Available online at www.bpasjournals.com

Predictive Analytics in Talent Management

¹Dr. J. Katyayani, ²N. A. Saira Banu

¹Professor,Department of Business Management Sri Padmavathi Mahila Visvavidyalayam-Tirupati <u>jkatyayani@gmail.com</u>

²Research Scholar,Department of Business Management Sri Padmavathi Mahila Visvavidyalayam-Tirupati &Assistant Professor, SV College of Engineering-Tirupati. <u>sairbanumti21@gmail.com</u>

How to cite this article: J. Katyayani, N. A. Saira Banu (2024) Predictive Analytics in Talent Management. Library Progress International, 44(3), 20399-20408.

Abstract

This research focuses on in predicting the factors influencing Talent and Knowledge management on employee performance. Through reliability testing, data reduction on a sample of 395 respondents using multiple linear regression analysis and exploratory factor analysis (EFA), the factor analysis condenses 19 items into 6 key determinants of talent management and knowledge management. The factor analysis uses principal component analysis algorithm for initial solutions and varimax algorithm for rotation and extracting the final factor. The linear regression algorithm suggests a model that shows how three knowledge management and three talent management determinants affect worker performance. According to the study, staff performance is greatly impacted by knowledge acquisition, organisation, and storage, as well as by talent development, identification, and strategy. Thus, IT companies can improve their knowledge and talent management practices to improve employee performance.

Keywords: Talent Development, Talent Identification, Talent Strategizing, Knowledge Store, Knowledge Organizing, Knowledge Acquiring and Employee Performance.

Introduction

As the pace of technological advancement continues to accelerate, organizations must adapt to innovative demands. Creativity becomes essential for achieving employee goals within this evolving landscape. A responsive, accurate, and efficient reaction to changes in the business environment necessitates a robust and skilled HR department. HR plays a pivotal role in strategy formulation and employee performance, crucial for meeting organizational objectives. In today's era of information technology, competition is fierce, requiring organizations to have dependable and competent HR functions. Effective performance management is vital for achieving organizational goals. Performance reviews ensure employees fulfill their responsibilities in line with the organization's standards, contributing directly or indirectly to the organization's success. Individual characteristics significantly influence employee performance, including managerial knowledge, competency, and effectiveness training. Talent Management encompasses processes aimed at identifying, developing, retaining, and placing the right individuals within an organization. Alongside talent, education, science, and training are essential for nurturing high-caliber and competitive HR. Global competition necessitates continuous refinement of employee performance to meet organizational goals. As knowledge becomes increasingly critical, effective management of its acquisition and application is vital for enhancing employee performance. Information management involves creating, disseminating, and utilizing organizational knowledge to optimize employee and organizational performance.

Literature Review

It is generally accepted that there is a crucial relationship between executive skill and employee execution since the board has the capacity to develop talent management and produce work with outstanding exhibitions (Bethke-Langenegger, et al, 2011). The trend known as talent aims to consciously enhance potential gifts. Talent the board is reliant on to improve employee execution, gain the upper hand, and increase employee productivity. Three cycles are included in the examination of talent management.

According to Pella and Afifah (2011), talent management is crucial for managing the development of talent within an organization. This involves ensuring that talent is readily available and matching the appropriate assigning employees to the appropriate tasks at the appropriate times while keeping in mind the organization's main objectives and the demands of its operations. Ability is a useful kind of knowledge and skill that a collaborator can possess, according to Moczydlowska (2012) takes on this occurs in the case of talent, of which ingenuity is

the manifestation, because Employee the board techniques make use of a number of talent-related facts. Although talent cannot be measured and perceived as exceeding expectations, it can be measured using language that aligns with presumptions. Executive talent planning involves developing procedures, identifying skill gaps, organizing progress, and selecting, training, motivating, and retaining skilled employees through various initiatives (Groves, 2007).

