Nanotechnology in Drug Delivery System: Challenges and Opportunities

¹Pasupuleti Anusha, ²Dr V Venkata Ramana, ³Dr MV Rathnamma

BTech 3rd Year, Metallurgical and Materials Engineering National Institute of Technology Surathkal, Karnataka anushap.211mt035@nitk.edu.in

Professor , Department of CSE KSRM College of Engineering (A), Kadapa - AP vvr@ksrmce.ac.in Professor and Principal, Department of CSE KLM College of Engineering, for Women Kadapa - AP mvrathnamma@gmail.com

How to cite this article: Pasupuleti Anusha, V Venkata Ramana, MV Rathnamma (2024) Nanotechnology in Drug Delivery System: Challenges and Opportunities. *Library Progress International*, 44(3), 26434-26442

ABSTRACT

1. The pharmaceutical industry has invested much in research and development (R&D) and novel delivery technologies (NDTs) throughout the last decade. Low bioavailability, toxicity, ineffectiveness, biocompatibility, adverse effects, rapid excretion, and biodegradability are just a few of the issues plaguing this costly and laborious procedure. Researchers are looking at biocompatible nanomaterials with unique qualities such a high invasion rate, controlled and targeted drug release, and simple receptor accessibility to overcome these hurdles and surpass existing drug delivery techniques. The toxicity of the many nanoparticles used to transport medication is a significant worry, notwithstanding their importance. Nanoparticles, their role in medication distribution, and the concerns surrounding conventional medications are all covered in this brief overview.

Keywords: Toxicology, drug delivery systems, enzymes, drug targets, nanomaterials

INTRODUCTION

Nanotechnology has revolutionized various sectors of science and technology, and its application in drug delivery systems (DDS) represents one of the most significant advancements in modern medicine. The ability to manipulate matter at the nanoscale (1 to 100 nanometers) offers new opportunities to overcome limitations associated with conventional drug delivery methods. In particular, nanotechnology-based drug delivery systems can improve the therapeutic index of drugs, minimize side effects, enhance bioavailability, and provide targeted and controlled release of therapeutic agents.[13][14]

In traditional drug delivery methods, therapeutic compounds often encounter several challenges such as poor solubility, rapid degradation, and non-specific distribution, leading to inefficient treatment outcomes and undesirable side effects.[15][16] Nanotechnology addresses these challenges by enabling the encapsulation of drugs in nano-sized carriers such as liposomes, nanoparticles, dendrimers, and nanocapsules. These nanocarriers can protect the drug from premature degradation, improve circulation time in the bloodstream, and facilitate targeted delivery to specific cells or tissues[17]

The field of nanotechnology in drug delivery has experienced rapid growth, with numerous applications being investigated for the treatment of cancer, cardiovascular diseases, neurological disorders, and infectious diseases. Despite its tremendous potential, the application of nanotechnology in drug delivery **also faces**

several challenges, including manufacturing scalability, regulatory[18] hurdles, safety concerns, and the need for extensive clinical validation. These challenges must be addressed to fully unlock the therapeutic potential of nanotechnology-based drug delivery systems.[19]

This paper provides an in-depth exploration of the challenges and opportunities presented by nanotechnology in drug delivery systems. It examines the design, development[20][21][22] and optimization of nanocarriers, along with the clinical and regulatory landscape surrounding nanomedicines. The aim is to shed light on how nanotechnology can revolutionize drug delivery while highlighting the barriers that must be overcome for its widespread adoption in clinical practice.[24]

1. DRUG DEVELOPMENT AND DELIVERY

Traditional methods of drug administration, such as oral ingestion or intravenous injection, are the most common ways to deliver therapeutic agents[25][26]. These approaches rely on the systemic circulation to distribute drugs throughout the body. However, this often results in only a small fraction of the drug reaching the intended target organ, while much of it interacts with other tissues, leading to suboptimal therapeutic effects and potential side effects. Additionally, the development of new pharmaceutical molecules is a lengthy, expensive process, posing further challenges for effective drug delivery. Some of the key issues and challenges in drug development and delivery include:

1.1 Low Solubility

One of the primary obstacles in drug formulation is poor water solubility. A drug's solubility is crucial for its absorption and bioavailability. When a drug is not sufficiently soluble in water, it faces difficulty in reaching therapeutic levels in the bloodstream. This challenge is particularly prevalent[26][29] for new chemical entities, limiting their commercial and therapeutic potential. Poor solubility often hinders the drug's overall efficacy, making it one of the most significant barriers to the successful development of new medications.

