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Abstract 
Nowadays, the cybersecurity posture is getting worse than before because of the evolving attacks, and this 
paper presents an advanced adaptive weighted ensemble learning model based on machine learning aims to 
improving network security detection rates. The proposed model combines three base classifiers, Decision Tree, 
Support Vector Machine (SVM), and K-Nearest Neighbors (KNN). Optimize detection performance across 
various attack types by dynamically adjusts their weights based on real-time error and false alarm rates. In the 
experiments, the model achieved an accuracy of 97.8%, recall of 95.6%, and an F1 score of 96.2%, compared with 
traditional ensemble methods such as Random Forest and AdaBoost, which showed accuracies of 93.2% and 
91.5%, respectively. Especially, the model maintained a false alarm rate of only 1.4%, significantly lower than 
that of the benchmark models, demonstrating its superior precision in classifying benign and malicious traffic. 
To further enhance model efficiency and accuracy, we applied the Boruta algorithm and Recursive Feature 
Elimination (RFE) for feature selection, which contributed to the elimination of noisy features and improved 
computational efficiency. Additionally, Principal Component Analysis (PCA) reduced dimensionality, 
decreasing model complexity while preserving essential data characteristics. These metrics like accuracy, recall 
and F1 score provide a comprehensive evaluation of the model's performance in terms of detecting malicious 
activities. Compared to traditional methods, the proposed model's adaptive weighting mechanism and feature 
selection processes ensure its robustness and flexibility across various network threat scenarios. These 
improvements provide more ideas for industries seeking to enhance their network security. 
 
Key Words: Cyber Security; Network Detection Rate; Machine Learning; Decision Tree; Principal Component 
Analysis. 

 
1. INTRODUCTION 
1.1 Background  
With the rapid development of digital technologies and the increasing reliance on network systems, cyber 
security has become a critical concern for individuals, organizations, and governments like NBI, DOST, DICT etc. 
Modern network environments are increasingly exposed to diverse and sophisticated cyber threats, ranging 
from traditional malware and phishing attacks to more advanced threats like Distributed Denial of Service 
(DDoS) attacks, ransomware, and Advanced Persistent Threats (APTs)Error! Reference source not found.. The 
growing prevalence of such threats not only poses risks to data integrity and confidentiality but also results in 
significant financial losses and operational disruptions for affected entities.  
Network security detection systems, which monitor and analyse network traffic to identify suspicious activities, 
are a cornerstone of modern cyber defence strategiesError! Reference source not found.. Traditional methods 
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often rely on signature-based detection, which compares incoming network data against known attack patterns. 
While effective against well-documented threats, signature-based detection methods struggle with identifying 
novel or evolving attack techniques, as they depend heavily on existing threat signatures. Anomaly-based 
detection methods have emerged as a complementary approach by establishing a baseline for normal network 
behaviour and flagging deviations that may indicate an attack. However, these methods are often hampered by 
high false positive rates, as benign activities that deviate from the norm can trigger alertsError! Reference 
source not found.. Thus, there is a pressing need for advanced detection models that can handle a wide variety 
of network threats while maintaining a high detection rate and minimizing false alarms. 
Machine learning has increasingly become a powerful tool for network security detection due to its ability to 
learn patterns from data and adapt to new attack methods. Ensemble learning, which combines multiple base 
classifiers to form a stronger predictive model, has shown promise in improving detection rates and robustness. 
Traditional ensemble methods, such as Random Forest and AdaBoost, typically assign equal or static weights to 
the base classifiersError! Reference source not found.. While this can improve overall detection performance, it 
does not account for the fact that different base classifiers may perform better or worse depending on the 
specific type of attack being detectedError! Reference source not found.. Meanwhile, there is a need for 
adaptive ensemble learning techniques that dynamically adjust the weights of individual classifiers based on 
real-time performance metrics. 
 
1.2 Problem Statement 
Upon checking existing models often struggle with accurately distinguishing between malicious and benign 
traffic, especially in dynamic and evolving network environments. For example, static weighting strategies may 
not optimize detection performance effectively. Most ensemble models are not designed to incorporate 
continuous updates based on new threat intelligence, limiting their adaptability to novel cyber threats. Feature 
selection is another critical aspect that affects the efficiency and accuracy of network security detection 
modelsError! Reference source not found.. In high-dimensional datasets, irrelevant or redundant features can 
degrade the performance of machine learning models and increase computational complexity. While feature 
selection techniques like Recursive Feature Elimination (RFE) have been utilized to identify and remove less 
relevant features, they often do not fully address the issue of noise in network traffic dataError! Reference 
source not found.. The presence of noise can lead to increased false positives, which not only undermines the 
effectiveness of the model but also burdens network security analysts with unnecessary alerts. 
 
