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Abstract

To determine the optimum solution to a problem, optimizers are employed in a variety of subjects, including
statistical analysis, mathematics, and computing. For the past few years, the Adaptive Moment Estimation,
sometimes known as Adam, has been more popular for use as an optimizer in deep learning models. It is efficient
and utilizes minimal memory. The algorithm "gradient descent with momentum" and "Root Mean Square
Propagation (RMSP)" are intuitively combined in this method. To classify normal vs. AMD binary data on the
optical coherence tomography (OCT) image dataset, the main objective of this work is to determine which
optimizer yields the minimum loss and maximum accuracy throughout the training and testing phases of CNN,
DNN, and VGG16 models. SGD, SGD with momentum, Agadrad, Adam, and RMS prop are the optimizers under
investigation at different learning rates. Optimizing the learning rate and other hyperparameters enhances the
deep learning model's accuracy and loss according to experiments. Thus, the results demonstrate that the Adam
optimizer provides superior performance over all optimizers. The Adam optimizer could train all binary
convolutional neural networks based on these results.
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1. INTRODUCTION

The number of people aged 50 and more is expected to reach 9.8 billion worldwide by 2050. The population of
people aged 80 and above is projected to triple, from 132 million in 2020 to 426 million in 2050 (Bourne et al.,
2014). Fine vision, color vision, and other visual capabilities depend on the retina's macular region. Damage or
lesions in the macular region may impair vision and cause blindness. Age-related macular degeneration (AMD),
also known as senile macular degeneration, is a prevalent macular condition that affects persons over 45. One of
the leading causes of blindness in older people is AMD, which rises with age. Early AMD identification is
necessary for effective treatment (Bressler, 2002; Friedman, 2004). OCT is commonly used to diagnose AMD
and other retinal disorders. Based on weak coherence light interference, OCT detects the return reflection or
multiple dispersed signals in various layers of biological tissue. OCT scans biological tissue to provide two or
three-dimensional structural images for eye disease diagnostics (Adhi & Duker, 2013). To segment images
effectively, use spatial similarity and steerable filters to blend color and texture data, followed by SVM
classification using FCM (Barui et al., 2018). Variable gradient summation makes speckle noise additive while
preserving edge characteristics. Wavelet decomposition, NLM, VTV, and BM3D filters improve 300 carotid
artery ultrasound images (Latha & Samiappan, 2019).

Deep learning methods, particularly Convolutional Neural Networks (CNN), have shown great success in medical
image analysis, with automated diagnosis by artificial intelligence being the focus of specialist physicians due to
its high speed and low error rate. The images were sent into a deep neural network trained to distinguish between
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normal and AMD eyes. Accuracy was 87.63 percent, and the area under the ROC was 92.78% at the image level.
Accuracy was 88.98%, and the area under the ROC was 93.83% at the macula level. Deep learning image
classification is accurate and efficient. These results are crucial for using OCT in automated screening and
developing computer-aided diagnostic systems.

To classify data using deep learning, trained a VGG16 convolutional neural network variant. SGD optimized 100
images. After 500 iterations, they compared the model loss to the validation set. The decreased loss and validation
accuracy ended training (Lee et al., 2017). Eliminating a few deep convolutional layers from pre-trained deep
neural networks (DNN) may improve retinal OCT image classification. They tested deep neural network setups
for small and large OCT datasets. Experimentally, enhanced deep neural networks improve classification accuracy and
computing load (Ji et al., 2019). The objective of this study is to identify the best optimizers for the binary
classification of normal vs AMD OCT images.

1. RELATED WORK

The image-based deep learning approaches employ the Inception-v3 model that has been pre-trained. The
weights of the convolutional layers are modified, and subsequently, the final dense (softmax) layer is fine-tuned.
All sub-network layers are finetuned in this paper. Adam optimizer trains layers in batches of 32 with a learning
rate of 0.001, decay rate of 0.3 (Inception-v3 and ResNet50) or 0.01 (DenseNet121), 1 of 0.9, and B2 of 0.999.
A 20-epoch training period ensures convergence. Images in Inception-v3 are 299 x 299, whereas ResNet50 and
Dense-Netl121 are 224 x 224. A pre-processed dataset is trained and tested using 280 AMD, DME, and NOR
images. All sub-network layers were finetuned as in the large-scale experiment. Thirty epochs instead of 20 trained the
tiny dataset 10 times in each experiment. Mean + SD accuracy, sensitivity, and specificity were computed
(Kermany et al., 2018).

