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ABSTRACT:

The Philippines faces significant economic losses annually due to natural disasters, impacting the lives of tens of millions
of people. The application of deep learning-based object detection technologies can help to enhance the efficiency of
rescue operations by enabling the rapid identification of trapped individuals, thereby mitigating economic and human
losses. The demand for lightweight, accurate, and portable models suitable for deployment on unmanned aerial vehicles
(UAVs) has emerged as a critical research problem. This study introduces an enhanced You Only Look Once version 8
(YOLOvS) model aimed at improving the detection of trapped individuals in UAV-captured images. The C2f layers in the
neck and head networks are replaced with the Cross Stage Partial with Focus-Faster (C2f-Faster) module. This
adjustment significantly reduces the model's size, facilitating its integration into UAV systems. Furthermore, a 160x160
output head will be added to improve the accuracy of small object detection. A novel loss function combining Scaled
Intersection over Union (SIOU) and Complete Intersection over Union (CIOU) is proposed to address issues related to
aspect ratio ambiguity and sample imbalance in bounding box regression. The proposed model shows a 25.94%
improvement in detection accuracy and a 29.01% increase in inference speed compared to the baseline YOLOvS model.
This study applies a machine learning model to analyze UAV imagery for faster identification of trapped individuals. The
findings indicate that this approach can substantially reduce government expenditures on disaster relief, optimize the
efficiency of rescue operations, and save more lives.
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Introduction:

With its extensive coastline and countless islands, the Philippines is particularly susceptible to natural disasters.
[1].There are 6 types of natural disasters currently suffered by the Philippines or the world are: typhoons, storms, floods,
landslides, earthquakes, and volcanic eruptions. Millions of dollars in losses each year are not a small amount. The
Philippines suffered the greatest economic losses in 2015, reaching 2.3 million of dollars. Every year, tens of millions of
people are affected, and these natural disasters have seriously affected people's lives. And every year there are a large
number of abandoned children in the Philippines. A large part of the reasons why these children are abandoned are natural
disasters [2].

According to a report released by the United Nations Office for Disaster Prevention and Reduction (UNDRR) and
the Center for Research on Epidemiology of Disasters (CRED) in 2020, the Philippines ranked fourth in the number of
natural disasters worldwide during the period 2000-2019 [3]. In order to reduce disaster losses and improve disaster
resilience, this paper applies artificial intelligence technology to personnel search and rescue activities.
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There are still some challenges for Yolo model. Pang Chao et al. proposed an improved rice disease recognition and
detection model based on the YOLOvV8n model and they also point that the size of the model is still very large, and how
to carry the model on mobile devices to more effectively complete monitoring tasks is still a problem that scientists need
to study [4]. Pedestrian detection in smart community scenarios requires accurate identification of pedestrians to cope
with various situations. However, in the case of occlusion and long-distance pedestrians, existing detectors may miss
detections, make false detections, and have problems with large models that are difficult to deploy [5]. In the process of
mobile phone screen defect detection, there are often problems such as low detection accuracy, high small target defect
missed detection rate, and slow detection speed [6]. In general, using the Yolo model for person detection often encounters
problems such as high object overlap, small targets, and targets occluding each other, resulting in low model accuracy and
slow speed.

The overall objective of this research is to solve these problems and develop an improved YOLO V8 model tailored
for aerial person detection in disaster scenarios [7][8]. The improved model can help find trapped people faster, reduce
casualties and help the government reduce rescue costs.

1) Related Work:

Various methods have been introduced to enhance feature extraction in models. The YOLO model integrates
deformable convolution and varifocal loss to increase the accuracy of pedestrian detection. Experimental findings indicate
that the improved model reaches an mAP50 of 0.897, marking a 0.196 increase over the baseline algorithm YOLOvVS5s [9].
Ajantha Vijayakumar discusses the performance metrics for object detection, along with post-processing approaches,
dataset accessibility, detection techniques, and the architectural design across different YOLO versions. In future research
work, the author will integrate the ConvNeXt architecture into the YOLOVS backbone to improve feature extraction
performance of YOLO [10].