1.3 Objective 
This paper proposes an adaptive weighted ensemble learning model specifically designed to improve network 
security detection rates. The paper main objectives are as follows.  
 To develop an adaptive weighted ensemble learning model that dynamically optimizes classifier weights 

based on real-time performance metrics. 
 To incorporate advanced feature selection techniques to enhance detection accuracy and computational 

efficiency. 
 To provide a comprehensive evaluation metrics of the model's performance in terms of accuracy, sensitivity 

to detecting malicious activities . 
 

2. RELATED WORK 
2.1 Traditional Ensemble Learning Approaches 
Ensemble learning is a popular approach in machine learning, which combines multiple base models to improve 
the overall prediction accuracy and robustness of a model. Common ensemble learning techniques include 
Bagging, Boosting, and Stacking. Bagging, or Bootstrap Aggregating, as used in Random Forest, reduces 
variance by training multiple models on different subsets of the training data and averaging their 
predictionsError! Reference source not found.. Boosting, on the other hand, works by sequentially training 
models so that each new model focuses on correcting the errors made by its predecessor. AdaBoost is a notable 
example, where each classifier is assigned, a weight based on its performanceError! Reference source not found.. 
While effective in increasing the detection rate, traditional ensemble methods often assign static weights to base 
classifiers, which can limit their ability to adapt to varying attack types. 
Stacking is another ensemble technique that combines predictions from multiple base classifiers using a meta-
learnerError! Reference source not found.. This approach is particularly useful for leveraging the strengths of 
different algorithms; however, it typically requires more computational resources and can be challenging to 
optimize. Ensemble methods like Random Forest and AdaBoost have been widely applied in network security 
for malware detection and anomaly detectionError! Reference source not found.. However, these models 
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usually assume a static weighting strategy, which limits their adaptability to dynamic network environments 
where different attack types can vary significantly in their characteristics. 
 
2.2 Decision Tree, SVM, and KNN 
Decision Trees, SVM, and KNN are among the most used algorithms in ensemble learning due to their 
complementary strengths. Decision Trees are highly interpretable and effective at handling both categorical and 
numerical data. However, they are prone to overfitting, especially in complex data scenariosError! Reference 
source not found.. SVM, with its robust theoretical foundation, is particularly suitable for classification 
problems in high-dimensional spaces. It utilizes a kernel trick to separate data points using hyperplanes, making 
it effective for non-linear classificationsError! Reference source not found.. Nonetheless, SVM’s performance 
can be sensitive to parameter choices, and it may struggle with large-scale datasets due to its computational 
complexity. 
KNN, a simple and intuitive algorithm, classifies data points based on the majority label of their nearest 
neighbors. It is effective for multi-class classification and can perform well when there is enough labelled data. 
However, KNN’s performance is highly dependent on the choice of distance metric and can be computationally 
expensive for large datasetsError! Reference source not found.. Combining these algorithms in an ensemble 
model allows for leveraging the interpretability of Decision Trees, the robustness of SVM, and the simplicity of 
KNN, leading to a more balanced and comprehensive detection system. Previous research has shown that 
combining these classifiers can improve overall detection performance, particularly in network security 
applicationsError! Reference source not found.. 
 
