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Abstract 

To determine the optimum solution to a problem, optimizers are employed in a variety of subjects, including 

statistical analysis, mathematics, and computing. For the past few years, the Adaptive Moment Estimation, 

sometimes known as Adam, has been more popular for use as an optimizer in deep learning models. It is efficient 

and utilizes minimal memory. The algorithm "gradient descent with momentum" and "Root Mean Square 

Propagation (RMSP)" are intuitively combined in this method. To classify normal vs. AMD binary data on the 

optical coherence tomography (OCT) image dataset, the main objective of this work is to determine which 

optimizer yields the minimum loss and maximum accuracy throughout the training and testing phases of CNN, 

DNN, and VGG16 models. SGD, SGD with momentum, Agadrad, Adam, and RMS prop are the optimizers under 

investigation at different learning rates. Optimizing the learning rate and other hyperparameters enhances the 

deep learning model's accuracy and loss according to experiments. Thus, the results demonstrate that the Adam 

optimizer provides superior performance over all optimizers. The Adam optimizer could train all binary 

convolutional neural networks based on these results. 
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1. INTRODUCTION 

The number of people aged 50 and more is expected to reach 9.8 billion worldwide by 2050. The population of 

people aged 80 and above is projected to triple, from 132 million in 2020 to 426 million in 2050 (Bourne et al., 

2014). Fine vision, color vision, and other visual capabilities depend on the retina's macular region. Damage or 

lesions in the macular region may impair vision and cause blindness. Age-related macular degeneration (AMD), 

also known as senile macular degeneration, is a prevalent macular condition that affects persons over 45. One of 

the leading causes of blindness in older people is AMD, which rises with age. Early AMD identification is 

necessary for effective treatment (Bressler, 2002; Friedman, 2004). OCT is commonly used to diagnose AMD 

and other retinal disorders. Based on weak coherence light interference, OCT detects the return reflection or 

multiple dispersed signals in various layers of biological tissue. OCT scans biological tissue to provide two or 

three-dimensional structural images for eye disease diagnostics (Adhi & Duker, 2013). To segment images 

effectively, use spatial similarity and steerable filters to blend color and texture data, followed by SVM 

classification using FCM (Barui et al., 2018). Variable gradient summation makes speckle noise additive while 

preserving edge characteristics. Wavelet decomposition, NLM, VTV, and BM3D filters improve 300 carotid 

artery ultrasound images (Latha & Samiappan, 2019). 

 

Deep learning methods, particularly Convolutional Neural Networks (CNN), have shown great success in medical 

image analysis, with automated diagnosis by artificial intelligence being the focus of specialist physicians due to 

its high speed and low error rate. The images were sent into a deep neural network trained to distinguish between  

http://www.bpasjournals.com/
mailto:lr1054@srmist.edu.in


R. Loganathan, S. Latha 

Library Progress International| Vol.44 No.3 |Jul-Dec 2024 20897 

 

 

 

normal and AMD eyes. Accuracy was 87.63 percent, and the area under the ROC was 92.78% at the image level. 

Accuracy was 88.98%, and the area under the ROC was 93.83% at the macula level. Deep learning image 

classification is accurate and efficient. These results are crucial for using OCT in automated screening and 

developing computer-aided diagnostic systems. 

 

To classify data using deep learning, trained a VGG16 convolutional neural network variant. SGD optimized 100 

images. After 500 iterations, they compared the model loss to the validation set. The decreased loss and validation 

accuracy ended training (Lee et al., 2017). Eliminating a few deep convolutional layers from pre-trained deep 

neural networks (DNN) may improve retinal OCT image classification. They tested deep neural network setups 

for small and large OCT datasets. Experimentally, enhanced deep neural networks improve classification accuracy and 

computing load (Ji et al., 2019). The objective of this study is to identify the best optimizers for the binary 

classification of normal vs AMD OCT images. 

 

1. RELATED WORK 

 

The image-based deep learning approaches employ the Inception-v3 model that has been pre-trained. The 

weights of the convolutional layers are modified, and subsequently, the final dense (softmax) layer is fine-tuned. 

All sub-network layers are finetuned in this paper. Adam optimizer trains layers in batches of 32 with a learning 

rate of 0.001, decay rate of 0.3 (Inception-v3 and ResNet50) or 0.01 (DenseNet121), β1 of 0.9, and β2 of 0.999. 