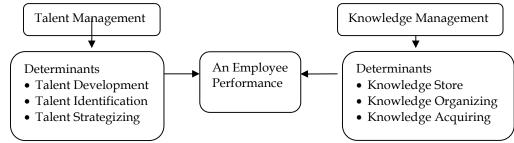
Companies that employ talent as one of their human resources strive to provide the best possible connection between the pursuit, dedication, selection, training, promotion, maintenance, and mobility of representatives and the company's core operations. Muhyi et al. (2016) state that the talent board can be an all-inclusive and essential tool for handling the processes of identifying, evaluating, developing, and assigning competent human resources to support the endeavors of achieving the best display and association. By determining the impact of initiative on the identification of appropriate contributions is emphasised, as is the organization's capacity to achieve important and practical goals that align with or exceed presumptions. Finding the right individual with the right talents for the right job is the focus of talent management, according to Cappelletti (2009). With associations becoming increasingly aware of these gifts, they are now fighting to find agents that possess a great deal of competence, both through external recruitment as well as preparation and recovery.

In Dr. S. Mohana et al.'s (2021) paper, information is reduced using CFA on a sample of 222 respondents, condensing a number of factors into a summary of three discernible abilities that determine the executives. A model of the impact of executive determinants on worker work execution is put out in the current review. The analysis found that incentives, ability maintenance, and initiative all have an overall impact on how well employees execute their jobs. Therefore, by focusing on the aforementioned elements, IT businesses can further enhance worker work execution. This will help in improving the association's efficiency.

The goal of Dr. T. Narayana Reddy et al.'s (2021) analysis was to determine what factors, such as work-family conflict, work-family conflict, work support, and family support tension, influence the work strain experienced by IT professionals. The quantitative information for this study was gathered by reviewing 256 responses from various IT associations in Chennai. The audit's postponed outcomes reveal that there is a fundamentally sound correlation between the causative variables and job strain. In a similar manner, the focus examines the concept for later evaluation.

Performance is a snapshot of how well a plan of action or series of actions is carried out in achieving the goals, challenges, vision, and mission of the partnership as they are outlined in the basic planning of an association. (Simanjuntak 2011) defines execution as the accomplishment of goals while carrying out specific tasks. According to (Prawirosentono 2012), demonstrates the amount of work that can be done by a person or social event in a relationship by following their various subject matter experts and their commitments to honestly address the affiliated party's objections, refraining from abusing the legal system, and abiding by standards and ethics. But according to Tash et al. (2016), worker execution is the process by which a person in a partnership completes work by foreseeing hazard in every situation so that they may both work together to achieve the association's goals in compliance with regulations, ethics, and guidelines.

Furthermore, according to (Badrianto, Y., and Ekhsan, M. 2019), performance can be evaluated with the expectation that a worker or group of workers will now have benchmarks or metrics established by the association. As a result, in the absence of benchmarks for progress, the introduction of a person or affiliation may not be known in the absence of the goals and targets established in the evaluation. However, (Turere 2013) finds that three more factors—supporting workplaces, supra workplaces, and the quality and limit of laborers to research—can also promote execution. According to (Robbins 2011), the method for evaluating expert execution should be clear from consideration of the associated factors: total, quality, and reasonableness. These three items will serve as indicators for this survey's execution factor evaluation.


Research Problem

Talent management, a crucial aspect of global HR strategy, focuses on recognizing, nurturing, communicating, and retaining top-tier individuals within an organization. Research suggests that the effectiveness of leadership profoundly influences employee performance across all industries. While considerable inquiry has been conducted into the capabilities of CEOs across various sectors, the field of information technology has received relatively less attention. Key challenges in talent management include grasping talent dynamics, examining leadership practices within the tech industry, and evaluating their impact on employee performance.

Research Objectives

- 1. To determine the factors that influence knowledge and talent management in the IT industry.
- 2. To assess the influence of talent management and knowledge management determinants on employee performance.

Conceptual Framework:

Research Hypotheses

Ho1: There is no significant relationship between talent management determinants on employee performance.

- Ho1.1: There is no significant relationship between talent strategizing on employee performance.
- Ho1.2: There is no significant relationship between talent development on employee performance.
- Ho1.3: There is no significant relationship between talent identification on employee performance.

Ho2: There is no significant relationship between knowledge management determinants on employee performance.