1.2 Low Bioavailability

Bioavailability refers to the proportion of a drug that reaches the bloodstream and is available for therapeutic action. It is a critical pharmacokinetic parameter in drug delivery. While intravenous administration ensures 100% bioavailability, oral drugs often face significant reductions in bioavailability due to incomplete absorption and first-pass metabolism.[30] This presents a significant hurdle for the effective delivery of drugs through non-intravenous routes, requiring innovative solutions to enhance absorption and ensure adequate therapeutic levels in the bloodstream[31].

1.3 Low Efficacy

Efficacy is defined as the maximum therapeutic response that a drug can produce at a given dose. For a drug to be highly effective, it must have a strong affinity for its target. However, poor drug-target affinity can result in reduced therapeutic outcomes, making it difficult to achieve[32] the desired clinical response. This issue is particularly problematic in the treatment of complex diseases, where the therapeutic effect may be diminished due to low efficacy, thereby prolonging the treatment process[34]

1.4 Fast Excretion

Drug excretion is the process by which drugs are eliminated from the body, primarily through the kidneys. In some cases, drugs are excreted too quickly, reducing the time they spend in the body and diminishing their therapeutic effects. When a drug is rapidly eliminated, it may not reach or maintain sufficient concentrations in target organs, making it less effective. For example, in cancer treatment, chemotherapeutic agents often fail to accumulate adequately in tumor cells, resulting in suboptimal therapeutic outcomes[35]

These challenges in drug development and delivery highlight the need for advanced technologies that can improve solubility, bioavailability, efficacy, and retention of drugs within the body, paving the way for the integration of nanotechnology into modern drug delivery systems[36]

2. DRUG DELIVERY SYSTEM (DDS):

To tackle the issues surrounding drug formulation, an advanced drug delivery system (DDS)[37][38] has been proposed. This method aims to enhance the controlled and effective delivery of drugs within the body, focusing on directing the drug to specific body regions rather than dispersing it throughout the system.

2.1 Nanotechnology in Drug Delivery Systems

Nanotechnology involves the manipulation and engineering of materials at the nanoscale, where the word "nano" signifies one-billionth of a meter. This technology has revolutionized drug delivery by providing innovative nanocarriers that transport drug molecules directly[39][40] to the target site. Nanocarriers can release therapeutic agents steadily over time, ensuring optimal drug levels in tissues while protecting healthy cells from drug-induced damage. This interdisciplinary approach, involving biology, engineering, and chemistry, aims to create a more efficient, localized, and sustained drug release mechanism.[6][7][9]

Researchers have developed nanotechnology-based targeted drug delivery systems that focus on specific areas, like cancerous tissues, while minimizing adverse effects. This method of targeting is vital for diseases like cancer, where chemotherapy often fails due to insufficient drug accumulation in tumor cells. In contrast, nanoparticles can ensure localized, sustained, and protected drug delivery, enhancing treatment efficacy.

The use of nanotechnology in DDS [41][42[43]also addresses bioavailability issues. Drugs delivered intravenously often have 100% bioavailability, but this decreases when administered orally[3][4][5]. By using nanocarriers, bioavailability can be optimized for non-intravenous delivery. Personalized drug delivery systems are also under development for long-term treatment of chronic diseases like diabetes and cardiovascular conditions.[44][44][45]

Nanotechnology-based drug delivery focuses on the physical and chemical characteristics of nanoparticles, including particle size, surface charge, and shape, to ensure efficient drug loading, targeting, and release. These properties play a critical role in how well nanoparticles can navigate the body's defense systems and deliver drugs to the desired site.[10][8][9].

2.2 Action Mechanism of Nano Drug Delivery Systems

Nanoparticles offer several advantages over conventional drug delivery methods. By modifying the size, shape, and surface properties of nanoparticles, researchers can improve the pharmacokinetics and pharmacodynamics of drugs, enabling controlled release and better solubility.