A 20-epoch training period ensures convergence. Images in Inception-v3 are 299 x 299, whereas ResNet50 and 

Dense-Net121 are 224 x 224. A pre-processed dataset is trained and tested using 280 AMD, DME, and NOR 

images. All sub-network layers were finetuned as in the large-scale experiment. Thirty epochs instead of 20 trained the 

tiny dataset 10 times in each experiment. Mean ± SD accuracy, sensitivity, and specificity were computed 

(Kermany et al., 2018). 

 

As a result of recent empirical comparisons, it has been shown that the meta-parameter search space is the 

most important factor when selecting an optimizer, and inclusion relationships between optimizers matter in 

practice, with more general optimizers always outperforming special cases (Herrera-Alcántara & Castelán- 

Aguilar, 2023). This paper analyses how optimizers affect CNN performance. Two experiments were done. From 

scratch, SGD, Adam, Adadelta, and AdaGrad optimized the VGG11 CNN. Second, the same four optimizers 

tweaked AlexNet CNN to classify Persian handwritten words. Adam and AdaGrad have superior training costs 

and recognition accuracy. Lower initial learning rates result in quicker convergence for the Adam optimizer 

(Błasiok et al., 2023). 

 

Optimizers change weight parameters to reduce the error or loss function, making them essential to neural 

network training (Chen et al., 2023). The optimizer minimizes the error function, the difference between the actual and 

projected values (Ando et al., 2023). Select the optimizer and its algorithmic hyperparameters before training. The 

optimizer's choice affects model performance. The issue and dataset determine the optimizer (Choi et al., 2019). 

This research compares SGD, SGD with momentum, Adagrad, RMSprop, and Adam optimizers (Zohrevand & 

Imani, 2022). 

 

SGD, one of the first neural network training algorithms, is simple. SGD with Momentum accelerates convergence by 

considering prior updates, overcoming oscillations, and high curvature in the loss landscape. Adagrad's historical 

gradient-based learning rate fits sparse data and informative features. Squared gradients decrease and increase 

the speed. RMSprop fixed the AdaGrad optimizer's monotonically declining learning rate. Adam combines 

AdaGrad and RMSProp techniques for performance and robustness. To maximize model performance, the 

optimizer and hyperparameters must be carefully chosen. 

 

2. METHODOLOGY 

 

3.1 Model 

 

Convolutional neural network (CNN) model: A CNN model is constructed using several convolutional layers, and 

then max-pooling layers. Through non-linear activations and learnable filters, these layers expedite the process of    
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discovering spatial hierarchy in the input images. The self-features module, part of the CNN class, defines the 

convolutional layers used to extract features from the input images. ReLU activation functions are utilized in 

conjunction with max-pooling layers, which downsample the feature maps to achieve non-linearity (Das et al., 

2021; Kim & Tran, 2020). 

 

Dense neural network (DNN) model: The DNN model is based on a feed-forward neural network with many fully 

connected layers. The DNN class's self-flatten module maps the input image into a one-dimensional tensor to 

facilitate feature representation. At this phase, the data from the image's spatial components are transformed into 

a feature vector. The normalized feature vector is fed via fully linked layers activated by ReLU to learn the 

classification (Mathews & Anzar, 2022). 

 

Visual Geometry Subgroup 16 (VGG16): The VGG16 deep CNN architecture is well-known for being very 

complex and remarkably easy to understand. After that, multiple convolutional layers with tiny filter sizes come 

after many max-pooling layers. Component Detection Features extracted using convolutional layers are specified 

in the VGG16 classes self-features module. To learn and downsample the feature maps, employ ReLU activations 

and max-pooling layers. Data classification is handled by the self-classifier module of the VGG16 class, which 

also specifies the fully linked layers. Flattening the convolutional layer output and passing it through ReLU- 

activated fully connected layers yields the final classification decision. Classification is handled by the CNN 

class's self-classifier module, which creates the necessary fully linked layers. To learn the final classification 

decision, ReLU activates fully connected layers once the output of the convolutional layers has been flattened 

(Kim & Tran, 2021). The deep learning models are implemented in Python using TensorFlow Keras (Optimizer, 

n.d.; Tensorflow, n.d.). 

