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ABSTRACT: 
The two-dimensional problem for an infinite solid disk is examined in this paper within the 
framework of the Fractional Thermoelasticity Problem of an Infinite Solid Disk and the boundary 
condition value problem. It uses the Caputo fractional derivative of order in the heat conduction 
equation. It is assumed that the cylinder's curved surface is in contact with a rigid surface and is 
constantly being heated. The issue is resolved using the Laplace transform, Fourier, transform, and 
Hankel transform and its inverses. The distributions of temperature, displacement, and stress are 
computed numerically, and visually shown, and the findings are thoroughly analyzed. 
Keywords: Infinite solid disk, Fractional, thermoelasticity problem, Laplace transform, Hankel 
transform, Fourier transform 

1. INTRODUCTION 
The theories related to generalized thermoelasticity for the dynamical system at the single 
relaxation for isotropic bodies were first presented by Lord et al. (1967). The behavior of 
thermoelastic materials without energy dissipation was proposed by Green & Naghdi., (1993) 
using linear and nonlinear theories. The deformation of theoretical Thermo elasticity for the 
circular plate has been studied for heat supply which has been partially dispersed as presented by 
Ishihara et al. (1997). The equation for fractional heat conduction in single and 2-dimensional 
problems is studied, Povstenko., (2005) proposed stresses using the Caputo fractional derivative 
that correspond to the fundamental Cauchy problem solutions. Povstenko., (2009) studied theories 
related to thermal stress based on the equation adding the heat conduction with special and time 
fractional derivatives. The linked thermoelasticity theory and the generalized thermoelasticity 
theory with one relaxation period were used by Sherief et al. (2010) to construct the novel theory 
of thermoelasticity. 
Using the integral transform method, the mathematical model for quasi-static thermoplastic 
problems is studied in their indefinite solid long cylinder (Gaikwad et al., 2010). Sur et al. (2012) 
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new theory of generalized thermoelasticity at two temperatures was first forth for the novel 
analysis related to heat conduction and heat flux related to fractional orders thermoelasticity. A 
thin hollow circular disk deformed thermo elastically as a result of a partially distributed heat 
source (Gaikwad & Ghadle., 2012). The thermal deflection and heat conduction problem of non-
homogeneous materials due to the generation of internal heat inside the thin hollow circular disc 
were studied by Gaikwad & Ghadle., (2012). A newmathematical model of the thermoelasticity 
theory was put forward (Sur et al., 2012). The Green Naghdi model and 3-phase lag thermoelastic 
model are regarded to be subject to a regularly varied heat source in the setting of an unbounded 
medium, isotropic, and functionally graded medium. For a 1D problem involving an infinitely long 
cylinder, Raslan (2014) investigated the theories related to fractional thermoelasticity problems. 
The problem of 2 dimensions is studied in a thick plate with traction-free upper and lower surfaces 
that are being subjected to the specified axisymmetric temperature distribution was introduced by 
Raslan., (2015) using the fractional thermoelasticity problem theories. The thermoelastic problems 
of the mathematical model and the disk prone to heat generation were studied in circular sector 
disk (Gaikwad., 2015) 
The postulates of 2-dimensional distribution of steady-state temperature in thin circular plates due 
to the consistent nature of the generation of internal energy (Gaikwad., 2016). A thin circular 
plate's axisymmetric thermoelastic stress analysis owing to heat generation was covered by 
Gaikwad., (2019).In this study, the fractional thermoelasticity problem is formulated for solving 
the temperature and stress distribution of radial and circumference of thin circular discs. We expect 
beginning conditions to be zero. The boundary surfaces at (𝑟 = 𝑎);	(𝜑 = 0);	(𝜑 = 𝜑!);	(𝑧 =
0)	𝑎𝑛𝑑	(𝑧 = ℎ)	are maintained under the specified heat fluxes of 
𝑓"	(𝜑, 𝑧, 𝑡), 𝑓$	(𝑟, 𝑧, 𝑡); 		𝑓%	(𝑟, 𝑧, 𝑡), 𝑓&(𝑟, 𝜑, 𝑡)𝑎𝑛𝑑	𝑓'(𝑟, 𝜑, 𝑡)	respectively. 
The generalized finite Fourier transforms and the finite Hankel transform, as well as their inverses, 
have been used to solve the governing heat conduction equation with the aid of Mittag-Leffler 
functions. The mathematical model is built specifically with the pure Aluminium circular sector 
disk in mind. Using Mathcad software, the findings for thermal stress, displacement, and 
temperature have been estimated numerically and graphically shown. 