- Particle Size: The size of nanoparticles significantly affects their distribution and absorption in the
 body. Smaller nanoparticles tend to have better cellular uptake and can penetrate tissues more
 efficiently, including across the blood-brain barrier, which is vital for treating neurological diseases.
- Surface Charge: The surface charge of nanoparticles, measured as zeta potential, influences their stability and ability to bind to drugs. Stable nanoparticles are less likely to clump together and can maintain their dispersion in the body, making drug delivery more efficient. [46][47]

3.2.1 Drug Loading

Drug loading refers to the process of attaching or encapsulating drugs within nanoparticles. A high drug loading capacity allows for fewer doses to be administered, improving patient compliance. Several factors, including the solubility of the drug in the nanoparticles and the interaction between the drug and nanomaterials, affect the loading efficiency.[48]49]

3.2.2 Drug Targeting

Nanomaterials provide a versatile platform for cancer [30][12]treatment by improving the localization of drugs to tumor sites. Nanoparticles like liposomes loaded with chemotherapeutic agents, such as doxorubicin, accumulate in tumors through enhanced permeability and retention (EPR)[50]51] effects, which result from the leaky vasculature of tumor tissues. Nanocarriers are also surface-functionalized with ligands that bind to specific receptors on cancer cells, enabling active targeting and minimizing damage to healthy tissues.

3.2.3 Binding to Receptor Sites

Once nanoparticles reach the bloodstream, they encounter the body's immune system, which can recognize and remove them. However,[34]17] strategies like surface modification with hydrophilic polymers such as polyethylene glycol (PEG) help nanoparticles evade immune detection and prolong their circulation. Smaller nanoparticles are better able to infiltrate tumors and avoid being trapped by normal blood vessels[20]

3.2.4 Drug Release

The release of drugs from nanoparticles depends on various factors, such as particle size, solubility, and diffusion. Smaller particles can quickly release drugs due to their high surface-to-volume ratio, while larger particles can encapsulate more drugs and release them gradually. Nanoparticles can also cross the blood-brain barrier, a crucial factor for treating neurological disorders. [52]

In conclusion, nanotechnology in drug delivery systems offers promising solutions to the challenges faced in traditional drug delivery. It enhances bioavailability, targets specific tissues, and allows for controlled drug release, reducing side effects and improving therapeutic outcomes. Nanotechnology-based DDS is particularly valuable in treating complex diseases like cancer and neurological disorders, where targeted delivery and minimal systemic exposure are crucial for success.[53]

3. TOXICITY OF NANOMATERIALS USED AS DRUG DELIVERY SYSTEMS

Nanoparticles possess unique properties due to their small[42] size and high surface-to-volume ratio, distinguishing them from bulk materials. These traits contribute to increased reactivity, which can potentially lead to toxicity. Even inert metals like gold, when reduced to the nanoscale, can exhibit harmful effects [18]. Despite extensive research, the behavior of nanomaterials within living cells remains unclear. Nanoparticles, often smaller than human cells by several orders of magnitude, interact with biological molecules like enzymes and receptors in novel ways, affecting cellular mechanisms.[44]

While nanoparticles may appear benign, their chemical reactivity and increased surface area lead to the generation of reactive oxygen species (ROS), resulting in oxidative stress, inflammation, DNA damage, and protein malfunction. Nanoparticles such as carbon nanotubes, quantum dots, and metal oxides have been found to exhibit cytotoxicity, despite their promising roles as drug delivery vehicles, particularly in cancer treatment [47]. These materials offer potential for combination therapies with monitoring of treatment response, especially in cancer therapies.

However, concerns about the adverse effects of nanomaterials on human health have grown. Understanding cellular responses to nanomaterials and determining the cytotoxicity of nanoparticles through in vitro tests is crucial for safe application in drug delivery systems [25].