2.3 Adaptive Weighting and Feature Selection 
Adaptive weighting is an advanced technique in ensemble learning that assigns dynamic weights to base 
classifiers based on their performance metrics. This approach addresses the limitations of static weighting by 
allowing the ensemble model to adjust its focus on classifiers that are better suited to current data patterns. 
Several studies have explored adaptive weighting techniques in ensemble learning, showing that they can 
significantly improve model adaptability and performanceError! Reference source not found.. For instance, 
some adaptive weighting approaches update weights based on classifiers’ accuracy in detecting specific types of 
attacksError! Reference source not found., while others consider metrics like false alarm rate to optimize 
classifier weights dynamicallyError! Reference source not found.. 
Feature selection is also a crucial component in enhancing model performance, as it reduces data dimensionality, 
minimizes noise, and lowers computational costs. The Boruta algorithm, a wrapper method built around the 
Random Forest algorithm, iteratively removes less important features while retaining those deemed statistically 
significantError! Reference source not found.. This algorithm has been shown to effectively handle high-
dimensional data in network security contexts, where noise can significantly impact detection accuracy. 
Additionally, Recursive Feature Elimination (RFE) is a popular feature selection method that recursively 
removes the least important features based on model performance, further enhancing detection accuracy by 
focusing on the most relevant featuresError! Reference source not found.. Furthermore, Principal Component 
Analysis (PCA) is often used to reduce dimensionality by transforming original features into a smaller set of 
uncorrelated components, which can help improve both the efficiency and accuracy of the detection modelError! 
Reference source not found.. 
The use of adaptive weighting combined with advanced feature selection techniques such as Boruta, RFE, and 
PCA has shown significant promise in recent studies focused on network security detection. It demonstrated 
that integrating adaptive weighting with PCA can lead to higher accuracy in malware detection by reducing 
irrelevant features and focusing on more relevant ones. By incorporating both adaptive weighting and feature 
selection, the proposed model in this paper aims to address the limitations of traditional ensemble learning 
methods and enhance network security detection across diverse threat landscapes. 
 
3. METHODOLOGY 
The proposed model incorporates Decision Tree, Support Vector Machine (SVM), and K-Nearest Neighbor 
(KNN) classifiers, and dynamically adjusts their weights based on performance metrics to enhance the accuracy 
and robustness of detection, aims to develop an adaptive weighted ensemble learning model aimed at 
improving network security detection rates. 
 
3.1 Data Preprocessing 
Data preprocessing is crucial for refining the dataset and ensuring that the input features are suitable for the 
classification models. This step involves handling missing values, normalizing features, encoding categorical 
variables, and partitioning the dataset into training and testing sets. 
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1. Handling Missing Values: Missing data can skew the results of machine learning algorithms. For numerical 
features, missing values are imputed with the median, as it is robust to outliers. For categorical features, the 
mode (most frequent category) is used as the imputation value. 

2. Feature Scaling: Scaling is essential for algorithms sensitive to feature magnitudes, such as SVM and KNN. 
This study employs min-max normalization to rescale features to the [0, 1] range, following the formula: 

𝑋norm =
𝑋 − 𝑋୫୧୬

𝑋୫ୟ୶ − 𝑋୫୧୬

 

where 𝑋 is the original feature value, 𝑋୫୧୬ and  𝑋୫ୟ୶   are the minimum and maximum values of the feature, 
respectively. 
3. Encoding Categorical Variables: For categorical features, one-hot encoding is applied to convert each 

category into a binary vector representation. This ensures that categorical information is properly 
represented for machine learning models. 

4. Data Splitting: The dataset is divided into training and testing sets in an 80:20 ratio. Stratified sampling is 
applied to maintain class distribution across both sets, ensuring that the training process has balanced 
exposure to each type of attack and normal traffic. 
 

3.2 Base Classifier Training 
The foundation of the proposed ensemble model consists of three distinct classifiers: Decision Tree, SVM, and 
KNN. Each classifier is trained separately on the training set, with hyperparameters optimized through cross-
validation. 
(1. Decision Tree: Decision Trees are known for their interpretability and ability to handle non-linear data. In 

this model, the Gini impurity measure is used to select splits. For a node 𝑡 with 𝑁 samples, Gini impurity 
𝐺(𝑡) is defined as: 

𝐺(𝑡) = 1 − ෍  

஼

௜ୀଵ

 𝑝௜
ଶ 

where  𝑝௜  is the proportion of samples belonging to class 𝑖 at node 𝑡, and 𝐶 is the total number of classes. 
One of the research cases which uses Isolation Forest for anomaly detection, which is an anomaly detection 
algorithm based on ensemble learning. It isolates observations by building multiple decision trees. During the 
training process, it tries to find data points that are easy to isolate, which can be seen from the following figure 
3.2. These data points are usually outliers, and outliers are marked as -1. The decision tree Decision Tree 
Classifier then classifies the data through a series of questions, with 1 representing a class of normal data points. 
Each question is based on a feature of the data. These "questions" are attribute tests performed by the decision 
tree at the internal nodes. They determine which child node the data should be divided into based on the 
characteristics of the data. In this way, the decision tree can identify abnormal patterns in the data. Finally, the 
model performance is evaluated by calculating the accuracy of anomaly detection. 
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Figure 1 Network detection Dataset with Anomalies 

 
Figure 2 Predicted and False Positive Rate 

 
(2. Support Vector Machine (SVM): An SVM model with a Radial Basis Function (RBF) kernel is trained to create 
decision boundaries between different classes. The RBF kernel function is defined as: 