- Ho2.1: There is no significant relationship between knowledge store on employee performance.
- Ho2.2: There is no significant relationship between knowledge organizing on employee performance.
- Ho2.3: There is no significant relationship between knowledge acquiring on employee performance.

Sampling Design

Two-phase judgemental sampling is the sample strategy used in this investigation. The first step was identifying the fifteen IT businesses that were listed as "India's Most Admired Companies" in 2021 by Fortune-Hay Group's Annual Study, as shown in Table 1. The top ten ranked businesses were chosen for data collection because the list is a ranking of organisations. Employees with three years of experience were eliminated from the nominated organisations' talent pool in the second stage. 395 employees made up the final sample after the actual units of observation were found utilising the non-probabilistic convenience sampling technique through both offline and online contact methods.

Table: 1. List of IT Companies in India's Most Admired Companies, 2021

Rank	Name of the company
1	Cognizant
2	Microsoft India
3	TCS
4	Intel India
5	Sysco Systems India
6	Infosys
7	Wipro
8	IBM India

Source: Fortune India (2021)

Data Collection Method as shown in Table 1, a total of 500 questionnaires and a letter of introduction were sent to participants via online and offline methods. Of these, 250 were sent online, and the remaining 250 were sent in person. Of the online questionnaires, 209 usable responses were obtained, yielding an 83.6 percent response rate; the offline questionnaires produced 186 useable responses, yielding a 74.4 percent response rate; thus, the study's total sample size was 395 respondents.

Table: 2. Details of Data Collection

Flat form	No of Questionnaires Distributed	No of Responses	No of Usable Responses	Response Rate (percentage)		
Online	250	209	209	83.6		
Offline	250	186	166	74.4		
Total	500	395	375	94.4		
Source: Primary data through questionnaire.						

Instruments used for Data Collection

The instrument for gathering data was the questionnaire. Expert evaluation and pre-testing were used to confirm the questionnaire's validity and reliability. In order to verify the validity of the tool, three academicians and seven practitioners from various IT companies participated in an expert review. The academicians were HR domain

specialists with at least ten years of experience, while the practitioners were HR Heads or Directors of their respective organizations. The experts evaluated the identified elements of the instrument for comprehensibility, bias, and appropriateness.

Statistical Tools

- Reliability Test
- EFA
- Regression

Data Analysis Reliability Test

Table: 3. Reliability Test

Cronbach's Alpha	N of Items			
0.863	19			
Source: Primary data through questionnaire.				

With a Cronbach's Alpha value of 0.863, the survey's internal consistency of 19 questions indicates that the data is 86.3 percent valid and reliable.

Factor Analysis

Table: 4. KMO and Bartlett's Test

KMO Measure of Sampling Adequ	nacy.	.840	
	Approx. Chi-Square	2633.996	
Bartlett's Test of Sphericity	Df	171	
	Sig.	.000	
Source: Primary data through questionnaire.			

The data essential be qualified by running the KMO-Bartlett test before factor study can proceed. This test is a part of examining multivariate ordinariness and ampleness among components. This research's KMO esteem is 0.840 > 0.5, representing that the example used is adequate. A 0.000 < 0.05 Bartlett's Test of Sphericity score specifies multi-ordinariness among the components. Factor analysis is now thought to be a suitable approach for further analysis of the data.

Factor Analysis:

The factor analysis uses PCA algorithm for initial solutions and varimax algorithm for rotation and extracting the final factor.

Eigen Values

The numbers of the factors used in the Factor Analysis make up the fundamental components. However, not all 19 of the criteria will be present. By combining the relevant factors, just the six elements from the current examination will be eliminated. The discrepancies between the variables are called eigenvalues. The Eigenvalue is present throughout the entire section. The principal element will always have the highest change and, as a result, the most notable Eigenvalues. As much of the additional change as feasible will be represented by the next element, and so on, all the way to the last variable. The total percentage provides the total amount of variation accounted for by the current and prior variables, while the level of change deals with the percentage of the total difference that each element represents. Six of the starting factors in the existing analysis explain 66.821 percentage of the variation. After the varimax turn, the pivot quantities of the formed assembling use Kaiser Normalization to address the dispersion of the fluctuation. The varimax pivot makes an effort to increase each component's variation.