The high missed detection rate of small targets and covered objects also leads to low model accuracy. Yolo is a
function for real-time detection of human behavior, but the model has low accuracy for small targets and high missed
detection rate [11][12]. To achieve this, the authors initially strengthen the backbone network using an attention
mechanism, followed by the addition of a small-object detection layer to improve key point detection for smaller targets.
Finally, they substitute the convolution and SPPF with regionally dynamic-aware deep separable convolution (DR-DP-
Conv) and atrous spatial pyramid pooling (ASPP), respectively[13]. Experimental findings demonstrate that the proposed
model can reliably and accurately detect anomalies in real-world escalator settings, achieving an mAP50-95 of 0.576. To
enhance the detection of small aerial targets, Cao Li and colleagues suggest adding a 160x160 small-object output
detection head[14][15].

To address current limitations in the YOLO model, this paper proposes replacing the C2f modules in the neck and
head networks with a c2f-Faster layer, aiming to enhance model accuracy through improved feature extraction.
Additionally, a 160x160 output head will be incorporated to boost detection rates for smaller targets. The model will also
implement a combined SIOU and CIOU loss function to accelerate convergence, thereby increasing training efficiency.

2) Methods and Methodology:

This section mainly introduces the improvement methods of the dataset and model. Specifically, it is necessary to
introduce C2f-faster module in the neck and head network, add a output head with size of 160 x160, and use the combined
loss function of CIOU and SIOU.

A. The Introduction of Dataset

The datasets used in this article include tiny set v2, airPersonDetect and some disaster-affected pictures on the
Internet. There are 7,500 pictures in the tiny_set v2 dataset, 3,000 pictures in the airPersonDetect dataset, and 1,000
pictures on the Internet, so there are a total of 11,500 pictures of the dataset, and the training, validation, and test sets are
split in a 70:20:10 ratio. The data are summarized in the following Table 1.
Table 1. The description of dataset

Parameters Number
Number of tiny _set_v2 dataset 7500
Number of airPersonDetect dataset 3000
Number of pictures on the Internet 1000
Picture number of training set 8050
Picture number of valid set 2300
Picture number of test set 1150
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B. Replacing the C2f Module in the Neck and Head Network with the C2f-Faster Module

Data model’s performance is inherently tied to its ability to accurately capture relevant features. In this context, the
C2f layer constitutes a pivotal module within the YOLO architecture, designed to enhance both the feature extraction
efficiency and overall model capability. By incorporating partial cross-layer connections, the C2f layer enables the fusion
of features across different stages of the network, thereby retaining more comprehensive information during forward
propagation [16]. This mechanism greatly enhances the model's capacity for extracting detailed features and capturing
essential details, particularly in complex and dynamic scenes. Furthermore, the C2f layer addresses computational
efficiency by reducing redundant information transfer between layers, effectively lowering computational overhead while
preserving model performance. This improvement is particularly critical for the deployment of large models in resource-
constrained environments, such as embedded systems or unmanned aerial vehicles (UAVs). Additionally, the enhanced
multi-scale feature fusion offered by the C2f layer is essential for enhancing the accuracy of small object detection, which
is particularly advantageous in applications like crowd detection during disaster response or small object recognition in
complex environments.

Figure 1 is the structure of the C2f layer. The right part of the image demonstrates how the C2f structure is formed.
It consists of the following parts:
1. Initial Convolution: The initial processing of input data involves passing it through a convolutional layer to obtain basic
feature extraction.
2. Split: The feature map is then split into two parts. This splitting is a key part of the Cross Stage Partial (CSP) concept,
which limits the amount of information that flows through the network, improving computational efficiency while
maintaining sufficient feature diversity.
3. Bottleneck Stacking: One of the split feature maps goes through a series of Bottleneck layers. In the diagram, two
bottlenecks are shown, each contributing to further feature compression and transformation.
4. Concatenation: After the bottleneck layers, the output is concatenated (merged) with the feature map that bypassed the
bottlenecks, allowing the model to retain both transformed and original features.
5. Final Convolution: Finally, the concatenated feature map is processed by another convolutional layer to combine the
information and produce the output.