2. LITERATURE REVIEW 
Abouelregal et al. (2020) numerous efforts are made to better understand the Fourier classical heat 
transfer and several changes have been made. When some of these models are unsuccessful, 
therefore based on the Moore-Gibson-Thompson equation novel thermoelasticity model has been 
proposed. Combining the equation of hyperbolic partial differentiation for change in displacement 
field and the parabolic differential equation for the increase in temperature, this thermomechanical 
model was built. The investigated wave propagation in an infinite, isotropic body is subjected to a 
continuous thermal line source using the proposed model. 
Adhe & Ghadle., (2023) internal heat generation on inhomogeneous materials is the focus of this 
paper's analysis of thermoelasticity problems for plane elasticity and thermal stresses. Here, the 
method of direct integration is used to condense the original issues and establish the governing and 
boundary equations. The governing equation is then transformed into integral equations by 
applying more iteration techniques. The iterative method was used to execute the numerical 
calculations, resulting in speedy convergence. On a graph, the distribution of the Shear and 
Young's moduli, as well as the dimensionless stresses, are displayed. 
Singh et al. (2019) the current study examined the thermoelastic interaction in the memory-
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dependant derivative of the three-phase lag model for the material of partial infinite elastic things 
with a heat source. The differential equation form of vector-matrix in the domain of Laplace 
transform is used to define the coupled governing equations, which involve time delay and kernel 
functions. The eigenvalue technique has been used to resolve the analytical formulations of the 
issue. The Laplace transformation is reversed using the Honig-Hirdes numerical approach. By 
selecting several forms of time delay settings, graphical representation and kernel function have 
been carried out to produce numerical results. 
Sherief & Hussain., (2020) The fractional order thermoelasticity theory is applied to two-
dimensional axisymmetric issues. In the Laplace transform domain, the general solution is reached 
by taking a straight route without employing potential functions. The two issues of a solid sphere 
and an endless space with a spherical cavity are solved using the resulting formulation. Every time, 
a particular axisymmetric temperature distribution is applied to a surface that is assumed to be 
traction-free. Utilizing the transform's inversion formula as well as Fourier expansion methods, 
the Laplace transforms are inverted. The distributions of temperature, displacement, and stress in 
the physical domain are obtained by accelerating the convergence of the resulting series using 
numerical techniques. Graphical representations and discussions accompany the numerical results. 

 
3. FORMULATION OF THE PROBLEM 
A two-dimensional problem is considered for a circular solid disk that occupies the space of 0 ≤
r ≤ a; 	0 ≤ 𝜑 ≤ 𝜑!(< 2𝜋), 0 ≤ z ≤ h.	Initial conditions are assumed for the problem. The 
boundary surfaces (𝑟 = 𝑎);	(𝜑 = 0);	(𝜑 = 𝜑!);	(𝑧 = 0)	𝑎𝑛𝑑	(𝑧 = ℎ) for time t > 0 kept for the 
heat-flux 𝑓"	(𝜑, 𝑧, 𝑡), 𝑓$	(𝑟, 𝑧, 𝑡); 		𝑓%	(𝑟, 𝑧, 𝑡), 𝑓&(𝑟, 𝜑, 𝑡)𝑎𝑛𝑑	𝑓'(𝑟, 𝜑, 𝑡) correspondingly.The 
nonlocal Caputo type temporal fractional heat conduction equation of order for a thin circular disk 
is taken into account when creating a mathematical model. 
The time-fractional differential equationat time t with the temperature of the circular disk is given 
below; 

𝜕$𝑇
𝜕𝑟$ +

1
𝑟
𝜕𝑇
𝜕𝑟 +

1
𝑟$
𝜕$𝑇
𝜕𝜑$ +	

𝜕$𝑇
𝜕𝑧$ =

1
𝑘
𝜕(𝑇
𝜕𝑡( 																																																																												(3.1) 

 
Figure 3.1Representation of fractional thermoelastic problem 

In 0 ≤ r ≤ a; 	0 ≤ 𝜑 ≤ 𝜑!(< 2𝜋), 0 ≤ z ≤ h, for t > 0. The boundary value problems using the 
physical conditions, we can get the following equation; 

𝑘)𝐷*+",(
𝜕𝑇
𝜕𝑟 = 𝑓"	(𝜑, 𝑧, 𝑡); 	𝑎𝑡	𝑟 = 𝑎; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(3.2) 
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𝑘)𝐷*+",(
𝜕𝑇
𝜕𝜑 = 𝑓$	(𝑟, 𝑧, 𝑡); 	𝑎𝑡	𝜑 = 0; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(3.3) 

