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Abstract 
Cross-Site Scripting(XSS) is a critical vulnerability in web applications, in which attackers inject malicious 
scripts to compromise user data. In this paper, we highlight how cross-site scripting can be detected using 
various machine learning models like SVM, Logistic Regression, Random Forest, Naive Bayes, Gradient 
Boosting and deep learning LSTM model. Our findings show that the proposed models significantly enhance the 
accuracy of detecting malicious scripts, achiev-ing an accuracy of 89%. These methods provide an enhanced 
security to protect user data by detecting malicious scripts. Our findings offer insights in deploying a layered 
security approach against cross-site scripting for real world applica-tions. Future work will focus on using hybrid 
models for better accuracy and also more variety of datasets. Reinforcement learning could be explored for 
detection capabilities. 
Keywords: Cross-Site Scripting(XSS), Machine Learning(ML), Deep Learning(DL), Intrusion Detection 
Systems(IDS), Dimensionality Reduction, Hyperparameter Tuning 

 
1 Introduction 
Cross Site Scripting (XSS) attack is a significant threat to web applications where an attacker aims to execute 

malicious scripts in victim’s web browser by injecting malicious code in the legitimate web application. The 
actual attack occurs when the victim visits the web page or web application that executes the malicious code. 
The web page or web application becomes a vehicle to deliver the malicious script to the user’s browser. 
Traditional detection methods, while effective, often fail to keep up with the evolving complexity of XSS 
attacks. This research paper explores the application of machine learning techniques,to improve detection of 
XSS attacks. 
 

In this study, we preprocess a dataset of containing a broad range of XSS attack pat-terns,therefore preparing 
it for machine learning. A deep learning model, comprising of Long Short-Term Memory(LSTM) and dense 
layers, is built using Keras, with hyper-parameters fine-tuned through Keras Tuner which allows the model to 
general-ize and reduce the risk of overfitting. Also, various accuracy metrics and classification reports are 
used to evaluate model’s performance. 
 
The aim of this paper is to provide a better solution for improving web security and also how with the help of 

various machine learning models we can enhance the detection of XSS attacks, making web applications 
more secure and reliable to use. 
 
2 Literature Review 
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In [1], a model is proposed that can efficiently detect patterns and atypical behaviors associated with XSS 
attacks, thereby minimizing the likelihood of false alarms. How-ever, it is limited to blind XSS attacks and 
not very effective against DOM based or reflected XSS. 
 
In [2], utilizing keyword recognition as the foundation of the theory to assess the velocity of an attack is 

done, with a primary emphasis on the celerity of detection rather than attack identification, thereby facilitating 
the attainment of an expeditious resolution. However, there is no method to prevent overfitting or bias. 
 
In [3], a combination of Principal Component Analysis (PCA) and t-SNE (t-distributed Stochastic Neighbor 

Embedding) can be employed to optimize the visualization of high-dimensional data. This method addresses 
the potential compu-tational inefficiencies associated with t-SNE alone. By using PCA as a dimensionality 
reduction technique prior to applying t-SNE, we can significantly enhance processing speed while preserving 
the integrity of the data representation. 
 
In [4], the model to enhance real time cross-site scripting (XSS) detection capabilities specially those who 

involve credit card frauds by extracting features from http requests to focuses more on analyzing specific 
characters that indicate malicious activity. 
 
In [5], a method was suggested that uses principal component analysis and factor analysis for feature 

extraction this method focuses on identifying feature that showed trait of these vulnerabilities leading to 
enhance detection accuracy hence improving real time detection capabilities. 
 
In [6], the uses of decision tree model were highlighted to enhance performance of detecting cross-site 

scripting (XSS). Implemented a model using Random Forest and ADTree to classify and identify XSS attacks 
effectively by extracting Social Networking Site Keywords, HTML and URLs hence showed how effective 
decision tree model are to typical machine learning approaches. 
 

In [7], a model that utilizes lexical analysis of JavaScript tokens to identify obfus-cated JavaScript attacks was 
implemented. This method examines the structures and patterns within JavaScript tokens, discerning 
characteristics of obfuscation that could indicate malicious intent. Consequently, it enhances the detection of 
concealed threats. In [8], a model was deployed which uses lexical analysis of JavaScript token to detect 
obfuscated JavaScript attacks. This approach closely studied the structures and pat-terns in the JavaScript 
token and identified traits of obfuscation that may lead to malicious intent hence helping to detect more 
hidden threats. 
 
In [9], a detection system was proposed that utilizes sensitive word replacement and encoding obfuscation 

techniques. This system aims to preserve the functionality of payloads while bypassing security filters and 
disguising malicious scripts. By doing so, it becomes more challenging for Intrusion Detection Systems (IDS) 
to differentiate between harmful and legitimate content. 
 
In [10], a threat intelligence model was proposed that utilizes reinforcement learning (RL), statistical 

inference, and accuracy variability. Past historical attack data and historical trends analysis was used to train 
those models to make them effective against different types of attacks. 
 
