new applications require extensive evidence to prove efficacy, which may be difficult to get past regulatory 
agencies in terms of drug approval, and patents may be an issue. However, the future lies in more funding and 
participation in research and collaboration between academia, pharma, and regulatory agencies in order to fully 
harness the potential of repurposing. What is more, by unlocking the dormant therapeutic possibilities of existing 
drugs, the healthcare industry can bring new therapies into practice more quickly, benefiting patients, and dealing 
with pressing health issues more efficiently. 

Figure No02: A Roadmap for Drug Repurposing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AI-powered drug optimization strategies for repurposing 
I-driven drug repositioning strategies in pharmacology are revolutionizing drug making by optimizing the 
efficacy, safety, and value of known drugs for new diseases. Here are some key strategies: 
Generative AI Models:  
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), which have been used in the 
generation of optimized drug candidates where molecular changes are made to improve the efficiency of drugs 
while minimizing side effects. Structure-Based Drug Design: The deep learning models predict diverse protein-
ligand interactions and essentially optimize the molecular conformations of drugs needed for high-level protein 
interactions, which is useful in using existing drugs to address new diseases with different signaling mechanisms.  
High-Throughput Virtual Screening (HTVS):  
AI rapidly and autonomously performs a virtual screening of drug libraries vs. multiple disease targets to select 
high-repo candidates. This process screens out unsuitable drugs early to maximize the efficiency for potential 
drugs. AI-Driven Molecular Docking: Molecular docking improves the compound's chance of binding to the new 
target through essentially mimicking and estimating interactions between a drug and the targeted protein at the 
molecular level. MTL frameworks can accurately predict multiple targets at once, and efficacy, toxicity, and side 
effects are vital when repositioning drugs. These models then facilitate the optimization of compounds by 
estimating and avoiding toxicity. Research utilizes NLP to find out possible side effects and interactions from 
scientific journals, clinical data, and real-world evidence to help researchers enhance drug profiles for the best 
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practice in new uses. Repurposed drugs utilize demographic and genetic information to further enhance AI models 
to craft the repurposed drugs to improve suitable patient populations, which, in return, minimizes the side 
consequences and enhances the overall usefulness of the selected drugs. Artificial intelligence brings multiple 
aspects of genetic information to drug repurposing, where the choice of drugs and the required changes are adapted 
to the genetic background of patients for achieving the best results in one or another subgroup of people. Machine 
learning in Dosage and Formulation Degree This ability of the use of artificial intelligence in recommending 
dosage levels that would effectively deliver the intended therapeutic value while at the same time reducing the 
levels of side effects possible is referred to as clinical decision support. It provides dosing outcomes for new 
indications by modeling distinctive dosages of drugs and their reactions in various patient categories. Based on 
the calculations of AI models, experts propose re-optimization, trucking, or otherwise altering the chemical 
structure to form nano-, transdermal-, or extended-release drugs for enhancing the bioavailability of repurposed 
drugs in target tissues. These AI-generated strategies reduce time and costs; thus, they reduce the amount of 
laboratory time needed to develop drug candidates while improving the quality of the design through simulations. 
With side effect profiles, dosage, and precision medicine, AI enhances safer and more effective repurposed drugs 
that accurately meet the patient’s needs. The method of using artificial intelligence in drug repurposing can quickly 
find cures for emerging diseases, which is particularly beneficial during crises. The integration of AI is improving 
drug repurposing by offering a functional and evidence-based avenue for optimization of drugs for more effective 
treatments. 
AI driven drug repurposing methods 
AI based techniques Repositioning in the drug discovery process is founded on more progressive computational 
techniques that can identify novel therapeutic uses of currently known drugs, making the process cheaper, quicker, 
and more efficient. Here are the primary AI-driven methods in drug repurposing: 
Deep Learning for Drug-Target Interaction Prediction 
Advanced deep learning has assumed the role of a revolutionary technology in DTI predictions to help researchers 
find novel uses for drugs by studying their interactions with multiple targets. A few of the dominant architectures 
for DTI prediction include CNNs, GNNs, RNNs, and Transformer models. Typically, CNNs analyze structural 
characteristics of drugs and proteins – certain sequences within their molecular and amino acid code to identify 
affinities and bonding sites. GNNs represent drugs and targets as graph structures, which capture essential 
molecular relationships that are vital in building a proper prediction of interactions. Recurrent neural networks 
and LSTM are perfect when it comes to representing biological sequences, while transformer models allow to 
generate context-dependent sequences by observing interactions between remote elements of biological 
sequences. Deep learning  depends on the representation methods of drugs and targets, where the mentioned 
entities are prepared into suitable forms for training. Molecular fingerprints portray drugs in a vector form in terms 
of their chemical characteristics, though embedding methods generate vectors where analogous drugs or targets 
are clustered for higher prediction efficacy.  
 