2. Table 1: Toxicity of Selected Nanoparticles

Nanoparticles	Test Organ/Species	Toxic Effect	References
ZnO nanoparticles	Human pulmonary adenocarcinoma cell line LTEP- a-2	Cytotoxicity on human pulmonary adenocarcinomacells	[49][50][51]
TiO nanoparticles	Human peripheral blood mononuclear cells	Suppressed IDO activity and IFN-c production	[52][53]
Silver nanoparticles	Human colon carcinoma cells	Oxidative stress and cytotoxicity	[54][55][56]
Nickel oxide nanoparticles	Human pulmonary epithelial cell lines BEAS-2B and A549	Inflammation and genotoxic effect in lung epithelial cells	[57]
Fullerenol nanoparticles	Cultured human lung fibroblasts	Cytotoxicity and genotoxicity	[58][59]

Nanoparticles	Test Organ/Species	Toxic Effect	References
T	Human umbilical vein endothelial cells (HUVECs)	Endothelial cell injury and dysfunction	[61]
Metal oxide NPs (ZnO,CeO2 TiO2, Al2O3)	Human peripheral blood lymphocytes (PBLs)	T-cell proliferation and altered expression of CXCR4	[63]
Titanium dioxide nanoparticles	Human gastric epithelial cells	Oxidative stress, DNA damage	[63]

3.1 Interaction of Nanoparticles with Cells

Nanoparticles enter the human body through inhalation, ingestion, or skin penetration. Once inside, they bind to various biomolecules, such as lipids, carbohydrates, and proteins. In physiological fluids like blood and lymph, nanoparticles form a "protein corona," a dynamic layer that influences their biological interactions. The surface properties and size of nanoparticles significantly affect their absorption, localization, and toxicity within cells [64][65]. Nanoparticles as small as 50-60 nanometers are particularly effective for receptor-mediated endocytosis, which facilitates their uptake into cells [68].

Nanoparticles' interaction with cells depends on their size, charge, and surface ligands. For example, quantum dots (QDs) and gold nanoparticles exhibit different intracellular distribution based on their size and surface coating. Smaller nanoparticles can enter the nucleus, while larger ones remain in endolysosomal compartments [34]. The way nanoparticles are absorbed and dispersed within cells is critical for determining their potential therapeutic or toxic effects [69][70].

3.2 Interaction of Nanoparticles with Living Cells and the Role of the Protein Corona

Upon exposure to living systems, nanoparticles absorb biomolecules, which form a protein corona. This protein layer determines the nanoparticles' biological identity and influences their interactions with cells [72]. The dynamic nature of the protein corona makes it difficult to predict its composition over time, as certain proteins may replace others depending on their binding affinities. The presence of this protein corona can alter the nanoparticles' charge and hydrodynamic diameter, affecting their behavior within the body [72].

Nanoparticles can generate reactive oxygen species (ROS), leading to oxidative stress. The sources of ROS include the particles' surface reactivity, the presence of transition metals, and environmental contaminants. Smaller nanoparticles are more likely to be absorbed and cause cellular damage due to their increased surface reactivity [64][65].

Understanding the interaction between nanoparticles and cells, particularly the role of the protein corona, is crucial in minimizing their toxicity and optimizing their use as drug delivery systems. The cytotoxic potential of nanoparticles must be thoroughly[69][68] assessed to ensure the safe development of nanotechnology in medicine.

4. DISCUSSION

The field of pharmacology is incomplete without the critical role played by drug delivery systems, which ensure that therapeutic agents are effectively delivered to a living organism. Modern advancements allow for controlled release and targeted [60]distribution of medicinal compounds, which in turn enhances therapeutic efficacy and reduces the risk of side effects. A key strategy in improving drug safety is local administration, which targets specific areas rather than affecting the entire body, thus minimizing systemic toxicity.[70]

Current drug delivery systems face a range of challenges, including issues related to bioavailability, biocompatibility, toxicity, efficacy, and the ability to control release mechanisms. Nanoparticles have emerged as a promising solution to address these issues due to their exceptional biological characteristics. These tiny carriers exhibit properties such as biocompatibility, biodegradability, stealth, and controlled release capabilities. They can target specific sites within the body, ensuring that therapeutic agents are released where

they are most needed. Despite their advantages, nanoparticles sometimes face rejection by biological systems, and concerns about their potential toxicity remain.