𝐾(𝑥, 𝑥ᇱ) = exp (−𝛾‖𝑥 − 𝑥ᇱ‖ଶ) 
where 𝑥 and 𝑥ᇱare feature vectors, and 𝛾 is a kernel parameter that controls the decision boundary’s flexibility. 
(3. K-Nearest Neighbors (KNN): A KNN classifier is trained using Euclidean distance as the similarity metric, 

with an optimal value of 𝑘 determined through cross-validation. The Euclidean distance 𝑑 between two 
points 𝑝p and 𝑞 is calculated as: 

𝑑(𝑝, 𝑞) = ඩ෍  

௡

௜ୀଵ

  (𝑝௜ − 𝑞௜)ଶ 

 
3.3 Adaptive Weight Optimization 
After training the base classifiers, to improve the ensemble’s performance, an adaptive weighting mechanism is 
employed. Weights for each classifier are dynamically adjusted based on the error rate and false alarm rate, 
which are derived from the training data. 
(1. Error Rate Calculation: The error rate EEE for each classifier is calculated as: 

𝐸 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁  and 𝐹𝑁  represent true positives, true negatives, false positives, and false negatives, 
respectively. 
(2. False Alarm Penalty Term: To penalize classifiers with high false alarm rates, a penalty term is introduced in 

the weight calculation formula: 

Penalty =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(3. Adaptive Weighting Formula: The weight 𝑤௜  of each classifier 𝑖 calculated as: 

𝑤௜ =
1

𝐸௜ + 𝛼 ⋅  Penalty 
௜

 

where𝐸௜  is the error rate, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦௜  is the false alarm penalty term, and α is a hyperparameter that controls the 
influence of the penalty term on the weight. 
(4. Weight Normalization: After computing the weights, they are normalized to ensure that they sum up to 1: 

𝑤௜ =
𝑤௜

∑  ௡
௝ୀଵ  𝑤௝

 

where 𝑛 is the number of classifiers. 
 
3.4 Feature Selection 
To enhance model performance and reduce computational complexity, feature selection is conducted using 
Boruta, RFE, and PCA. 
(1. Boruta Algorithm: Boruta identifies important features by comparing the importance of real features with 

randomly generated shadow features. Features with consistently high importance scores are retained, while 
others are removed. 
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(2. Recursive Feature Elimination (RFE): RFE iteratively trains the model while ranking features based on their 
importance. At each iteration, the least important features are removed until the desired number of features 
is reached. 

(3. Principal Component Analysis (PCA): PCA is employed to reduce dimensionality by transforming the 
original features into a new set of orthogonal components. The explained variance ratio is used to select the 
optimal number of components, ensuring that significant information is retained while reducing noise. 
 

3.5 Model Evaluation 
The model’s effectiveness is evaluated using three key metrics: accuracy, recall, and F1 score. 
(1. Accuracy: Measures the proportion of correctly classified instances over the total number of instances: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2. Recall (Sensitivity): Measures the model’s ability to identify true positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3. F1 Score: Balances precision and recall, providing a single metric to evaluate model performance, particularly 
under class imbalance: 

𝐹1 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x Recall 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  Recall
 

 
4. EXPERIMENTAL SETUP 
To better validate the methodology model effectiveness and evaluate the proposed adaptive weighted ensemble 
learning model for network security detection. The experiments are performed in a simulated network 
environment, which is configured to mimic real-world network traffic conditions and various cyber-attack 
scenarios. 
 
4.1 Hardware and Software Configuration 
To ensure accurate and reliable results, the experimental environment is set up on a high-performance computer 
system capable of handling the intensive computations required by machine learning algorithms. The 
specifications are as follows: 
(1. Hardware Configuration: 
Processor: Intel Core i7 12700K (12 cores, 3.6 GHz) 
RAM: 32 GB DDR4 
Storage: 1 TB NVMe SSD 
GPU: NVIDIA GeForce RTX 3060 (12 GB VRAM) – used for acceleration of certain machine learning tasks, 
though primarily for visualization purposes. 
 
(2. Software Configuration: 
Operating System: Ubuntu 22.04 LTS 
Programming Language: Python 3.10 
 
(3. Network Simulation Tools: 
Maltrail: Used for logging and monitoring malicious network traffic. 
Wireshark: To capture and analyse packet-level details. 
Kali Linux (running on a virtual machine): Simulates cyber-attacks, leveraging tools like Metasploit, Nmap, and 
other penetration testing tools. 
 