Drugs and targets represented as graphs are used in GNNs, where the graph includes nodes (atoms, amino acids) 
and edges (bonds, interactions), providing the models with information about the internal structure within the 
molecules and their connectivity. Sophisticated and credible machine learning methods are particularly essential 
for DTI prediction because the models are built using big data sets, including DrugBank, Binding DB, and Pub 
Chem. These databases offer fundamental data about the already recognized drug-target interactions, from which 
models can learn about possible new interactions. Techniques such as transfer learning make it easy for models 
to switch from big data to small data, improving the performance of predictions in these areas of low sample sizes 
or unexplored disease classes. Moreover, there are prediction workflows in the entire end-to-end: there is MTL, 
which allows models to predict more or several outputs such as binding affinity, drug efficacy, and toxicity. 
Another is self-supervised learning (SSL), which harnesses an abundance of unlabeled data; thus, it helps a model 
enhance its predictive capacity without being heavily supervised. Some of the areas within the drug repurposing 
where deep learning has been applied include target prediction, binding affinity, and side effect prediction. Target 
identification enables researchers to discover drugs that many prove useful in diseases that they were not initially 
intended for, hence boosting the repurposing strategies. Binding affinity prediction aids in ranking compounds 
with high affinities to the defined targets and thus enhances the possibility of identifying effective therapeutic 
treatments. These models estimate off-target outcomes based on unintended connections, hence assisting safer 



Md Tajul Islam, Abdullah Al Hossain Newaz, Rakesh Paul, Md Mehedi Hassan Melon, Muhamad Hussen 

Library Progress International| Vol.44 No.3 | July 2024                                                 21959 
 

drug repurposing choices. Nevertheless, the following can still be identified as critical issues: Test and Invalid 
Data Information models are based on the quality and range of data samples that are fed into the models; poor 
and/or a reduced range of data result in poor results. The fourth problem is model interpretability; it is inconvenient 
to work with DL models because they are considered ‘black boxes.’ The current approaches to increasing model 
interpretability may support the application of these approaches in drug discovery. When connected with other 
technologies, the benefits of applying deep learning for DTI prediction have a lot of benefits.  including quantum 
computing and high-throughput screening in combination with genomic data, deep learning analysis can offer 
even better and more selective drug repurposing. In essence, the benefits of applying deep learning for DTI 
prediction have a lot of benefits. These models are readily extensible to handle substantial volumes of data in 
order to give fast prediction rates for thousands of drug-target pairs.  
ML assisted virtual screening 
Virtual screening using machine learning technology in drug discovery has shown ultrarapid identification of 
compounds with a health impact. Machine learning improves conventional high-throughput screening techniques 
by allowing the identification of patterns across large chemical data sets. Some models of these types include 
Random Forests, Support Vector Machines, Convolutional Neural Networks , Graph Neural Networks , etc., 
which are efficient in predicting drug target interaction and affinities of the compound, and ADMET properties, 
which stand for the absorption, distribution, metabolism, excretion, and toxicity of the compound. This is realized 
by matching compounds against molecular fingerprints, SMILES strings, or other graph-based representations, 
which contain structural features essential for the estimation of biological activity. Thus, deep learning and 
generative models, including VAEs and GANs, widen the chemical space and perform de novo drug design, as 
well as discovering new chemical entities optimized for the particular targets. However, due to issues such as data 
quality, model interpretability, and the lack of experimental phantom validation, the proposed ML-assisted virtual 
screening provides a faster and cheaper approach for generating promising leads and reducing the drug discovery 
workflow. 
Automated AI-driven VS platform for repurposing 
The AI-enhanced VS platform for drug repurposing is a system that requires information filtering through machine 
learning algorithms with high throughput for the discovery of novel therapeutic applications of existing drugs. 
One such method is to input huge amounts of information, like compound libraries, biological targets, and disease 
biomarkers, to the platform. Some of the AI algorithms are chemical structure analyzers, drug-target interaction 
predictors, and efficacy estimators. Prominent state-of-the-art AI models include CNNs and GNNs, strengthening 
the places conceptualized to decode intricate molecular interactions and binding affinities. ADMET properties 
predicted so that repurposing drugs have to meet essential safety and pharmacokinetic criteria. AI  specially 
designed VS platform has an automated process that makes it able to screen millions of compounds and rank them 
based on their therapeutic index in a relatively short time. Variations of this process are provided by generative 
models like VAEs and RL to explore other potential molecular changes in order to increase the efficacy and 
decrease side effects. The platform minimizes reliance on the large amount of labor-intensive lab testing by 
providing researchers with both prioritized and accelerated drug candidates, thereby significantly shortening the 
time from discovery to clinical trials. This technology is useful to the process of cost-efficient repurposing that 
produces information regarding the drugs that can be used in a different way than initially intended and, as such, 
reduces the danger and price related to medication security. While there are established issues with the data 
accuracy and the interpretability of the models, an AI-driven VS platform is an effective means of identifying new 
therapeutic uses and could in the future lead to faster and more efficient treatment of patients with multiple unmet 
healthcare needs.  
Types of machine learning in repurposing 