In [11], an approach that integrated signature-based pattern matching algorithm with reinforcement learning 

to detect cloud based crossed site scripting attack was proposed. Signature based pattern matching algorithm 
helped to detect any such know attack pattern helping RL model to adapt and learn effectively. 
 
In [12], three deep learning architectures were deployed: Deep Neural Networks (DNN), Convolutional 

Neural Networks (CNN), and Long Short-Term Memory networks (LSTM) to detect various cyber attacks, 
including Denial of Service (DoS), Cross-Site Scripting (XSS), and SQL injection attacks. These models 
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facilitated general pattern recognition and excelled in identifying spatial hierarchies in data, making them 
suit-able for recognizing patterns in network traffic. Additionally, they captured temporal dependencies, 
which are essential for comprehending sequences in attack data. 
 
In [13], Long Short-Term Memory (LSTM) classifiers were implemented in conjunc-tion with Principal 

Component Analysis (PCA) and Mutual Information (MI) for the purpose of detecting cross-site scripting 
attacks. It demonstrates that dimen-sionality reduction techniques enhances the detection of multi-class 
attacks. Further research into real-time applications and improved detection strategies for obfuscated code 
should be employed, with the ultimate goal of developing more effective defense mechanisms against cyber 
threats. 
 
In [14], a model was deployed to emphasis more on feature extraction from HTTP request this was 

accomplish by deploying three machine learning models J48, OneR, and Na¨ıve Bayes—to detect XSS 
vulnerabilities in web applications. This method aimed to classify inputs as either benign or malicious 
focusing on lower layer data but neglected higher layer of web architecture. 
 
3 Methodology 

 
Fig. 1 Workflow of Machine Learning Model Selection and Evaluation 

 
Logistic regression 

A statistical model that can predict the probability of an event based on prior observation giving output in a 
binary format (0 or1) hence predicting the probability that a given input belongs to a particular category. The 
logistic regression model is represented as follows: 
 

 where, 
• P(Y=1|X) is the probability that the dependent variable Y equals 1 given the independent variables X. 
• e is the base of the natural logarithm. 
• 0 is the intercept (constant term). 
• 1,2,...,k are the coefficients for each independent X1,X2,...,Xk 

 Naive Bayes 
An algorithm used for classification task by assuming that features used for clas-sification are conditionally 
independent given class label thus when a class label is known then ones feature does not affect the presence 
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of another feature. The Bayes theorem formula used for probabilistic analysis is given by: 
 

 

 
Where: 
• P(A|B) is the posterior probability, the probability of class A given feature B. 
• P(B|A) is the likelihood, the probability of feature B given class A. 
• P(A) is the prior probability of class A. 
• P(B) is the evidence, the total probability of feature B. 

 
SVM 
Support Vector Machine (SVM) is a machine learning algorithm primarily used for classification tasks by 

finding the optimal hyperplane that best separates different classes in the feature space. Hence it is a decision 
boundary that maximizes the margin between the closest data points from each class, known as support 
vectors helping the model to enhance its generalisation capability. For the SVM model, the classification 
constraint is: 

 
 where:  

• hm(x) is the new weak learner fitted to the pseudo-residuals. 

 Random Forest 
A machine learning algorithm that employs an assembly of decision tree where individual tree is trained on a 

random subset of data and feature, prediction from each decision tree is aggregated on the bases of majority 
voting for classification or averaging for regression for the final prediction 

 

• w is the weight vector (normal to the hyperplane),  
• xi are the input feature vectors,  
• yi are the class labels (+1 or -1),  
• b is the bias term.  

 Gradient boosting 
A ensemble learning method which helps a model to correct errors made by other models hence builds a 

predictive model in a stage wise manner by combining multiple weak model hence eliminating a loss function 
by fitting new model in the residual of existing model allowing it to be highly efficient for complex and large 
dataset. 

 Fm(x) = Fm−1(x) + νhm(x) (4)  where: 

• Fm(x) is the updated model after adding the m-th weak learner. 
• Fm−1(x) is the previous model. 
• ν is the learning rate (a value between 0 and 1). 
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where: 

• Ti(x) is the prediction made by the i-th tree for input x. 

LSTM 
A type of recurrent neural network that learns from subsequences of data to elim-inate challenges related to 

long term dependencies thus remembering information for extended period of time 

This gate outputs values between 0 and 1, indicating how much of the previous cell state should be retained. 

The first equation decides which values to update, while the second generates candidate values for updating 

the cell state. 

This combines the retained information from the previous state with new candidate values. 

 
The first equation determines what part of the cell state will be output, and the second produces the hidden
state. Where: 

 
• n is the total number of trees in the forest. 

 

 

 

 

 

 

 

 

• xt is the input at time step t. 
• ht−1 is the hidden state from the previous time step. 
• Wf , Wi, Wc, Wo are weight matrices for each gate. 
• bf , bi, bc, bo are bias vectors for each gate. 
• σ is the sigmoid activation function.  