4.2 Data Sources 
The experiment utilizes a combination of publicly available datasets and synthetic data generated using Kali 
Linux. The primary dataset used for model training and evaluation is the CICIDS2017 dataset, which contains 
various types of benign and malicious network traffic data, including DoS, DDoS, infiltration, and botnet attacks. 
(1. Data Description: 
CICIDS2017 Dataset: This dataset provides a realistic representation of modern network traffic. It includes 
approximately 3 million records with 85 attributes for each instance, such as source IP, destination IP, source 
port, destination port, packet count, byte count, and protocol type. 
Synthetic Data: Additional data is generated to simulate zero-day attacks not present in CICIDS2017. These 
include attacks generated using Metasploit, such as remote code execution, SQL injection, and credential brute 
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force attacks. This synthetic data ensures that the model remains adaptable and responsive to new types of 
threats. 
 
(2. Data Labelling and Preprocessing: 
The data is labelled as either normal (benign) or abnormal (malicious). The CICIDS2017 dataset is already 
labelled, while synthetic data is manually labelled. 
 
4.3 Model Training and Configuration 
The adaptive weighted ensemble model combines Decision Tree, SVM, and KNN classifiers, which are trained 
individually before being integrated into the ensemble. The training process is outlined as follows:  
 
1. Hyperparameter Tuning: 
Hyperparameters for each base classifier are optimized using Grid Search with 5-fold cross-validation. The best-
performing hyperparameters are selected based on accuracy and F1 score. 
 
2. Adaptive Weighting Mechanism: 
After training, the error rate and false alarm rate for each classifier are calculated on the validation set. Initial 
weights are assigned based on these rates, as described in Chapter 3. The ensemble weight 𝑤𝑖 for each classifier 
is calculated dynamically as new data is processed. 
 
3. Feature Selection and Dimensionality Reduction 
Boruta and RFE are applied to identify and retain the most informative features. 
PCA is subsequently used to reduce the dimensionality of the data to simplify model complexity and improve 
computational efficiency. 
 
4.4 Evaluation Metrics and Validation 
To validate the performance of the proposed model, a comprehensive evaluation framework is implemented, 
measuring accuracy, recall, F1 score, and false alarm rate.  
(1. Accuracy, Recall, and F1 Score: 
Accuracy provides a measure of overall correctness. Recall and F1 score are critical for imbalanced data, as they 
indicate how well the model identifies actual attacks without being skewed by the high number of benign 
samples. 
 
(2. False Alarm Rate (FAR): 
The false alarm rate measures the ratio of benign instances that are incorrectly classified as attacks, calculated as: 

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(3. Visualization and Analysis: 
Confusion matrices are generated to visually inspect the classification performance on different types of attacks. 
ROC (Receiver Operating Characteristic) curves and Precision-Recall curves are plotted to analyse trade-offs 
between recall and precision, particularly for imbalanced classes. 
 
5. RESULTS AND DISCUSSION 
The results obtained from the experimental evaluation of the proposed adaptive weighted ensemble learning 
model are discussed in this part.  
 
5.1 Metrics of The Model Performance  
The metrics used to assess the model's performance are accuracy, recall, F1 score, and false alarm rate. Each 
metric is calculated based on predictions for both benign and malicious traffic classes across multiple network 
attack types. 
1. Accuracy: Represents the proportion of correct predictions made by the model out of the total predictions. 
2. Recall: Measures the model’s ability to correctly identify malicious traffic. 
3. F1 Score: Provides a harmonic mean of precision and recall, particularly useful for imbalanced data. 
4. False Alarm Rate (FAR): Represents the percentage of benign traffic misclassified as malicious. 
The experimental results are summarized in Table 1, which compares the proposed model with traditional 
ensemble models such as Random Forest and AdaBoost. 
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Table1 The model experimental results 

Model Accuracy Recall F1 Score False Alarm Rate 

Proposed Model 97.8% 95.6% 96.2% 1.4% 

Random Forest 93.2% 89.7% 90.8% 3.7% 

AdaBoost 91.5% 88.3% 89.1% 4.2% 

 
The proposed model achieved an accuracy of 97.8%, significantly higher than the accuracy of Random Forest 
and AdaBoost, which achieved 93.2% and 91.5%, respectively. This improvement demonstrates that the 
adaptive weighting strategy effectively increases the model’s ability to classify network traffic accurately. The 
key reason for this performance boost is the dynamic adjustment of classifier weights based on their error rates 
and false alarm rates, which allowed the model to prioritize classifiers that performed better for specific attack 
types. 
To illustrate the model’s capability across different attack types, table 1 presents a breakdown of accuracy scores 
for various attack classes. The proposed model outperformed traditional models across most attack types, 
particularly for DDoS, infiltration, and botnet attacks. This indicates that the adaptive weighted ensemble 
approach is more adept at identifying complex attack patterns. 
 