With respect to drug repurposing, there are many opportunities with ML, with each method having its own 
comparative advantages for prediction of drug targets, potential side-effects, and new indications. The primary 
types of ML in drug repurposing include: 

Supervised Learning: 



Md Tajul Islam, Abdullah Al Hossain Newaz, Rakesh Paul, Md Mehedi Hassan Melon, Muhamad Hussen 

Library Progress International| Vol.44 No.3 | July 2024                                                 21960 
 

Supervised learning is then applied to the drug repurposing as the models are trained on labeled data that includes 
existing knowledge of the drug's target, pharmacological characteristics, and bioactivities. Thus, the use of the 
existing drugs with new targets further supports support vector machines (SVMs), random forests, and neural 
networks for predicting potential interactions. This way ensures that drugs with similar chemical properties or 
pharmacological classifications are identified for the sake of searching for drugs that may treat other diseases. 

Unsupervised Learning: 

This makes it ideal for use in clustering and discovering patterns in complex biological data where the ideal 
categories are not easily recognizable. Such methods as cauterization and dimensionality reduction (principal 
component analysis, PCA) show some connections between the drugs, diseases, and genes that are not seen 
otherwise. This is because one drug can be repurposed with another drug that works in the same mechanistic way, 
molecularly or therapeutically, yet researchers do not necessarily have to know the targets of these drugs. 

Semi-Supervised Learning: 

It forges labeled and unlabeled data together in situations where there is scarce labeled information and offers 
better accuracy. This approach is especially beneficial in drug repurposing since there is a vast amount of 
unlabeled biological and chemical data. Applying the concept of semi-supervised learning, models will be more 
precise at making predictions and be able to make general assumptions on data that may contain only a small 
percentage of positively labeled drug-target interactions. 

Reinforcement Learning : 

Reinforcement learning  is especially utilized in generative drug design and optimization for reuse. In RL, 
modifications of a drug structure are based on the scheduling of rewards that define desirable characteristics such 
as binding affinity or lower toxicity in a cyclic manner. RL is particularly valuable in searching for different 
conformations and forms of already available drugs that may be useful against a new target or a new disease while 
it does not harm the body. 

Transfer Learning: 

This means that transfer learning utilizes the knowledge in some other model and applies such knowledge in a 
new but different model. This approach is particularly beneficial for drug repurposing, for training models on one 
disease/drug class can effectively be applied to another without needing much data. For instance, a model that 
was learned from cancer- related drug interactions can be utilized in neurological diseases and bring forward 
knowledge faster than learning all over from scratch. 

Deep Learning: 

The state-of-the art deep learning systems such as CNN, RNN, and GNN are very efficient to process high-
dimensional biological data. CNNs are effective for image data in molecular analysis, RNNs for sequences like 
gene sequences, and GNNs for representing molecules in terms of graphs. Deep learning can accurately identify 
the drug-target interaction and binding affinities with computational methods and quickly screen large-scale 
compound libraries for drug repurposing. Different styles of machine learning have their strengths in repurposing 
of drugs, enhancing the discovery and optimization of existing molecules for new uses. When such approaches 
are integrated, the team can harness all the possibilities of machine learning to explore the existence of other 
possibilities for repurposing and bring potentially life-saving treatments to the market more effectively.  

AI Applications at different stages of drug repurposing 

Several phases of drug repurposing are definitely augmented through the use of applications in artificial 
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intelligence, such as the association of diseases with new bioinformatics targets that have been identified with the 
help of genomics. Machine learning classification and regression, specifically, generate the drug-target interaction 
predictions by considering existing databases while using deep learning and network pharmacology in virtual 
screening, organizing and improving HTS, and forecasting binding affinities. Clinical data analysis based on AI 
and machine learning, such as real-world evidence and natural language processing, reveal new patterns and reveal 
new applications for existing drugs. Despite clinical trials being research activities, AI plays a crucial role in 
patient and risk profiling, enriching trial design and results. Besides, it continues to keep track of the post-
marketing reports of any unfavorable outcomes so as to aid in finding other applications in treatment. Through 
improving and enhancing the systems regulating health and medical solutions, Al hastens the processes involved 
in the discovery and approval of healers by even tailoring them to match individuals, making it a revolutionary 
tool in current drug development. 
Challenges and considerations for AI-driven drug discovery 

The opportunities machine learning brings to drug discovery include significant enhancements of speed and 
efficacy, but it also raises distinct questions and concerns. 