Table: 5. Total Variance Explained

	Table: 5. Total Variance Explained								
Compon ent	Initial Eigenvalues			pon Initial Eigenvalues Extraction Sums of Squared Loadings			Rot	ation Sums Loadi	s of Squared ngs
	Total	% of Varianc e	Cumulativ e %	Total	% of Varianc e	Cumulativ e %	Total	% of Varianc e	Cumulative %
1	5.787	30.458	30.458	5.787	30.458	30.458	2.743	14.434	14.434
2	2.015	10.604	41.062	2.015	10.604	41.062	2.108	11.095	25.529
3	1.414	7.443	48.505	1.414	7.443	48.505	2.100	11.052	36.581
4	1.353	7.121	55.625	1.353	7.121	55.625	2.079	10.941	47.522
5	1.132	5.957	61.583	1.132	5.957	61.583	1.893	9.965	57.487
6	.995	5.238	66.821	.995	5.238	66.821	1.773	9.334	66.821

7	.858	4.518	71.339		- 1	
8	.735	3.870	75.209			
9	.676	3.559	78.768			
10	.609	3.207	81.975			
11	.519	2.730	84.705			
12	.471	2.477	87.182			
13	.456	2.401	89.583			
14	.447	2.354	91.937			
15	.384	2.023	93.960			
16	.376	1.979	95.939			
17	.305	1.605	97.544			
18	.270	1.422	98.966			
19	.196	1.034	100.000			

Extraction Method: PCA.

Source: Primary data through questionnaire.

Six variables have been divided using Varimax Rotation with Kaiser Normalization as the basis. Every component is made up of a significant number of components with factor loads > 0.5. Six elements were derived from 19 factors. Six components were eliminated from the 19 factors that were used in the analysis. Sixteen components were extracted, and they explained 66.821 percentage of the variation in professional talent knowledge and management determinants.

Rotated Component Matrix

The connections between the variables and the factors, also known as element loadings, are dealt with by the Rotated Component Matrix. The turned elements that were eliminated from the all-out factor are covered in the element segment. These are the central components, which are used as the final component following a drop in information.

Table: 6. Rotated Component Matrix^a

S. No.	Statements	Eigen Value	Factor Name
	Professionals exiting the association receive adequate knowledge transfer and are provided with comprehensive information.	0.840	Talent
1	Departing workers are ensured sufficient knowledge transfer and comprehensive support.	0.824	Development
	Casual channels of communication within the association aid in the acquisition of information.	0.784	
	Standardized metrics and parameters are utilized to identify employees with high potential.	0.807	Talent
2	To find employees with great potential, the company does potential assessments.	0.737	Identification
	Nominations for high-potential personnel are efficiently reviewed by a trustworthy committee.	0.644	
	Informal communication channels within the organization facilitate the exchange of information.	0.744	Talent Strategizing
3	Documentation of use cases, design documents, code bases, developer test cases, and test results is conducted diligently.	0.740	
	A Data Source is accessible for the justification.	0.663	
	Information learned over team meetings is accurately updated in databases, with irrelevant information filtered out.	0.850	
4	Appropriate security measures are implemented to ensure the authentication and protection of employee data resources.	0.828	Knowledge Store
	Information technology tools, both online and offline, support knowledge management efforts.	0.561	
	The organization has a clearly defined talent strategy that governs the attraction.	0.792	
5	The CEO's dedication to the successful implementation of the talent strategy is evident.	0.737	Knowledge Organizing
	Line managers are detained answerable for effectively implementing the talent management process.	0.693	
	Mentoring and development schemes are provided to facilitate career and personal growth.	0.820	

6	On the basis of performance reviews obtained from multiple sources, 360-degree feedback is provided.	0.796	Knowledge Acquiring
	External and internal coaching opportunities are provided to enhance specific skills.	0.566	

The factors and each of the divided variables are connected in the network above. Usually, all the components are highly concentrated in one element and less concentrated in other elements. The variable with the highest extreme value in each line is selected as significant for that specific element in order to identify the aspects that should be kept in mind for each component. With the exception of low stacking factors, the attributes have been highly eased up in every line to group the 19 components into 6 central aspects.