As a result of recent empirical comparisons, it has been shown that the meta-parameter search space is the
most important factor when selecting an optimizer, and inclusion relationships between optimizers matter in
practice, with more general optimizers always outperforming special cases (Herrera-Alcantara & Castelan-
Aguilar, 2023). This paper analyses how optimizers affect CNN performance. Two experiments were done. From
scratch, SGD, Adam, Adadelta, and AdaGrad optimized the VGG11 CNN. Second, the same four optimizers
tweaked AlexNet CNN to classify Persian handwritten words. Adam and AdaGrad have superior training costs
and recognition accuracy. Lower initial learning rates result in quicker convergence for the Adam optimizer
(Btasiok et al., 2023).

Optimizers change weight parameters to reduce the error or loss function, making them essential to neural
network training (Chen et al., 2023). The optimizer minimizes the error function, the difference between the actual and
projected values (Ando et al., 2023). Select the optimizer and its algorithmic hyperparameters before training. The
optimizer's choice affects model performance. The issue and dataset determine the optimizer (Choi et al., 2019).
This research compares SGD, SGD with momentum, Adagrad, RMSprop, and Adam optimizers (Zohrevand &
Imani, 2022).

SGD, one of the first neural network training algorithms, is simple. SGD with Momentum accelerates convergence by
considering prior updates, overcoming oscillations, and high curvature in the loss landscape. Adagrad's historical
gradient-based learning rate fits sparse data and informative features. Squared gradients decrease and increase
the speed. RMSprop fixed the AdaGrad optimizer's monotonically declining learning rate. Adam combines
AdaGrad and RMSProp techniques for performance and robustness. To maximize model performance, the
optimizer and hyperparameters must be carefully chosen.

2. METHODOLOGY

3.1 Model

Convolutional neural network (CNN) model: A CNN model is constructed using several convolutional layers, and
then max-pooling layers. Through non-linear activations and learnable filters, these layers expedite the process of
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discovering spatial hierarchy in the input images. The self-features module, part of the CNN class, defines the
convolutional layers used to extract features from the input images. ReLU activation functions are utilized in
conjunction with max-pooling layers, which downsample the feature maps to achieve non-linearity (Das et al.,
2021; Kim & Tran, 2020).

Dense neural network (DNN) model: The DNN model is based on a feed-forward neural network with many fully
connected layers. The DNN class's self-flatten module maps the input image into a one-dimensional tensor to
facilitate feature representation. At this phase, the data from the image's spatial components are transformed into
a feature vector. The normalized feature vector is fed via fully linked layers activated by ReLU to learn the
classification (Mathews & Anzar, 2022).

Visual Geometry Subgroup 16 (VGGI16): The VGG16 deep CNN architecture is well-known for being very
complex and remarkably easy to understand. After that, multiple convolutional layers with tiny filter sizes come
after many max-pooling layers. Component Detection Features extracted using convolutional layers are specified
in the VGG16 classes self-features module. To learn and downsample the feature maps, employ ReLU activations
and max-pooling layers. Data classification is handled by the self-classifier module of the VGG16 class, which
also specifies the fully linked layers. Flattening the convolutional layer output and passing it through ReLU-
activated fully connected layers yields the final classification decision. Classification is handled by the CNN
class's self-classifier module, which creates the necessary fully linked layers. To learn the final classification
decision, ReLU activates fully connected layers once the output of the convolutional layers has been flattened
(Kim & Tran, 2021). The deep learning models are implemented in Python using TensorFlow Keras (Optimizer,
n.d.; Tensorflow, n.d.).
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Figure 1. Optimization with Deep Learning Models

Each of the three models is trained independently, with the parameters defined by backpropagation and
optimization iterations shown in Figure 1. The cross-entropy loss method calculates loss and solves problems
involving multiple classification categories. Throughout the iteration of the training and testing loops, the forward
pass, loss, and optimizer are all calculated using the continuous data stream. The model's parameters are then
revised with the aid of the optimizers. CNN, DNN, and VGG16 model training and assessment using OCTID
datasets may all use the described approach and scripts as a starting point