Key challenges include: 

Data quality and availability: 

Deep dependency on data as an input to the training and validation of AI models is evident. However, even 
quantitative data may be of low quality, and the availability of large datasets might be scarce, especially for orphan 
diseases. There are several issues, such as data formatting inconsistency and biasness in historical data that 
produce wrong predictions. Interpretable AI: Some machine learning techniques, especially deep learning 
techniques, work in an ‘opaque’ manner, and that is to say the relationships between algorithms and decisions are 
not easily comprehensible. This lack of interpretability makes it hard to gain regulatory approval and integrate in 
clinical practices because stakeholders need to understand the AI-produced predictions. Integration with Existing 
Workflows: AI technologies can be integrated in the currently existing procedures of drug discovery, and this may 
not be easy to do. LISCs have to guarantee that AI instruments are compatible with prior technologies; this implies 
major systemic revisions for organizations as well as professional development for staff. Regulatory Hurdles: 
Currently, the adoption of AI in drug discovery remains a relatively new regulatory frontier. There should be 
proper guidelines and regulatory frameworks developed by the regulatory bodies because now the use of artificial 
intelligence in general has become vast, including the validation processes and its performance indicators, which 
should be safe and accurate enough in drug development. 

Ethical and Privacy Concerns: 

The incorporation of patient data in the process of training AI brings into question the issues of consent and 
privacy. Business entities and healthcare institutions face great challengers in trying to deal strictly with data 
protection laws and guarantee reasonable handling of patient data. 

Generalizability and robustness: 

It is challenging to apply AI models that were developed based on certain datasets across other demographical 
groups or in other scenarios. It is equally important to obtain models that are solid and readable for various 
applications in the drug discovery process if they are to be used as is. Collaboration and interdisciplinary expertise: 

Drug discovery information and AI can only be successful when there is a team effort involving data scientists, 
biologists, pharmacologists, and clinicians. There is a need to bring together experts in these disciplines to enhance 
AI solutions that will be relevant to solving problems. 

Cost and Resource Allocation: 



Md Tajul Islam, Abdullah Al Hossain Newaz, Rakesh Paul, Md Mehedi Hassan Melon, Muhamad Hussen 

Library Progress International| Vol.44 No.3 | July 2024                                                 21962 
 

AI is not a cheap activity, utilizing many resources, including but not limited to capital investment for 
implementing the structures, and actually implementing AI technologies requires human capital investment. Thus, 
leaders of organizations must take seriously the value that can be produced and the resources required for the 
development of projects based on artificial intelligence. Applying key solutions to these challenges and 
considerations is critical for the development of AI to unlock the capability that is essential for new drug discovery 
but also for safety, efficacy, and ethical purposes. 

Conclusion & future directions 

AI in drug discovery may change the general picture of the pharmaceutical industry’s development by rapidly 
driving new therapy solutions. The utilization of AI technologies can have a positive impact on reducing and 
improving the success rate of drug candidates and lowering costs by analyzing big data and using algorithms for 
better decisions. Nonetheless, to achieve these benefits, the industry must solve key questions like data quality, or 
how the applied AI models can be understood, or compliance with the law and ethical standards. Future 
developments within AI for Drug Discovery include greater optimism in the application of AI in drug discovery 
and reliable and enhanced AI architecture with a clear explanation feature for better understanding of their 
outcomes. It will be crucial to implement and create new guidelines and crucial regulation from the pharmaceutical 
firms, scholars, and regulatory agencies to recreate a set of best practices criteria to use AI ethics and efficiency 
in drug discovery. Furthermore, new precautions in dissemination of big data resources and governmental and 
private collaborations may make data heterogeneous, leading to better model development and evaluation. 
Additionally, the future of AI in drug discovery will bring more convergence of genomics, proteomics, and real-
world evidence analytics, as well as other additional AI tools to achieve more individualized therapies. With the 
advancements of AI, its use in drug repurposing and in the generation of new medicines will be more elaborate 
and can seriously change the course of medicine and create cures that can fill gaps and enhance the living 
conditions of patients worldwide. And thus, the main conclusion: a pragmatic perspective that strengthens 
innovation, safety, and ethic profiles will serve as the condition for AI to reveal its capabilities in medicinal search 
in the near future.  
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