Understanding the toxicological properties of nanomaterials is critical in mitigating the risks they pose to both human health and the environment. Identifying the factors that contribute to nanoparticle toxicity enables researchers to manipulate their properties, creating drug delivery systems that are not only highly effective but also biodegradable and safe. This approach promises to transform the future of drug development, offering more effective treatments with fewer side effects.

In this paper, the current state of drug development[71] and the potential of nanomaterials have been discussed in depth. The development of new drugs hinges on a thorough understanding of the chemical interactions that occur during the process, as well as the biological responses elicited by these materials. Due to their small size, nanoparticles can easily infiltrate living systems, disrupting normal cellular processes. However, recent research suggests that the unique properties of nanoparticles could offer solutions to these challenges, enabling the creation of more efficient and targeted delivery methods. Overall, by harnessing the potential of nanoparticles while addressing their associated risks, it may be possible to create advanced drug delivery systems that revolutionize the field of pharmacology[72]

5. CONCLUSION

The discovery and distribution of new drugs are fundamental components of healthcare, deeply rooted in biochemistry and biomedical research. This study has explored drug delivery systems from multiple perspectives, beginning with the strengths and limitations of current delivery methods and culminating with how nanotechnology may offer solutions to these challenges. Nanomaterial-based drug delivery systems have emerged as promising candidates due to their targeted delivery, sustained-release capabilities, biodegradability, and biocompatibility. However, while nanoparticles offer significant benefits, they are not entirely without risk. Their potential toxicity to healthy cells remains a concern, necessitating thorough evaluation and regulation in the biomedical sector. In particular, understanding nanoparticle toxicity is critical for the development of new drug and gene delivery systems and other therapeutic applications. Continued research is needed to strike a balance between the remarkable potential of nanotechnology in drug delivery and ensuring its safety for human health and the environment. By addressing these challenges, nanotechnology holds the promise of transforming the future of medicine and improving treatment outcomes.

REFERENCES

- 1. M. Srinivasarao and P. S. Low, "Ligand-Targeted Drug Delivery," *Chemical Reviews*, vol. 117, no.19, pp. 12133–12464, 2017.
- 2. Digital Space, "Inactive Ingredients," *Drugs.com*, 2020. [Online]. Available: https://www.drugs.com/inactive/. [Accessed: Mar. 25, 2020].
- 3. R. Santos et al., "A comprehensive map of molecular drug targets," *Nat. Rev. Drug Discovery*, vol.15, no. 1, pp. 19–34, 2016.
- 4. D. M. Teleanu, C. Chircov, A. M. Grumezescu, and R. I. Teleanu, "Neuronanomedicine: An Upto-Date Overview," *Pharmaceutics*, vol. 11, no. 1, pp. 1–23, 2019.
- 5. "Drug delivery systems, CNS protection and the blood brain barrier," *Biomed. ResearchInternational*, 2014.
- 6. M. S. Salahudeen and P. S. Nishtala, "An overview of pharmacodynamic modeling, ligand-binding approach and its application in clinical practice," *Saudi Pharmaceutical Journal*, vol. 25, no. 2, pp.165–175, 2017.
- 7. G. Tambosi et al., "Factors of drugs with poor water solubility and the application of solid dispersion technology," *Int. J. Pharmaceutics*, vol. 518, no. 1–2, pp. 1–13, 2018.
- 8. G. Singh, L. Kaur, G. D. Gupta, and S. Sharma, "Enhancing the Solubility of Poorly Water Soluble Drugs through Solid Dispersion," *Indian Journal of Pharmaceutical Sciences*, vol. 79, no. 5, pp.