3.2 Dataset

OCT images from AMD patients and normal people were used in the investigation. This dataset supports
comparative analysis and AMD retinal abnormality study (Gholami et al., 2020). It consists of a validation set, a
training set, and a test set. All OCT scans employed a 224 x 224 x 3 image size with 3 colour channels. This
protocol was implemented to ensure compatibility with deep learning (DL) based optimization algorithms in
future generations. The dataset, including the training and test sets for both AMD and normal OCT images, is
shown in Table 1.
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Table 1. Dataset, training and testing set, OCTID database of AMD and Normal retina

Category Count Training Testing
set set
Normal Retina 206 144 21
AMD 55 38 6
Total Images 261 182 27

3.3 Evaluation metrics

Train Loss: It measures the mismatch between the model's predictions and actual labels. Smaller loss numbers
suggest a higher level of accuracy in matching predictions with actual labels. Less train loss means the model is
learning training data patterns accurately. Measures model adherence to training data.

Test Loss: The differences between the model's predictions and the actual scores on the testing set are quantified
as the test loss. A lower value of test loss signifies that the model is generalizing its learned patterns to novel,

unobserved data with greater accuracy. It evaluates model generalization on untrained data.

Train Accuracy: Training accuracy evaluates the ratio of accurate predictions generated by the model on the
training dataset. A high score indicates that the model has learned the training data effectively.

Test Accuracy: A model's predictive power on new data is evaluated by testing its accuracy. Higher testing
accuracy shows that the model has a larger generalization performance.

3.4 Experimental Setup
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The current study investigates the impact of five optimization algorithms Adam, Adagrad, RMSprop, stochastic gradient
descent (SGD), and SGD with momentum, on three different deep learning models. More precisely, the models used
were CNN, DNN, and VGG16 deep neural networks shown in Figure 2. Each optimizer was used to train and test
every model for a total of 10 epochs. OCT image data was gathered for each optimizer about performance measures
for classification work.

such as loss, training accuracy, and testing accuracy. A comprehensive examination of experimental data was

3. RESULTS AND DISCUSSION

conducted to evaluate the efficacy of optimization techniques on the training of CNN, DNN, and VGG16 models
4.1 Findings

To experiment comparing the efficacy of five different optimizers (SGD, SGD with momentum, Adagrad,
RMSprop, and Adam) across three distinct models (Convolutional Neural Network (CNN), Deep Neural Network
testing using various optimization strategies.

(DNN), and VGG16). This experiment aims to compare and contrast the models' performance in training and
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Figure 3. Loss curves for various optimizers at Learning Rate = 0.001, for (a) CNN (b) DNN, and (c) VGG16
Model

Ten times the model was trained. To improve accuracy, use more epochs through the OCTID dataset. After
training on the OCTID dataset, the model is tested on 27 test images. Accuracy and loss could evaluate model

performance. Models with the lowest loss and highest accuracy perform well. This comparison shows which
model is best.

The experiment's findings provide insight into how the efficacy of different optimizers affects the precision with
which CNN, DNN, and VGG16 models are trained and tested. By comparing the outcomes, you may determine
which optimizers result in better convergence and more accurate models for each kind of data. These findings
might be a basis for future optimization strategy decisions for comparable tasks and models.
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The train and test loss is too high in the RMSprop optimizer at the initial epoch for all 3 deep learning models
shown in Figure 3(a) CNN, Figure 3(b) DNN, and Figure 3(c) VGG16 models. Adam optimizers are more suited
to the binary classification of OCT images, and after 10 epochs of training, the loss is lower than with other
optimizers. All 3 models exhibited the worst performance for SGD optimizers for producing the highest losses,
and the RMSprop optimizer was an average performer for the CNN and DNN models. Therefore, it can be shown
that all three deep learning models exhibit the lowest loss minimization performance when applied with the Adam
optimizer.