 

Figure 1. Optimization with Deep Learning Models 

 

Each of the three models is trained independently, with the parameters defined by backpropagation and 

optimization iterations shown in Figure 1. The cross-entropy loss method calculates loss and solves problems 

involving multiple classification categories. Throughout the iteration of the training and testing loops, the forward 

pass, loss, and optimizer are all calculated using the continuous data stream. The model's parameters are then 

revised with the aid of the optimizers. CNN, DNN, and VGG16 model training and assessment using OCTID 

datasets may all use the described approach and scripts as a starting point 

 

3.2 Dataset 

 

OCT images from AMD patients and normal people were used in the investigation. This dataset supports 

comparative analysis and AMD retinal abnormality study (Gholami et al., 2020). It consists of a validation set, a 

training set, and a test set. All OCT scans employed a 224 × 224 × 3 image size with 3 colour channels. This 

protocol was implemented to ensure compatibility with deep learning (DL) based optimization algorithms in 

future generations. The dataset, including the training and test sets for both AMD and normal OCT images, is 

shown in Table 1. 
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Table 1. Dataset, training and testing set, OCTID database of AMD and Normal retina 

Category Count 
Training 

set 

Testing 

set 

Normal Retina 206 144 21 

AMD 55 38 6 

Total Images 261 182 27 

 

3.3 Evaluation metrics 

 

Train Loss: It measures the mismatch between the model's predictions and actual labels. Smaller loss numbers 

suggest a higher level of accuracy in matching predictions with actual labels. Less train loss means the model is 

learning training data patterns accurately. Measures model adherence to training data. 

 

Test Loss: The differences between the model's predictions and the actual scores on the testing set are quantified 

as the test loss. A lower value of test loss signifies that the model is generalizing its learned patterns to novel, 

unobserved data with greater accuracy. It evaluates model generalization on untrained data. 

 

Train Accuracy: Training accuracy evaluates the ratio of accurate predictions generated by the model on the 

training dataset. A high score indicates that the model has learned the training data effectively.  

 

Test Accuracy: A model's predictive power on new data is evaluated by testing its accuracy. Higher testing 

accuracy shows that the model has a larger generalization performance. 

 

3.4 Experimental Setup 

 

(a) CNN 
 

(b) DNN    (c) VGG16     

Figure 2. The architecture of the (a) CNN, (b) DNN, and (c) VGG16 networks 
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The current study investigates the impact of five optimization algorithms Adam, Adagrad, RMSprop, stochastic gradient 

descent (SGD), and SGD with momentum, on three different deep learning models. More precisely, the models used 

were CNN, DNN, and VGG16 deep neural networks shown in Figure 2. Each optimizer was used to train and test 

every model for a total of 10 epochs. OCT image data was gathered for each optimizer about performance measures 

such as loss, training accuracy, and testing accuracy. A comprehensive examination of experimental  data was 

conducted to evaluate the efficacy of optimization techniques on the training of CNN, DNN, and VGG16 models 

for classification work.  

 

3. RESULTS AND DISCUSSION 

 

4.1 Findings 

 

To experiment comparing the efficacy of five different optimizers (SGD, SGD with momentum, Adagrad, 

RMSprop, and Adam) across three distinct models (Convolutional Neural Network (CNN), Deep Neural Network 

(DNN), and VGG16). This experiment aims to compare and contrast the models' performance in training and 

testing using various optimization strategies. 

 

 
(a) CNN Model 
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(b) DNN Model 

 

 
(c) VGG16 Model 

Figure 3. Loss curves for various optimizers at Learning Rate = 0.001, for (a) CNN (b) DNN, and (c) VGG16 

Model 

 
Ten times the model was trained. To improve accuracy, use more epochs through the OCTID dataset. After 

training on the OCTID dataset, the model is tested on 27 test images. Accuracy and loss could evaluate model 

performance. Models with the lowest loss and highest accuracy perform well. This comparison shows which 

model is best. 

 

The experiment's findings provide insight into how the efficacy of different optimizers affects the precision with 

which CNN, DNN, and VGG16 models are trained and tested. By comparing the outcomes, you may determine 

which optimizers result in better convergence and more accurate models for each kind of data. These findings 

might be a basis for future optimization strategy decisions for comparable tasks and models. 
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The train and test loss is too high in the RMSprop optimizer at the initial epoch for all 3 deep learning models 

shown in Figure 3(a) CNN, Figure 3(b) DNN, and Figure 3(c) VGG16 models. Adam optimizers are more suited 

to the binary classification of OCT images, and after 10 epochs of training, the loss is lower than with other 

optimizers. All 3 models exhibited the worst performance for SGD optimizers for producing the highest losses, 

and the RMSprop optimizer was an average performer for the CNN and DNN models. Therefore, it can be shown 

that all three deep learning models exhibit the lowest loss minimization performance when applied with the Adam 

optimizer. 