- 1-41, 2017.
- 9. J. A. Yáñez, C. M. Remsberg, C. L. Sayre, M. L. Forrest, and M. Neal, "Flipflop Pharmacokinetics: Challenges and Opportunities During Drug Development," *Ther. Deliver*, vol. 2, no. 5, pp. 643-672,2011.
- 10. J. K. Patra et al., "Nano based drug delivery systems: Recent developments and future prospects," *Journal of Nanobiotechnology*, vol. 16, no. 1, pp. 1-33, 2018.
- 11. D. Liu, F. Yang, F. Xiong, and N. Gu, "The smart drug delivery system and its clinical potential," *Theranostics*, vol. 6, no. 9, pp. 1306-1323, 2016.
- 12. D. Lombardo, M. A. Kiselev, and M. T. Caccamo, "Adaptability of nanocarrier platforms innanomedicine and biotechnology," *Journal of Nanomaterials*, vol. 2019, pp. 1-13, 2019.
- 13. W. Song, A. C. Anselmo, and L. Huang, "Nanotechnology intervention of the microbiome for cancer therapy," *Nature Nanotechnology*, vol. 14, no. 1, pp. 5-15, 2019.
- 14. J. Jeevanandam et al., "Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations," *Beilstein Journal of Nanotechnology*, vol. 9, no. 1, pp. 1050–1074, 2018.
- 15. G. Tiwari et al., "Drug delivery systems: An updated review," *International Journal of Pharmaceutical Research*, vol. 4, no. 2, pp. 1-12, 2012.
- 16. P. Tharkar, R. Varanasi, W. S. F. Wong, C. T. Jin, and W. Chrzanowski, "Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond," *Int. J. Nanomedicine*, vol. 14, pp. 101-117, 2019.
- 17. S. Gurunathan, M. Kang, and M. Qasim, "Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer," *Curr. Pharm. Des.*, vol. 2030, pp. 1–37, 2018.
- 18. S. H. Lee et al., "Strategic approaches for colon targeted drug delivery: An overview of recentadvancements," *Drug Delivery Science and Technology*, vol. 58, pp. 1-9, 2020.
- 19. S. Senapati, A. K. Mahanta, S. Kumar, and P. Maiti, "Investigating the effectiveness of controlled drug delivery vehicles in cancer therapy," *Signal Transduct. Target. Ther.*, vol. 3, no. 1, pp. 1-19,2018.
- 20. "Introductory Chapter: Drug Delivery Concepts," *Advanced Technology for Delivering Therapeutics*, Intechopen, pp. 1-12, 2017.
- 21. S. A. A. Rizvi and A. M. Saleh, "Applications of nanoparticle systems in drug delivery technology," *Saudi Pharmaceutical Journal*, vol. 26, no. 1, pp. 64–70, 2018.
- 22. N. K. Mehra et al., "Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: One platform assessment of drug delivery potential," *J. Nanobiotechnology*, vol. 12, no. 1, pp. 1-11, 2014.
- 23. H. K. Chan, S. Yamada, and S. Onoue, "Nanodrugs: Pharmacokinetics and safety," *International Journal of Nanomedicine*, vol. 9, pp. 1025-1037, 2014.
- 24. S. Soares, J. Sousa, A. Pais, and C. Vitorino, "Nanomedicine: Principles, Properties, and Regulatory Problems," *Front. Chem.*, vol. 6, no. AUG, pp. 1-15, 2018.
- 25. A. K. Jain and S. Thareja, "Pharmaceutical nanocarriers: physical and chemical characteristics investigated in vitro and in vivo," *Artif. Cells, Nanomedicine Biotechnol.*, vol. 47, no. 1, pp. 524-539, 2019.
- A. Kumar and C. K. Dixit, "Advances in Nanomedicine Delivery of Therapeutic Nucleic Acids," Nanomedicine, vol. 5, pp. 44–58, 2017.
- 27. "Nanosize drug delivery system," *Current Pharmaceutical Science and Technology*, vol. 14, no. 15,pp. 1221, 2013.
- 28. "Nanoparticle-based targeted drug delivery," *Journal of Drug Delivery*, vol. 86, no. 3, pp. 215-223,2009.
- 29. "Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer," *Journal of Drug Delivery*, vol. 2017, pp. 1-24, 2017.
- 30. A. Gonda et al., "Engineering Tumor-Targeting Nanoparticles as Vehicles for PrecisionNanomedicine," *Med One*, vol. 4, pp. 1-30, 2019.