Regression

To evaluate the influence of talent management factors on employee performance, a multiple linear regression analysis was employed as the chosen methodology.

Table: 7. Model Summary^b

Model	R	R ²	Adjusted R ²	Std. Error of the Estimate	Durbin-Watson	
1	.503ª	.537	.247	.877	1.656	
Source: Primary data through questionnaire.						

The relapse table 7: sums up the model execution through the accompanying insights.

- R: Ranging from -1 to +1, R represents the direction and intensity of the correlations between variables. Employee performance and talent management techniques have a strong positive association, as indicated by the R-value of 0.503.
- R Square: The coefficient of determination, or R², is a number between 0 and 1. The talent management procedures account for roughly 53.7% of the variation in employee performance, according to the R2 value of 0.537.
- Durbin-Watson statistic: According to Table 7, the value is 1.656. The assumption has probably been met because it is near the typical value of 2.

Table: 8. ANOVA^a

	Model	Sum of Squares	Df	Mean Square	F	Sig.
	Regression	96.332	3	32.111	41.791	.000 ^b
1	Residual	285.065	371	.768		
	Total	381.397	374			

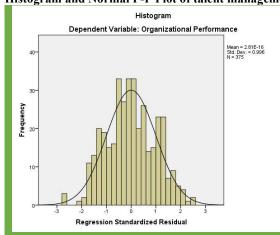
Source: Primary data through questionnaire.

The ANOVA (Table 8) indicates that the F statistic of the regres

The ANOVA (Table 8) indicates that the F statistic of the regression model is statistically significant at the 0.05 level, suggesting the adequacy of the fit of the regression model.

Table: 9. Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	Т	Sig.
		В	Std. Error	Beta		
	(Constant)	1.147	.215		5.322	.000
	Talent Strategizing	.243	.041	.279	5.972	.000
1 1	Talent Identification	.249	.041	.277	6.095	.000
	Talent Development	.185	.044	.196	4.221	.000


a. Dependent Variable: Employee Performance

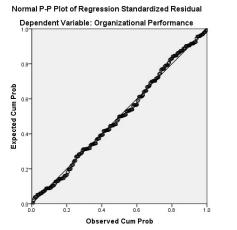

Source: Primary data through questionnaire.

Table 9 displays the normalized regression coefficients, indicating the strength and direction of the effect of talent management determinants on employee performance. It also includes the corresponding t-values and significance levels to validate the hypotheses regarding the significant impact of these aspects on employee performance.

- The Beta value for talent strategizing is 0.279, signifying a positive impact on employee performance. The T value is 5.972, with a significance value of 0.000, indicating that talent strategizing significantly affects the performance of IT employees. Consequently, the null hypothesis Hol.1, suggesting no significant relationship between talent strategizing and employee performance, is rejected.
- The Beta value for talent identification is 0.277, indicating a positive impact on employee performance. The T value is 6.095, with a significance value of 0.000, suggesting a significant impact of talent identification on the performance of IT employees. Thus, the null hypothesis Ho1.2, proposing no significant relationship between talent identification and employee performance, is rejected.
- The Beta value for talent development is 0.196, indicating a positive impact on employee performance. The T value is 4.221, with a significance value of 0.000, demonstrating a significant impact of talent development on the performance of IT employees. Consequently, the null hypothesis Ho1.3, indicating no significant relationship between talent development and employee performance, is rejected.

Histogram and Normal P-P Plot of talent management factors on employee performance.

Figure: 1. Histogram and Normal P-P Plot of talent management factors on employee performance. The normality assumption of the regression model is assessed through histograms and probability plot diagrams, as depicted in Figure 1. The regression variable is observed to conform well to the assumption of normality.

Multiple Linear Regression

To evaluate the influence of knowledge management determinants on Employee Performance as the dependent variable, a multiple regression analysis method was utilized.

Table:	10.	Model	Summary ^b

Model	R	\mathbb{R}^2	Adjusted R ²	Std. Error of the Estimate	Durbin-Watson			
1	.621a	.586	.381	.794	1.852			
Source: Primary data through questionnaire.								