 

Table 2. Train Loss analysis of deep learning models for different optimizers with different learning rates 

Models CNN DNN VGG16 

Optimizers / 

Learning rate 
0.001 0.0001 0.00001 0.001 0.0001 0.00001 0.001 0.0001 0.00001 

SGD 0.4917 0.5204 0.6669 0.0003 0.0043 0.6318 0.0001 0.0001 0.3253 

SGD with 

momentum 
0.3692 0.4818 0.5446 0.0003 0.0039 0.6193 0.0000 0.0001 0.3243 

Adagrad 0.1278 0.4500 0.4542 0.0000 0.0023 0.5860 0.0000 0.0000 0.3100 

RMSprop 0.0221 0.0831 0.6922 0.1759 0.0032 0.3857 0.0001 0.0004 0.2571 

Adam 0.0004 0.0066 0.6437 0.0001 0.0001 0.3328 0.0000 0.0000 0.2228 

 

Table 3. Test Loss analysis of deep learning models for different optimizers with different learning rates 

Models CNN DNN VGG16 

Optimizers / 

Learning rate 
0.001 0.0001 0.00001 0.001 0.0001 0.00001 0.001 0.0001 0.00001 

SGD 0.5175 0.5331 0.6662 0.0435 0.2542 0.6401 0.1770 0.3194 0.3788 

SGD with 

momentum 

0.4024 0.5076 0.5570 0.0489 0.2279 0.6277 0.1201 0.3186 0.3719 

Adagrad 0.3071 0.4787 0.4823 0.0274 0.2435 0.5976 0.1161 0.3020 0.3629 

RMSprop 0.0705 0.2132 0.6924 0.3685 0.3077 0.4228 0.3658 0.4000 0.3037 

Adam 0.0425 0.2670 0.6415 0.1984 0.3195 0.3796 0.0012 0.3904 0.2797 

 

4.1 Discussion 

 

The outcomes of the efficacy of various optimizers and learning rates for the CNN, DNN, and VGG16 

architectures are comprehensively presented in Table 2 and Table 3. Adam and Adagrad consistently exhibit 

superior performance across all models and learning rates. Overall learning rates, the Adam optimizer produced 

the lowest loss for the CNN model. More precisely, Adam optimizer loss is the least at the maximum learning 

rate (0.001). In contrast, the maximum loss resulted from the SGD consistently lagging, proved to be the least 

effective optimizer. This tendency remained constant for different learning rates. 

 

While Adam optimizer once again outperformed all other approaches at medium learning rates (0.0001) in the 

DNN model, Adagrad unexpectedly achieved the lowest loss (0.00001) across the board. Among the VGG16 

optimizers, Adagrad outperformed the others at the slowest learning rate, whereas Adam performed admirably at 

all learning rates. 

  

Figure 4(a) shows that the Adam optimizer is better for the CNN model than other optimizers, with consistently 

reduced loss across varied training and test loss for all learning rates. SGD and SGD with momentum exhibit the 

highest losses whereas Adagrad and RMSprop make average performance. Overall, the Adam optimizer 

minimized loss best for all three deep learning models, especially at medium learning rates. 
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(a) CNN (b) DNN 

 

 

(a) VGG16 

Figure 4. Loss curves for various optimizers with different Learning Rates for (a) CNN (b) DNN and (c) 

VGG16 Model. 

 
According to Figure 4(b), the DNN model that was optimized using the Adagrad and Adam optimizer observed 

the least amount of train and test loss when compared with all other optimizers for all learning rates. This Graph 

demonstrates loss and optimizer for different learning rates during the training, where RMSprop shows it produces 

moderate performance, while SGD and SGD with momentum consistently lag, with the highest losses. 

 

According to Figure 4(c), the VGG16 model with Adam and Adagrad optimizer produced the lowest loss 

compared to other optimizers for all the learning rates. This Graph demonstrates loss and optimizer for different 

learning rates during the training, where SGD and SGD with momentum produce the highest loss for all available 

learning rates, while RMSprop performs moderately. 