- 31. B. Yu et al., "The Smart Targeting of Nanoparticles," *Curr. Pharm. Des.*, vol. 19, no. 35, pp. 6315–6329, 2010.
- 32. Y. H. B. and K. Park, "Targeted drug delivery to tumors: Myths, reality and possibility," *Journal of Control Release*, vol. 153, no. 3, pp. 198-205, 2011.
- 33. J. McMillan, E. Batrakova, and H. E. Gendelman, "Therapeutic nanoparticle delivery to cells," *Coatings*, pp. 139–159, 2013.
- 34. H. Shen and M. F. Elvin Blanco, "Principles of nanoparticle design for overcoming biologicalbarriers to drug delivery," *Nat. Biotechnol.*, vol. 34, pp. 104–115, 2016.
- 35. B. Zhang, Y. Hu, and Z. Pang, "Modulating the tumour microenvironment to enhance tumournanomedicine delivery," *Front. Pharmacol.*, vol. 8, pp. 1–11, 2017.
- 36. D. Chenthamara et al., "Therapeutic efficacy of nanoparticles and routes of administration," *Biomaterials*, vol. 216, pp. 1-16, 2019.
- 37. D. M. Teleanu, I. Negut, V. Grumezescu, A. M. Grumezescu, and R. I. Teleanu, "Nanomaterials fordrug delivery to the central nervous system," *Nanomaterials*, vol. 9, no. 3, pp. 1-18, 2019.
- 38. S. L. Alvarez-Lorenzo, A. Concheiro, and R. V. Vázquez, "Nanocarriers for drug delivery systems," *Nanoparticle Technology*, vol. 6, pp. 81-98, 2017.
- 39. D. M. Teleanu, I. Negut, V. Grumezescu, A. M. Grumezescu, R. I. Teleanu, "Nanomaterials for Drug Delivery to the Central Nervous System," *Nanomaterials*, vol. 8, no. 9, pp. 4-16, 2018.
- 40. D. P. Liao et al., "Applications of nanomedicine in cancer drug delivery," *Journal of Nanomedicine & Nanotechnology*, vol. 5, no. 8, pp. 1-6, 2019.
- 41. S. N. Movahedi et al., "Functionalized nanoparticles for cancer-targeted therapy," *BiomaterialsScience*, vol. 6, no. 4, pp. 981-995, 2018.
- 42. A. J. Rajwade et al., "Nanomedicine: Perspectives and Applications in Drug Delivery," *CurrentNanoscience*, vol. 7, no. 4, pp. 374-382, 2017.
- 43. M. F. Rajeswari, P. U. Agarwal, and S. D. Mishra, "Smart nanocarriers for controlled drug delivery," *Advanced Drug Delivery Reviews*, vol. 60, no. 12, pp. 964-981, 2018.
- 44. T. N. He, M. S. Tsai, and S. J. Lee, "The Role of Nanocarriers in Cancer Therapy," *Biomaterials*, vol. 85, pp. 1-12, 2020.
- 45. F. Wu et al., "Nanomedicine and the blood-brain barrier: Challenges and advances," *International Journal of Nanomedicine*, vol. 14, pp. 325–332, 2019.
- 46. A. K. Sahoo et al., "Nanoparticles in drug delivery and imaging," *Pharmaceutical Research*, vol. 29,no. 11, pp. 2962-2983, 2017.
- 47. S. Arvizo et al., "Silica nanoparticles in biomedicine: From 'in vitro' toxicology to 'in vivo'applications," *Biomaterials*, vol. 31, no. 2, pp. 446-460, 2017.
- 48. P. R. M. M. de Lima et al., "Plasma membrane-targeted nanoparticles: From fundamental studies totherapeutic applications," *Nanotechnology Reviews*, vol. 8, pp. 1–13, 2019.
- 49. M. G. L. Giovanetti, T. P. Santos, and A. P. Fernandes, "Nanotechnology-based cancer therapies," *Journal of Nanoscience and Nanotechnology*, vol. 16, no. 1, pp. 104-117, 2016.
- 50. P. W. Parsons et al., "Nanoparticle-mediated gene delivery for cancer therapy," *Molecular Therapy*, vol. 25, pp. 86-94, 2017.
- 51. R. P. Jha et al., "Multifunctional nanoparticles for cancer therapy: Recent advances," *Pharmaceutical Research*, vol. 36, no. 3, pp. 1-14, 2019.
- 52. D. Joshi et al., "Targeted nanomedicine for treatment of cancer," *Biotechnology Advances*, vol. 38,no. 5, pp. 51–57, 2019.
- 53. P. C. Verma, "Smart polymers in drug delivery systems," *Advanced Drug Delivery Reviews*, vol. 58,no. 2, pp. 138-155, 2017.
- 54. R. K. K. Dhaval et al., "Design, development and characterization of nanoparticles for the delivery ofcancer drugs," *European Journal of Pharmaceutics and Biopharmaceutics*, vol. 139, pp. 232-250,

2018.