- R: The R statistic reflects the various correlations coefficients within the range of -1 to +1. With an R-value of 0.621, there is a strong positive correlation between the knowledge management determinants and Employee Performance.
- R Square: R² represents the coefficient of determination, which ranges between 0 and 1. With an R² value of 0.586, approximately 58.6% of the variance in Employee Performance is explained by the knowledge management determinants.
- Durbin-Watson statistic: The Durbin-Watson statistic value, as observed in Table 10, is 1.852. This value is close to the standard value of 2, indicating that the assumption has likely been satisfied.

Table: 11. ANOVAª

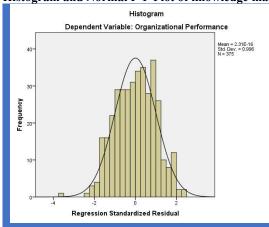
Model	Sum of Squares	Df	Mean Square	F	Sig.
Regression	147.244	3	49.081	77.766	.000b
Residual	234.153	371	.631		
Total	381.397	374			
	Regression Residual	Regression 147.244 Residual 234.153	Regression 147.244 3 Residual 234.153 371	Regression 147.244 3 49.081 Residual 234.153 371 .631	Regression 147.244 3 49.081 77.766 Residual 234.153 371 .631

Source: Primary data through questionnaire.

The ANOVA (Table 11) reveals that the F statistic of the regression model is statistically significant at the 0.05 level, indicating the validity of the fit of the regression model.

Table: 12. Coefficients^a

	Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	1.208	.158		7.641	.000
	Knowledge Acquiring	.245	.042	.293	5.801	.000
	Knowledge Organizing	.245	.044	.273	5.503	.000
	Knowledge Store	.172	.046	.189	3.760	.000


a. Dependent Variable: Employee Performance

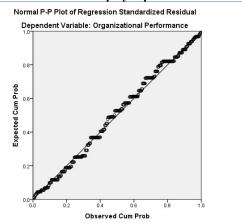

Source: Primary data through questionnaire.

Table 12 presents normalized regression coefficients, indicating the strength and direction of the effect, along with corresponding t-values and significance levels, to validate the hypotheses regarding the significant impact of talent management determinants on Employee Performance.

- In Table 12, the Beta value for knowledge acquisition is 0.293, suggesting a positive impact on Employee Performance. The T value is 5.801, with a significance value of 0.000, indicating that knowledge acquisition significantly affects the performance of IT companies. Thus, the null hypothesis Ho2.1, indicating no significant relationship between knowledge acquisition and employee performance, is rejected.
- Table 12 also reveals a Beta value of 0.273 for knowledge organizing, indicating a positive impact on Employee Performance. The T value is 5.503, with a significance value of 0.000, signifying a significant impact of knowledge organizing on the performance of IT employees. Therefore, the null hypothesis Ho2.2, suggesting no significant relationship between knowledge organizing and employee performance, is rejected.
- Additionally, Table 12 illustrates a Beta value of 0.189 for knowledge storage, indicating a positive impact on Employee Performance. The T value is 3.760, with a significance value of 0.000, demonstrating a significant impact of knowledge storage on the performance of IT employees. Consequently, the null hypothesis Ho2.3, proposing no significant relationship between knowledge storage and employee performance, is rejected.

Histogram and Normal P-P Plot of knowledge management determinants on employee performance.

Figure: 2. Histogram and Normal P-P Plot of knowledge management determinants on employee performance. The normality assumption of the regression model is assessed through histograms and probability plot graphs, as depicted in Figure 2. The regression variable is observed to conform well to the assumption of normality.

Suggestions

- IT company managements can deploy an integrated Talent and Knowledge Management (TKM) strategy to foster a culture of continuous improvement and innovation. This includes tailored learning and development programs, career progression planning, and leveraging knowledge-sharing tools like collaborative platforms (e.g., intranets, wikis, and knowledge management systems).
- Personalized Talent Development Plans should be designed to identify high-potential employees early
 and offer them opportunities to grow through mentorship, leadership training, and project-based learning.
- Innovative Learning Techniques, such as virtual classrooms, AI-driven training simulations, and gamification, should be adopted to enhance engagement and knowledge retention.