5.2 Evaluation of Recall and F1 Score 
Recall is particularly important in the context of network security as it measures the model's sensitivity to 
malicious traffic. The proposed model achieved a recall of 95.6%, which is approximately 5.9% higher than 
Random Forest and 7.3% higher than AdaBoost. This indicates that the model is highly sensitive to detecting 
network threats, minimizing the likelihood of undetected attacks. Figure 4 shows a comparison of recall values 
for different attack types. The proposed model consistently maintained higher recall values across the board, 
especially for zero-day attacks. The use of synthetic data in the training process contributed to this capability, as 
it helped the model generalize better to unseen attacks. The F1 score provides a balanced measure of both 
precision and recall, making it particularly useful for datasets with imbalanced classes. With an F1 score of 
96.2%, the proposed model outperformed Random Forest (90.8%) and AdaBoost (89.1%), indicating its ability to 
accurately classify malicious traffic while minimizing false positives.  
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Figure 4 The comparison of recall values for different attack types 

 
False Alarm Rate Analysis 
One of the significant challenges in network security detection is minimizing false alarms, as they can lead to 
unnecessary interventions and system inefficiencies. The proposed model achieved a false alarm rate of 1.4%, 
which is notably lower than that of Random Forest (3.7%) and AdaBoost (4.2%). This reduced false alarm rate 
indicates that the proposed model effectively balances sensitivity to malicious traffic with precision in 
identifying benign traffic. 
 
5.3 Impact of Feature Selection and Dimensionality Reduction 
To evaluate the impact of feature selection and dimensionality reduction on model performance, experiments 
were conducted with and without these steps. The results indicated that the use of Boruta and Recursive Feature 
Elimination (RFE) for feature selection significantly improved model performance by removing irrelevant or 
redundant features, thus reducing overfitting and enhancing computational efficiency. The experiments 
revealed that after PCA, the model achieved a 15% reduction in training time while maintaining an accuracy of 
97.8%. Figure 5.4 shows the impact of PCA on model training time, demonstrating that dimensionality reduction 
contributes to faster model execution. 
 
5.4 Comparison with Traditional Ensemble Learning Models 
The experimental results clearly demonstrate the superiority of the proposed model over traditional ensemble 
learning models, as summarized in table 1. The adaptive weighted ensemble model not only achieved higher 
accuracy, recall, and F1 score but also maintained a substantially lower false alarm rate. 
 
6. CONCLUSION 
In this study, we proposed an improved adaptive weighted ensemble learning model designed to enhance 
network security detection rates. By integrating Decision Tree, Support Vector Machine (SVM), and K-Nearest 
Neighbors (KNN) classifiers, the model employs a dynamic weighting strategy that adjusts in real-time based 
on the error and false alarm rates of each classifier. This adaptive approach allows the model to optimize 
performance across diverse attack types, which was evidenced by the high detection accuracy achieved in our 
experiments. The experimental evaluation demonstrated that the proposed model substantially outperforms 
traditional ensemble methods such as Random Forest and AdaBoost. Specifically, our model attained an 
accuracy of 97.8%, a recall of 95.6%, and an F1 score of 96.2%, while maintaining a low false alarm rate of 1.4%. 
These results highlight the effectiveness of adaptive weighting in reducing false positives while improving 
sensitivity to malicious traffic, making it suitable for deployment in real-world network security environments. 
One of the critical aspects of the model’s success lies in the feature selection and dimensionality reduction 
techniques employed. By using the Boruta algorithm and Recursive Feature Elimination (RFE), the model was 
able to eliminate noise and retain only the most relevant features, which contributed to enhanced computational 
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efficiency and reduced overfitting. Furthermore, Principal Component Analysis (PCA) aided in reducing data 
dimensionality, enabling the model to handle large volumes of data while maintaining accuracy and robustness. 
While the model showed promising results, there are areas for future improvement, like scalability should be 
further tested on more extensive and diverse datasets to evaluate its performance under more varied and 
complex scenarios. 
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