The left portion of the image shows the architecture of a Bottleneck block. The bottleneck block consists of two
consecutive 1x1 convolution layers (Conv 1x1) that reduce the number of channels, allowing for more efficient
computation by compressing the input features.

Conv 1*1

Conv 1*1

The structure of Bottleneck |

Figure 1. The structure of C2f

C2f-Faster is similar to the C2f structure but incorporates FasterNet blocks. FasterNet Block Stacking improves the
network's processing speed while retaining important feature information. The right part of the diagram shows how
FasterNet blocks are incorporated into the C2f-Faster structure. Compared with traditional C2f's bottleneck, it has an
additional Partial Convolution 3x3 module that likely refers to a PConv layer with a 3x3 kernel. Partial convolutions are
designed to improve the efficiency of convolutional operations by only applying convolutions to valid pixels (or data).
This makes them more computationally efficient. Figure2 shows the structure of C2f-Faster.
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Conv 1*1

Conv 1*1

i The structure of FasterNetblock |

Figure2. The structure of C2f-Faster

Compared with C2f, the main difference of C2f-Faster is that it uses partial convolution (PConv), which only
performs convolution operations on valid pixels, reducing unnecessary calculations. Therefore, compared with C2f, C2f-
Faster has significantly improved computing efficiency, inference speed, feature extraction capabilities, computing burden,
and small target detection. It is particularly suitable for application scenarios that require real-time processing and efficient
computing. While maintaining high-precision detection, it significantly reduces dependence on hardware resources.
Therefore, C2f-Faster is more suitable for the detection scenarios of small targets and limited computing resources in this
paper.

C. Add 160 x 160 Output Head

YOLOVS has three detection heads by default, which are used for targets of different scales (e.g., 80x80, 40x40, and
20x20)[17][18]. This paper incorporates a 160x160 detection head into the YOLOvV8 model to enhance the accuracy of
small target detection. In YOLOVS, the typical output layers are P3, P4, and P5. This paper will extract a 160x160 feature
map from the P2 layer to form the fourth output head. Specifically, the data features from the P3 layer will be upsampled
and combined with those from the P2 layer to create the output for the fourth detection head. The code structure for the

enhanced head layer is illustrated in Figure 3.
head:

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]

- [[-1, 6], 1, Concat, [1]] # ca

- [-1, 3, C2f_Faster, [512]] # 1

t backbone P4
2

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f_Faster, [256]] # 15 (P3/8-small)

- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 2], 1, Concat, [1]] # cat backbone P2
- [-1, 3, C2f_Faster, [128]] # 18 (P2/4-xsmall)

- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 151, 1, Concat, [1]] # cat head P3
- [-1, 3, C2f_Faster, [256]] # 21 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 121, 1, Concat, [1]] # cat head P4
- [-1, 3, C2f_Faster, [512]1] # 24 (P4/16-medium)

- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 91, 1, Concat, [1]] # cat head P5
- [-1, 3, C2f_Faster, [1024]] # 27 (P5/32-large)

- [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)

Figure 3. The code structure of the improved head

D. The Combination of SIOU and CIOU Loss Function
CIOU and SIOU are loss functions for bounding box regression tasks. They make the model more accurate
when predicting bounding boxes by considering multiple factors such as overlapping area, distance to the center
point, and aspect ratio. This paper emphasizes the use of the combined SIOU and CIOU loss function to enhance
the bounding box regression loss for this model.
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E.