𝑘)𝐷*+",(
𝜕𝑇
𝜕𝜑 = 𝑓%	(𝑟, 𝑧, 𝑡); 	𝑎𝑡	𝜑 = 𝜑!; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(3.4) 

𝑘)𝐷*+",(
𝜕𝑇
𝜕𝑧 = 𝑓&	(𝑟, 𝜑, 𝑡); 	𝑎𝑡	𝑧 = 0; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(3.5) 

𝑘)𝐷*+",(
𝜕𝑇
𝜕𝑧 = 𝑓'	(𝑟, 𝜑, 𝑡); 	𝑎𝑡	𝑧 = ℎ; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(3.6) 

Then the initial conditions are; 
𝑇	 = 	0; 	𝑎𝑡	𝑡 = 0, 0 < 𝛼 < 2;																																																																																																							(3.7) 
𝜕𝑇
𝜕𝑡 = 0; 	𝑎𝑡	𝑡 = 0, 1 < 𝛼 < 2;																																																																																																						(3.8) 

We made the assumption that the circular disk is in a planar state of tension for thin h in 
accordance with Gaikwad [32]. In actuality, "the closer to a plane state of stress is the actual 
state, the smaller the thickness of the hollow disk compared to its diameter." 
The displacement equation is; 

𝑈-,// + J
1 + 𝜈
1	 − 	𝜈M 𝑒,- = 2J

1 + 𝜈
1	 − 	𝜈M 𝛼)𝑇,- 																																																																																									(3.9) 

𝑒	 = 	𝑈/,/; 	𝑘, 𝑖	 = 	1,2, 
𝑈- =	𝜓,-, i =1,2, 
Wecan have; 

∇$𝜓 = (1 + 𝜈)𝛼)𝑇 

∇$=
𝜕$

𝜕𝑟$ +
1
𝑟
𝜕
𝜕𝑟 

𝜎-0 = 2𝜇(𝜓,-0 	− 	𝛿-0𝜓,//), 𝑖, 𝑗, 𝑘	 = 1,2. . ,																																																																																									(3.10) 
The potential function of displacement 𝜓	(𝑟, 𝜑, 𝑧, 𝑡) can be written as; 
𝜕$𝜓
𝜕𝑟$ +

1
𝑟
𝜕𝜓
𝜕𝑟 = (1 + 𝜈)𝛼)𝑇																																																																																																												(3.11) 

Using 12
13
	= 0	𝑎𝑡	𝑟 = 𝑎	𝑓𝑜𝑟	𝑡𝑖𝑚𝑒	𝑡 

At initial stage𝑇 = 𝜓 = 0; 	𝑎𝑡	𝑡 = 0 
The stress function 𝜎44and 𝜎33 are; 

𝜎44 = −2𝜇
𝜕$𝜓
𝜕𝑟$ 																																																																																																																									(3.12) 

𝜎33 =
−2𝜇
𝑟

𝜕𝜓
𝜕𝑟 																																																																																																																								(3.13) 

The boundary conditions are given below; 
𝜎33 = 𝜎35 = 0; 	𝑓𝑜𝑟	𝑟	 = 𝑎; 0 ≤ 𝜑 < 𝜑!; 𝑡 > 0;																																																																							(3.14)	 
𝜎55 = 𝜎35 = 0; 𝑓𝑜𝑟𝜑 = 0; 0 ≤ 𝑟 < a; 𝑡 > 0;																																																																										(3.15) 
𝜎55 = 𝜎35 = 0; 𝑓𝑜𝑟𝜑 = 𝜑!; 0 ≤ 𝑟 < a; 𝑡 > 0;																																																																							(3.16) 

The problem formulation is considered from equation (3.1) to (3.16). 
4. PROBLEM SOLUTION 
DETERMINING THE TEMPERATURE FIELD 
Inverse transform and Fourier transform are defined for obtaining temperature function 
𝑇	(𝑟, 𝜑, 𝑧, 𝑡) using z variable in range 0 ≤ 𝑧 < h as follows; 
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𝑇X	(𝑟, 𝜑, 𝑧, 𝑡) 	= 	Y 𝐾(𝜂6, 𝑧′)𝑇(𝑟, 𝜑, 𝑧′, 𝑡′)𝑑𝑧′
7