Conclusion

In conclusion, the determinants of talent and knowledge management play a crucial role in shaping employee performance. Talent development ensures that employees are continuously unskilled, which enhances their productivity and adaptability in a dynamic business environment. Talent identification helps organizations recognize high-potential employees, aligning them with roles where they can excel, while talent strategizing provides a clear direction for harnessing the potential of employees to meet organizational goals. On the knowledge management side, knowledge store ensures the preservation of critical information, while knowledge organizing facilitates easy access to relevant data. Furthermore, knowledge acquiring allows employees to stay updated with the latest trends and practices, thereby fostering innovation and improved decision-making. Together, these determinants create an environment where employees can thrive, ultimately driving better performance and organizational success.

References

- 1. Adi, S., Martani, D., Pamungkas, B., &Simanjuntak, R. A. (2016). Analysis of the quality of performance report of the local government on websites: Indonesian case. Cogent Business & Management, 3(1), 1229393.
- 2. Badrianto, Y., &Ekhsan, M. (2019). The Effect of Work Environment and Motivation on Employee Performance of PT. Hasta Multi Sejahtera Cikarang. Journal of Research in Business, Economics, and Education, 1(1).
- 3. Bethke-Langenegger, P., Mahler, P., &Staffelbach, B. (2011). Effectiveness of talent management strategies. European Journal of International Management, 5(5), 524-539.
- 4. Cappelli, P., & Keller, J. R. (2014). Talent management: Conceptual approaches and practical challenges. Annu. Rev. Organ. Psychol. Organ. Behav., 1(1), 305-331.
- 5. Groves, K. S. (2011). Talent management best practices: How exemplary health care organizations create value in a down economy. Health Care Management Review, 36(3), 227-240.
- 6. Kusumowardani, A., & Suharnomo, S. (2016). AnalisisPengaruhManajemenTalentadan Global Mindset TerhadapKinerjaKaryawan Dan Turnover Intention DenganKomitmenOrganisasiSebagaiVariabel Intervening (StudiPadaKaryawan PT. CiptaBusanaMandiriDemak). Diponegoro Journal of Management, 5(3), 146-160.
- 7. Le, H., Oh, I. S., Robbins, S. B., Ilies, R., Holland, E., &Westrick, P. (2011). Too much of a good thing: Curvilinear relationships between personality traits and job performance. Journal of Applied Psychology, 96(1), 113.

- 8. Lim, D. H., Morris, M. L., & Yoon, S. W. (2006). Combined effect of instructional and learner variables on course outcomes within an online learning environment. Journal of Interactive Online Learning, 5(3), 255-269.
- 9. Moczydłowska, J. (2012). Talent management: theory and practice of management. the polish experience. International Journal of Bussiness Economic Research, 3(1), 432-438.
- 10. Mohana, S., Santosh, M. K., Kumari, M. R., & Sudarsan, K. (2021). Impact of Talent Management on Employee Job Performance in Information Technology (IT) Sector: An Empirical Study of Chennai City. PalArch's Journal of Archaeology of Egypt/Egyptology, 18(4), 5871-5886.
- 11. Noviyanti, E., Syofyan, E., &Evanita, S. (2019, September). The Effect of Leadership, Work Motivation and Work Satisfaction on Performance of Employees of Education and Culture Department in Padang Pariaman. In Third Padang International Conference on Economics Education, Economics, Business and Management, Accounting and Entrepreneurship (pp. 685-695).
- 12. Reddy, T. N., & Mohana, S. (2021). Structural Equation Model (Sem) For Predicting Causing Factors on Job Stress in Information Technology (IT) Industry of Chennai City. Information Technology in Industry, 9(2), 36-54.
- 13. Taufiq, N. S., &Sary, F. P. (2019). The Influence of Talent Management Towards Employee Performance at Telkom University Bandung. eProceedings of Management, 6(2).
- 14. Wahyuningtyas, R. (2015). An integrated talent management system: Challenges for competitive advantage. International Business Management, 9(4), 384-390.