CIOU takes into account not only the overlap between the predicted and ground truth boxes but also factors
such as the distance between their center points and the aspect ratio, allowing for a more precise assessment of
bounding box matching. CIOU is particularly suitable for handling overlapping or close objects, and can improve
the bounding box prediction accuracy of the model. In this paper, there are a lot of objects that cover each other,
so CIOU's good performance in overlapping or close objects can help us deal with the occlusion problem well.
The formula for calculating CIOU is given in equation (1). The b and b9 denotes the center points of the predicted
box and the target box, respectively. The p %(b,b9) represents the Euclidean distance between the two center
points. The c refers to the diagonal length of the smallest enclosing area that contains both the predicted box and
the target box. The width and height of the prediction box are represented by the w and h, and w9 and h9 are the
width and height of the target box.

CIOU,,ss =1-(ANB)/(AUB)+(p 2(b,b9))/c? +a(4/m? *(arctan(w9 /h9 ) — arctan (w/h) )?) )

SIOU considers the scale (aspect ratio) and direction (angle) of the bounding box when calculating the loss.
Because the scale information is taken into account, SIOU is more suitable for small target detection tasks. There
are many small target detection situations in our database, Thus, this paper proposes incorporating SIOU
alongside the original CIOU bounding box regression loss function of the model. The calculation formula for
SIOU is presented in equation (2). A can represent the center distance between the predicted box and the true box.
Q is related to the aspect ratio or shape difference between the predicted box and the true box. A and B represent
the areas of the predicted box and the true box, respectively.

SI0Uss=1- (ANB)/(AUB)+ (A+Q) /2 )

High object coverage and high small target missed detection rate are two common difficulties encountered
in human detection models. CIOU has a relatively good performance when the object overlap is high, and SIOU
is good at small target detection. Therefore, this study combines the advantages of the two loss functions and
continuously adjusts their respective ratios to make the model have a higher accuracy. The final loss function
formula of the model is as follows:

Loss=aSI0U,,ss+BCIOU g5 (atP=1) (3)

The Whole Structure of Yolov8

The main improvements to the YoloV8 model in this paper are as follows. The C2f-Faster module replaces the C2f

module. Compared with the C2f module, the C2f-Faster module can improve the calculation speed while ensuring a high
feature extraction rate. In addition, to enhance the detection rate of small targets, this paper also adds a 160x160 small
target output head to the original output head. Finally, the combined loss function of SIOU+CIOU is used to speed up the
model’s convergence, thereby enhancing the model’s training speed. Figure 4 below illustrates the detailed model structure
of the enhanced YOLOVS.

....................................................

Nek ———— | ! ~ Detect |

Figure 4. The final specific improved YoloVS8 structure

3)

Experiments and Results:
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This chapter mainly introduces the experimental environment, the experimental outcomes of both the original and
improved models, along with a comparison of their results.

A. Experimental environment

Graphics training requires a high-performance GPU, so the GPU used for training the model in this paper is Tesla
T4, with a GPU memory capacity of 15110 MiB, about 15 GB of video memory. The memory is generally determined by
the size of the dataset image, and 64 GB of memory was purchased. In addition, the basic YOLOv8 model version used
in this paper is v8.2.38, The Python interpreter used is version 3.9.19, and the deep learning framework employed is
PyTorch, version 1.9.0, which is compatible with CUDA 10.2 (cul02).

The maximum epoch in this study is 700, because sometimes the best results are not achieved after 500 epochs during
the model training process. Furthermore, the YOLO model uses an early stopping mechanism to prevent overfitting. Once
the model accuracy no longer improves, it will automatically stop training. This strategy also ensures that computing
resources are effectively utilized. In addition, the batch size is configured to 8 to optimize the GPU's computational power
and memory capacity. When the batch size is too large, the model computing resources are not enough and the model
training will be terminated prematurely. The image size is 640. The optimizer used is Adam. Table 2 shows the specific
environment configuration.