 

Table 4 summarizes the training accuracy values that were attained during the training of the CNN, DNN, and 

VGG16 models with various optimizers and learning rates. The Adam optimizer produced the highest training 

accuracy, 100.00% for all three deep learning models with the highest (0.001) and medium (0.0001) learning rates. In 

contrast, the training accuracy is 100 % for all the optimizers for the VGG16 model with the highest and medium 

learning rates. 

 

For the medium learning rate (0.0001), all five optimizers perform best for the DNN and VGG16 models. For the 

lowest learning rate (0.00001), SGD and SGD with momentum performed the lowest training accuracy of 79.12% 

for all 4 optimizers except the Adam optimizer which performs well in the CNN model. Whereas the SGD 

optimizer performed best for the DNN model and Adam optimizer is best for the VGG16 model. 
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Table 4. Training accuracy analysis of deep learning models for optimizers with different learning rates 

Models CNN DNN VGG16 

Optimizers / 

Learning rate 
0.001 0.0001 0.00001 0.001 0.0001 0.00001 0.001 0.0001 0.00001 

SGD 79.12 79.12 79.12 100.00 100.00 92.85 100.00 100.00 84.07 

SGD with 

momentum 
81.86 79.12 79.12 100.00 100.00 87.36 100.00 100.00 85.71 

Adagrad 95.60 79.12 79.12 100.00 100.00 80.77 100.00 100.00 86.81 

RMSprop 100.00 98.35 79.12 79.67 100.00 79.67 100.00 100.00 91.21 

Adam 100.00 100.00 94.50 100.00 100.00 84.07 100.00 100.00 92.31 

 

Table 5 shows CNN, DNN, and VGG16 architecture testing accuracy for optimizers with varied learning rates. 

The CNN model had the best training accuracy (96.29%) using the RMSprop and Adam optimizer, while the 

DNN model had the highest learning rate (0.001). All VGG16 optimizers have 77.78% training accuracy. For the 

medium learning rate (0.0001), Adam and RMSprop optimizer work best for CNN and VGG16 models, whereas 

Adam, SGD, and SGD with momentum perform best for DNN. 

 

For the lowest learning rate (0.00001), all 4 optimizers have the lowest testing accuracy of 77.78% for the CNN 

model, 3 optimizers for the DNN model, and SGD optimizer for the VGG16 model. For the CNN model with all 

learning rates, the Optimizer Adam reduces losses in iterations while maintaining its optimum accuracy. The 

Adam Optimizer reduces the amount of loss that occurs as the number of epochs increases, while simultaneously 

increasing the results' dependability. Adam Optimizer achieves optimal performance with an optimal score of 

100% in VGG16 for the highest learning rate. 

 

For the medium learning rate (0.0001), The Adam optimizer reduces loss for the duration of an epoch; it maintains the 

best test accuracy of 92.59% for all the 3 deep learning models, respectively. SGD and SGD with momentum 

optimizers perform best for the slowest learning rate (0.00001) for the DNN model. In comparison, Adam 

optimizers perform best for CNN and VGG16 models with the lowest loss and good accuracy. 

 

Table 5. Testing accuracy analysis of deep learning models for optimizers with different learning rates 

Models CNN DNN VGG16 

Optimizers / 

Learning rate 
0.001 0.0001 0.00001 0.001 0.0001 0.00001 0.001 0.0001 0.00001 

SGD 77.78 77.78 77.78 96.29 92.59 88.89 96.29 92.59 77.78 

SGD with 

momentum 
77.78 77.78 77.78 96.29 92.59 81.48 96.29 92.59 81.48 

Adagrad 88.89 77.78 77.78 96.29 92.59 77.78 96.29 92.59 81.89 

RMSprop 96.29 88.89 77.78 77.78 92.59 77.78 96.29 92.59 88.89 

Adam 96.29 92.59 88.89 96.29 92.59 77.78 100.00 92.59 88.89 

 

 

CONCLUSIONS 

 

CNN easily performs the task of classifying the images. The function of optimizers and their effect on the 

classifier's performance are extensively discussed. For binary classification of normal vs. AMD OCT images, The 

ADAM optimizer has been shown to achieve a training accuracy of 100% at a maximum learning rate of 0.001 

for all three deep learning models. The CNN model, coupled with the ADAM optimizer, is a great choice for the 

binary classification of OCT images compared with VGG16 and DNN. After precise testing, the Adam optimizer 

proved to be the most effective in accurately classifying OCT images as either AMD or Normal while minimizing 

the loss for all learning rates across CNN, DNN, and VGG16 models. 
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