Table 2. Train Loss analysis of deep learning models for different optimizers with different learning rates

Models CNN DNN VGG16

Optimizers /| 501 | 0.0001 | 0.00001 | 0.001 | 0.0001 | 0.00001 | 0.001 | 0.0001 | 0.00001
Learning rate

SGD 04917 | 0.5204 | 0.6669 | 0.0003 | 0.0043 | 0.6318 | 0.0001 | 0.0001 | 0.3253
SGD with

0.3692 | 0.4818 | 0.5446 | 0.0003 | 0.0039 | 0.6193 | 0.0000 | 0.0001 | 0.3243
momentum
Adagrad 0.1278 | 0.4500 | 0.4542 | 0.0000 | 0.0023 | 0.5860 | 0.0000 | 0.0000 | 0.3100
RMSprop 0.0221 | 0.0831 | 0.6922 | 0.1759 | 0.0032 | 0.3857 | 0.0001 | 0.0004 | 0.2571
Adam 0.0004 | 0.0066 | 0.6437 | 0.0001 | 0.0001 | 0.3328 | 0.0000 | 0.0000 | 0.2228

Table 3. Test Loss analysis of deep learning models for different optimizers with different learning rates

Models CNN DNN VGG16
Optimizers /| 501 | 0.0001 | 0.00001 | 0.001 | 0.0001 | 0.00001 | 0.001 | 0.0001 | 0.00001
Learning rate
SGD 05175 | 05331 | 0.6662 | 00435 | 02542 | 0.6401 | 0.1770 | 03194 | 03788
SGD with 04024 | 05076 | 05570 | 0.0489 | 02279 | 0.6277 | 0.1201 | 03186 | 03719
momentum
Adagrad 03071 | 04787 | 04823 | 00274 | 02435 | 05976 | 0.1161 | 03020 | 0.3629
RMSprop 00705 | 02132 | 0.6924 | 03685 | 03077 | 04228 | 03658 | 0.4000 | 03037
Adam 0.0425 | 02670 | 0.6415 | 0.1984 | 03195 | 03796 | 0.0012 | 0.3904 | 02797

4.1 Discussion

The outcomes of the efficacy of various optimizers and learning rates for the CNN, DNN, and VGGI16
architectures are comprehensively presented in Table 2 and Table 3. Adam and Adagrad consistently exhibit
superior performance across all models and learning rates. Overall learning rates, the Adam optimizer produced
the lowest loss for the CNN model. More precisely, Adam optimizer loss is the least at the maximum learning
rate (0.001). In contrast, the maximum loss resulted from the SGD consistently lagging, proved to be the least
effective optimizer. This tendency remained constant for different learning rates.

While Adam optimizer once again outperformed all other approaches at medium learning rates (0.0001) in the
DNN model, Adagrad unexpectedly achieved the lowest loss (0.00001) across the board. Among the VGG16
optimizers, Adagrad outperformed the others at the slowest learning rate, whereas Adam performed admirably at
all learning rates.

Figure 4(a) shows that the Adam optimizer is better for the CNN model than other optimizers, with consistently
reduced loss across varied training and test loss for all learning rates. SGD and SGD with momentum exhibit the
highest losses whereas Adagrad and RMSprop make average performance. Overall, the Adam optimizer
minimized loss best for all three deep learning models, especially at medium learning rates.
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Figure 4. Loss curves for various optimizers with different Learning Rates for (a) CNN (b) DNN and (¢)
VGG16 Model.

According to Figure 4(b), the DNN model that was optimized using the Adagrad and Adam optimizer observed
the least amount of train and test loss when compared with all other optimizers for all learning rates. This Graph
demonstrates loss and optimizer for different learning rates during the training, where RMSprop shows it produces
moderate performance, while SGD and SGD with momentum consistently lag, with the highest losses.

According to Figure 4(c), the VGG16 model with Adam and Adagrad optimizer produced the lowest loss
compared to other optimizers for all the learning rates. This Graph demonstrates loss and optimizer for different
learning rates during the training, where SGD and SGD with momentum produce the highest loss for all available
learning rates, while RMSprop performs moderately.

Table 4 summarizes the training accuracy values that were attained during the training of the CNN, DNN, and
VGG16 models with various optimizers and learning rates. The Adam optimizer produced the highest training
accuracy, 100.00% for all three deep learning models with the highest (0.001) and medium (0.0001) learning rates. In
contrast, the training accuracy is 100 % for all the optimizers for the VGG16 model with the highest and medium
learning rates.