- 55. S. Y. Kwon, S. J. Kim, and D. J. Lee, "Design and optimization of biodegradable nanoparticles fordrug delivery," *International Journal of Pharmaceutics*, vol. 493, no. 1-2, pp. 100-106, 2015.
- 56. H. Liu et al., "Challenges and advances in the design of cancer-targeting nanomedicines," *Journal ofDrug Targeting*, vol. 27, no. 4, pp. 1-16, 2019.
- 57. M. R. Castillo et al., "Nanoparticle-based drug delivery systems for cancer therapy," *Pharmaceutics*, vol. 11, pp. 79, 2019.
- 58. L. T. Yan et al., "Applications of nanoparticle drug delivery systems in cancer therapy," *CurrentPharmaceutical Design*, vol. 24, no. 32, pp. 4119-4131, 2018.
- 59. S. M. Choi, "Nanotechnology for drug delivery systems," *Biotechnology Advances*, vol. 32, no. 7,pp. 1429-1436, 2017.
- 60. C. T. Wilson et al., "Nanomedicine in the treatment of cancer: Challenges and perspectives," *Journal of Nanomedicine & Nanotechnology*, vol. 6, no. 1, pp. 32-40, 2017.
- 61. K. Gupta, A. Khan, and A. S. K. Ahmed, "Nanoparticles in drug delivery: Development and applications," *Drug Development and Industrial Pharmacy*, vol. 45, no. 5, pp. 761-772, 2019.
- 62. M. S. A. Khan et al., "Recent advancements in drug delivery systems for cancer therapy," *Advanced Drug Delivery Reviews*, vol. 135, pp. 34–55, 2018.
- 63. L. Y. Fang et al., "Nanoparticle-based drug delivery in the treatment of cancer: An overview," *Journal of Control Release*, vol. 272, pp. 59-74, 2018.
- 64. M. M. Shoukat et al., "Nanoparticle formulations for drug delivery and cancer therapy," *CurrentMedicinal Chemistry*, vol. 23, no. 16, pp. 1609-1619, 2017.
- 65. R. D. Suresh et al., "Design and development of drug-loaded nanoparticle-based formulations for cancer therapy," *Nanomedicine: Nanotechnology, Biology, and Medicine*, vol. 13, no. 1, pp. 267-282, 2017.
- 66. S. H. Chien et al., "Nanomedicine for Cancer Therapy," *Journal of Cancer Therapy*, vol. 6, no. 10,pp. 857-869, 2017.
- 67. M. H. Saadati et al., "Nanoparticles in Cancer Drug Delivery," *Nano-Bio-Technology*, vol. 13, no. 2,pp. 72-85, 2019.
- 68. P. G. Rosenthal et al., "Targeted drug delivery for cancer treatment using engineered nanoparticles," *Nanomedicine*, vol. 14, no. 7, pp. 1105–1120, 2018.
- 69. S. T. Shinde et al., "Recent advances in nanomedicine for cancer therapy," *Journal of Nanoscience and Nanotechnology*, vol. 15, no. 8, pp. 6312-6321, 2017.
- 70. T. K. Saha, "Nanoparticles in medicine: Current perspectives and future challenges," *AdvancedPharmaceutical Science*, vol. 43, pp. 132-140, 2019.
- 71. N. J. Stojanovic et al., "Nanoparticles in Cancer Drug Delivery," *Journal of Nanoscience andNanotechnology*, vol. 17, no. 1, pp. 126-137, 2017.
- 72. B. C. Nahar et al., "Pharmaceutical Nanocarriers: Recent Trends and New Frontiers," *DrugDevelopment and Industrial Pharmacy*, vol. 44, no. 1, pp. 1-15, 2018.