89:!
(4.1) 

𝑇X	(𝑟, 𝜑, 𝑧, 𝑡) 	= 	]𝐾(𝜂6, 𝑧)𝑇X(𝑟, 𝜑, 𝜂6, 𝑡)
;

<:"

(4.2) 

where, 

𝐾(𝜂6, 𝑧) = ^2
ℎ 𝑐𝑜𝑠(𝜂6𝑧) 

𝜂",𝑎𝑛𝑑	𝜂$are considered positive roots of the equation; 
𝑠𝑖𝑛(𝜂6, 𝑧) = 0; 	𝑝 = 1,2,3 

where, 

𝜂6 =
𝑝𝜋
ℎ ; 	𝑝 = 1,2,3, .. 

Fourier transform is applied to equation (3.1)can be defined inequation (4.1) by using boundary 
conditions (3.2) to (3.8); we can obtain; 
 

𝜕$𝑇X
𝜕𝑟$ +

1
𝑟
𝜕𝑇X
𝜕𝑟 +

1
𝑟$
𝜕$𝑇X
𝜕𝜑$ +	

𝜕$𝑇
𝜕𝑧$ −	𝜂6

$𝑇X =
1
𝑘
𝜕(𝑇X
𝜕𝑡(

(4.3) 

The boundary conditions are; 

𝑘)𝐷*+",(
𝜕𝑇X
𝜕𝑟 = 𝑓"	XXX(𝜑, 𝜂6, 𝑡); 	𝑎𝑡	𝑟 = 𝑎; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(4.4) 

𝑘)𝐷*+",(
𝜕𝑇X
𝜕𝜑 = 𝑓$	XXX(𝑟, 𝜂6, 𝑡); 	𝑎𝑡	𝜑 = 0; 	𝑓𝑜𝑟	𝑡 > 0;																																																																					(4.5) 

𝑘)𝐷*+",(
𝜕𝑇X
𝜕𝜑 = 𝑓%	XXX(𝑟, 𝜂6, 𝑡); 	𝑎𝑡	𝜑 = 𝜑!; 	𝑓𝑜𝑟	𝑡 > 0;																																																																		(4.6) 

Using, 
𝑇X = 0; 	𝑎𝑡	𝑡 = 0; 	0 < 𝛼 < 2;																																																																																																							(4.7) 
𝜕𝑇X
𝜕𝑡 = 0; 	𝑎𝑡	𝑡 = 0, 1 < 𝛼 < 2;																																																																																																						(4.8) 

Inverse transform and Fourier transform over 𝜑 variable in range 0 ≤ 𝜑 ≤ 𝜑! can be defined as 
below; 

𝑇b	(𝑟, 𝜈<, 𝜂6, 𝑡) 	= 	Y 𝐾!(𝜈<, 𝜑′)𝑇X(𝑟, 𝜑′, 𝜂6, 𝑡)𝑑𝜑′
5!

59:!
(4.9) 

𝑇X	(𝑟, 𝜑, 𝜂6, 𝑡) 	= 	]𝐾!(𝜈<, 𝜑)𝑇b(𝑟, 𝜈<, 𝜂6, 𝑡)
;

<:"

(4.10) 

Where, 

𝐾(𝜈<, 𝜑) = ^
2
𝜑!
𝑐𝑜𝑠(𝜈<𝜑) 

Where Eigenvalues 𝜈<are considered as positive roots of equation; 

𝑠𝑖𝑛(𝜈<𝜑!) = 0;	𝜈< =
𝑛𝜋
𝜑!

; 	𝑛 = 1,2,3.. 

Fourier transform is applied to equations (4.3) and (4.9) by using the conditions (4.4) to (4.8), we 
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can obtain the following equation; 
𝜕$𝑇b
𝜕𝑟$ +

1
𝑟
𝜕𝑇b
𝜕𝑟 	−	

𝜐<$

𝑟$ 𝑇
b −	𝜂6$𝑇b =

1
𝑘
𝜕(𝑇b
𝜕𝑡(

(4.11) 

Using 

𝑘)𝐷*+",(
𝜕𝑇b
𝜕𝑟 = 𝑓"	XXX(𝜈<, 𝜂6, 𝑡); 	𝑎𝑡	𝑟 = 𝑎; 	𝑓𝑜𝑟	𝑡 > 0;																																																																	(4.12) 