4 Experimentation and Results 
1.Experimental Setup 
The experiment has been conducted to detect Cross-Site Scripting(XSS) attacks using supervised ML based 

classification algorithms and DL based neural networks. The model architecture implements both ML and DL 
techniques separately on kaggle dataset link consisting of all kinds scripts (malicious and non-malicious) to 
detect whether a system is vulnerable or not.  

Dataset:-XSS Detection Dataset was split into 80% training data and 20% test data. Then data preprocessing 
is applied on script feature to remove HTML,XML tags and reduce unnecessary whitespaces.  

2. Evaluation Metrics 
The performance of a classification model is evaluated using metrics such as 
Accuracy, Precision, Recall, and F1 Score. Below are the equations for these metrics: 
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        These metrics provide a comprehensive evaluation of the model’s performance by balancing correctness, 
positive prediction quality, and the ability to find all positive instances. 

 3.Results 
The findings demonstrated in the table below emphasise the effectiveness of using various machine learning 

and deep learning techniques for detecting Cross-Site Script-ing(XSS) attacks, representing a remarkable 
enhancement in web security. These results depict how different machine learning and deep learning 
approaches can lead to more robust defences against XSS vulnerabilities, improving the overall security of 
web applications. Moreover, the proposed detection method has gone through rigor-ous testing and has 
proved to be more accurate than a lot of existing systems. This comparative analysis assesses its performance 
and highlights the strengths and weak-nesses of the proposed method relative to established approaches. By 
analysing these metrics, we gain valuable insights into the efficacy of the new method, ensuring that it is both 
innovative and practical for real-world applications. 

 These models were run in the Google Colab environment, which helped ensure consistency and better 
accuracy. Hyperparameter tuning was used to get accurate results and better performance. 

 

Model  Precision Recall F1 Score Accuracy 

Logistic Regression 0.91 0.89 0.89 89.41% 

Naive Bayes  0.84 0.74 0.73 74.87% 

Random Forest  0.91 0.89 0.89 89.37% 

SVM  0.91 0.90 0.89 89.26% 

Gradient Boosting  0.90 0.89 0.89 89.11% 

Table 1 Performance Metrics of Different Models 

 
From the table, we can see that Logistic regression showed better performance than all other algorithms,

having an accuracy of 89.41%. But, others like Random forest, SVM, Gradient Boosting, also showed good
perfor-mance having an accuracy of around 89%. Naive Bayes showed poor performance with accuracy of
just 74.87%, which meant that for detecting cross site 
scripting naive bayes is not a suitable method.  
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Fig. 2 
The red bar chart in Fig.2 shows that XSS attacks were not detected in cases with words or tokens like 160, 
10, edit, and , of, intelligence, etc. These words usually appear in benign sites or non-malicious sites. This 
indicates that sites having these keywords are generally safe and being used in everyday and legitimate 
content. 

 
Fig. 3 

 
The blue bar chart in Fig.3 shows that XSS attacks were detected in cases with words or tokens like test, xss, 

keyframes, target, and color, with test being the most frequently used. This indicates that sites having these 
keywords might be used for code testing purposes or they can be actually used in malicious scripts. 
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Fig. 4 Training and Validation Loss 

 
The graph in Fig.4 shows the training loss(blue) and validation loss(orange) over 100 epochs. The validation 

loss remains lower than the training loss, which indicates that the model is not over-fitting and has 
generalized well to unseen data. Also, the losses decline smoothly showing stable learning. 
 

 
Fig. 5 Training and Validation Accuracy 

 
The graph in Fig.5 shows the training accuracy(blue) and validation accu-racy(orange) over 100 epochs. The 

validation accuracy is seen higher than the training accuracy, which indicates the model is generalizing well 
and not overfitting. Both accuracies are remaining stable,suggesting that the model is learning well. 
 
5 Conclusion 

Thus, By implementing ML and DL techniques,we have achieved a decent aver-age accuracy of 89%.This 
accuracy has helped us greatly in detecting malicious HTML,XML scripts that can prevent rendering of 
scripts in the victim’s browser and prevent system compromise as well. Various hyperparameters in case of 
ML and epochs in case of DL have been applied to enhance accuracy and efficiency of model. More-over,the 
dataset used in the experiment is quite fairly unbiased dataset to avoid any kind of skewed results. Hence, 
both approaches demonstrates their robustness in iden-tifying potentially harmful code injections, suggesting 
that these models can serve as reliable tools for enhancing web security and prevent cyber attacks based on 
XSS. 
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6 Future Scope 
Future research could improve this study by using hybrid models that combine ML and DL for better 

detection accuracy and efficiency. By using various feature engineering techniques and hyperparameter 
tuning could also help improve model performance. Also, considering real-time detection frameworks with 
larger and more wide variety of datasets could further make this model useful in many more environments. 
Lastly, by deploying these models in real-world web applications we could get valuable insights for future 
security measures against XSS attacks. 
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