For the medium learning rate (0.0001), all five optimizers perform best for the DNN and VGG16 models. For the
lowest learning rate (0.00001), SGD and SGD with momentum performed the lowest training accuracy of 79.12%
for all 4 optimizers except the Adam optimizer which performs well in the CNN model. Whereas the SGD
optimizer performed best for the DNN model and Adam optimizer is best for the VGG16 model.
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Table 4. Training accuracy analysis of deep learning models for optimizers with different learning rates

Models CNN DNN VGGI16

Optimizers /

. 0.001 0.0001 0.00001 0.001 0.0001 | 0.00001 0.001 0.0001 | 0.00001
Learning rate

SGD 79.12 79.12 79.12 100.00 | 100.00 92.85 100.00 | 100.00 84.07
Isn(jfl ;Vlﬁlm 81.86 | 79.12 79.12 100.00 | 100.00 87.36 100.00 | 100.00 85.71
Adagrad 95.60 | 79.12 79.12 100.00 | 100.00 | 80.77 100.00 | 100.00 86.81
RMSprop 100.00 | 98.35 79.12 79.67 | 100.00 | 79.67 100.00 | 100.00 91.21
Adam 100.00 | 100.00 | 94.50 100.00 | 100.00 | 84.07 100.00 | 100.00 | 92.31

Table 5 shows CNN, DNN, and VGG16 architecture testing accuracy for optimizers with varied learning rates.
The CNN model had the best training accuracy (96.29%) using the RMSprop and Adam optimizer, while the
DNN model had the highest learning rate (0.001). All VGG16 optimizers have 77.78% training accuracy. For the
medium learning rate (0.0001), Adam and RMSprop optimizer work best for CNN and VGG16 models, whereas
Adam, SGD, and SGD with momentum perform best for DNN.

For the lowest learning rate (0.00001), all 4 optimizers have the lowest testing accuracy of 77.78% for the CNN
model, 3 optimizers for the DNN model, and SGD optimizer for the VGG16 model. For the CNN model with all
learning rates, the Optimizer Adam reduces losses in iterations while maintaining its optimum accuracy. The
Adam Optimizer reduces the amount of loss that occurs as the number of epochs increases, while simultaneously
increasing the results' dependability. Adam Optimizer achieves optimal performance with an optimal score of
100% in VGG16 for the highest learning rate.

For the medium learning rate (0.0001), The Adam optimizer reduces loss for the duration of an epoch; it maintains the
best test accuracy of 92.59% for all the 3 deep learning models, respectively. SGD and SGD with momentum
optimizers perform best for the slowest learning rate (0.00001) for the DNN model. In comparison, Adam
optimizers perform best for CNN and VGG16 models with the lowest loss and good accuracy.

Table 5. Testing accuracy analysis of deep learning models for optimizers with different learning rates

Models CNN DNN VGGI16

Optimizers /

. 0.001 0.0001 0.00001 0.001 0.0001 0.00001 0.001 0.0001 0.00001
Learning rate

SGD 77.78 77.78 77.78 96.29 92.59 88.89 96.29 92.59 77.78
SGD with

77.78 77.78 77.78 96.29 92.59 81.48 96.29 92.59 81.48
momentum
Adagrad 88.89 77.78 77.78 96.29 92.59 77.78 96.29 92.59 81.89
RMSprop 96.29 88.89 77.78 77.78 92.59 77.78 96.29 92.59 88.89
Adam 96.29 92.59 88.89 96.29 92.59 77.78 100.00 | 92.59 88.89

CONCLUSIONS

CNN easily performs the task of classifying the images. The function of optimizers and their effect on the
classifier's performance are extensively discussed. For binary classification of normal vs. AMD OCT images, The
ADAM optimizer has been shown to achieve a training accuracy of 100% at a maximum learning rate of 0.001
for all three deep learning models. The CNN model, coupled with the ADAM optimizer, is a great choice for the
binary classification of OCT images compared with VGG16 and DNN. After precise testing, the Adam optimizer
proved to be the most effective in accurately classifying OCT images as either AMD or Normal while minimizing
the loss for all learning rates across CNN, DNN, and VGG16 models.
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