𝑇b = 0; 	𝑎𝑡	𝑡 = 0; 	0 < 𝛼 < 2;																																																																																																								(4.13) 
𝜕𝑇b
𝜕𝑡 = 0; 	𝑎𝑡	𝑡 = 0, 1 < 𝛼 < 2;																																																																																																						(4.14) 

Inverse transform and Hankel transform over r variable at range 0 ≤ 𝑟 < 𝑎can be defined as 
below; 

𝑇Xb	(𝛽=, 𝜈<, 𝜂6, 𝑡) 	= 	Y 𝑟′. 𝐾"(𝛽=, 𝑟′)𝑇X(𝑟, 𝜈<, 𝜂6, 𝑡)𝑑𝑟′
>

39:!
(4.15) 

𝑇X	(𝑟, 𝜈<, 𝜂6, 𝑡) 	= 	 ] 𝐾"(𝛽=, 𝑟)𝑇Xb(𝛽=, 𝜈<, 𝜂6, 𝑡)
;

=:"

(4.16) 

Where, 

𝐾(𝛽=, 𝑟) = ^2
a

1

e1 − 𝜐<$
𝛽=$ 𝑎$

f
"/$		

𝐽!(𝛽=𝑟)
𝐽!(𝛽=𝑎)

 

𝛽",𝑎𝑛𝑑	𝛽$ are considered positive roots; 
𝐽"(𝛽=𝑎) = 0; 	𝑚 = 1,2,3. .. 

Hankel transform is applied in equations 4.11 and (4.15) by using the conditions (4.12) to (4.14), 
we can obtain the following equation 

𝜕(𝑇Xb(𝛽=, 𝜈<, 𝜂6, 𝑡)
𝜕𝑡( + 𝑘(𝛽=$ +

𝜐<$

𝑟$ + 𝜂6
$)𝑇Xb(𝛽=, 𝜈<, 𝜂6, 𝑡) = 𝐴(𝛽=, 𝜈<, 𝜂6, 𝑡)(4.17) 

And, 
𝑇Xb(𝛽=, 𝜂6, 𝑡) = 0; 	𝑎𝑡	𝑡 = 0; 	0 < 𝛼 < 2;																																																																																					(4.18) 
𝜕𝑇b(𝛽=, 𝜂6, 𝑡)

𝜕𝑡 = 0; 	𝑎𝑡	𝑡 = 0, 1 < 𝛼 < 2;																																																																																			(4.19) 

Where, 
𝐴(𝛽=, 𝜈<, 𝜂6, 𝑡) 	

= 	𝑘𝑎𝐾"(𝛽=, 𝑎)𝑓"	bbb(𝜈<, 𝜂6, 𝑡)		i𝑎
𝑑𝐾!(𝜈<, 𝜑)

𝑑𝜑 𝑓$	bbb(𝛽=, 𝜂6, 𝑡)|5:! 	

− 	
𝑑𝐾!(𝜈<, 𝜑)

𝑑𝜑 𝑓%	bbb(𝛽=, 𝜂6, 𝑡)|5:5! +
𝑑𝐾(𝜈<, 𝜑)

𝑑𝑧 𝑓&	bbb	(	(𝛽=, 𝜈<, 𝑡)|8:!

+
𝑑𝐾(𝜈<, 𝜑)

𝑑𝑧 𝑓'	bbb(𝛽=, 𝜂6, 𝑡)|8:7k																														(4.20) 

Laplace and inverse transform is applied to equation (3.17), we can obtain; 

𝑇Xb(𝛽=, 𝜈<, 𝜂6, 𝑡) =
𝐴(𝛽=, 𝜈<, 𝜂6, 𝑡)

𝑘(𝛽=$ +
𝜐<$
𝑟$ + 𝜂6

$)
[1	 −	𝐸((−𝑘(𝛽=$ +

𝜐<$

𝑟$ + 𝜂6
$)𝑡()]																														(4.21) 

Finally, the required temperature is obtained by defining the inverse in equations (4.16), (4.10), 
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and (4.2); 

𝑇	(𝑟, 𝜑, 𝑧, 𝑡) 	= 	 ] ]]𝐾"(𝛽=, 𝑟)
;

6:"

;

<:"

;

=:"

𝐾!(𝜈<, 𝜑)𝐾(𝜂6, 𝑧)
1

𝑘(𝛽=$ +
𝜐<$
𝑟$ + 𝜂6

$)
					[1 − 𝐸((−𝑘(𝛽=$

+
𝜐<$

𝑟$ + 𝜂6
$)𝑡()]	𝑥	𝑏=<6																				(4.22) 

 
 
 