Tabel 2. The specific environment configuration

Experimental Configuration | Parameters
YOLOVS version v8.2.38
PyTorch version 1.9.0
GPU's video memory 15110 MiB
epoch 700
Batch size 8
Image size 640
CPU 64

B. The results of the original model

The original YOLOVS neural network model contains 218 layers and has a total of 25,840,918 trainable parameters.
The model requires 78.7 GFLOPs (giga floating point operations) to complete one forward propagation. Figures 5 and 6
present the performance results of the original YOLOvVS model in the current dataset and the designated experimental
environment. As shown in Figure 5 and Figure 6, the model was trained for a total of 370 epochs, and the best performance
was observed at the 270th training epoch. The training process was stopped when the mean average precision (mAP) did
not improve significantly after 100 detection rounds, indicating convergence. The model achieved a best mAP50 of 0.716,
a best mAP50-95 of 0.324, a maximum precision of 0.759, and a maximum recall of 0.632. The trend of the loss curve
and the continuous improvement of the precision and recall confirm the effectiveness of the training process. Finally, the
training process spanned 370 epochs and took a total of 45.097 hours, with each epoch lasting 7.31 minutes on average.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
5 —— results 4 0.6
*3 - smooth ' f
i 06 9.5
3044 3 0.4
3
25 0.4 0.3
2
2 0.2
2.0 E
0.2 01
i
15 *
4 200 0 200 0 200 4 200 0 200
val/box_loss vallcls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
5.0 3.0 f""_
1.8 03
4.5 06
25
20 1% 5
35 20 14 0.4
3.0}
15 12 o 0.1
25 E
1.0
1.0 ‘
2.0 o 0.0 0.0
o 200 0 200 0 200 0 200 0 200
Figure 5. The loss of original YOLOVS8 model.
EarlyStopping: Training stopped early as no improvement observed in last 100 epochs. Best results observed at epoch 270, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e. ‘patience=300" or use "patience=0" to disable EarlyStopping.
Ultralytics YOLOV8.2.38 »” Python-3.9.19 torch-1.9.0+cu102 CUDA:0 (Tesla T4, 15110MiB)
YOLOV8 summary: 315 layers, 23560963 parameters, 23560947 gradients, 77.2 GFLOPs
Class Images Instances  Box(P R mAP50 mAP50-95): 100%|IEEEEEEN|
all 1150 42399 0759 0632 0716 0324
370 epochs completed in 45.097 hours.
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Figure 6. The running result of original YOLOVS8 model.

C. The results of the enhanced model

This paper improves the convergence speed of the model by integrating SIOU and CIOU loss functions, thereby
reducing the training time. Initially, the weight factors of SIOU and CIOU were set to 0.5 respectively. Through repeated
experiments and adjusting these ratios, it was determined that the weight factor of SIOU was 0.42 and the weight factor
of CIOU was 0.58 to obtain the highest mAP50-95 accuracy. Table 3 presents the model accuracy results changing with
the adjustment of SIOU and CIOU ratios.

Table 3. MAP variation with adjustment in loss function ratios

CIOU: SIOU mAP50 mAP50-95
0.5:0.5 0.59 0.39
06:04 0.58 0.38
0.4:0.6 0.53 0.37
0.58:0.42 0.647 0.418
0.7:03 0.52 0.36

The improved YOLOVS neural network model contains 232 layers and a total of 8,274,900 trainable parameters. The
model requires 31.7 GFLOPs (giga floating point operations) to complete a forward propagation. Figure 7 and Figure 8
show the change curves of the loss function and evaluation indicators of the improved YOLOvVS model during training
and verification, including important indicators such as box loss, classification loss, DFL (Distribution Focal Loss),
Precision, Recall, mAP50, and mAP50-95 for training and verification. As shown in Figure 7 and Figure 8, the model was
trained 500 epochs in total. The model achieved the best mAP50 of 0.647, the best mAP50-95 of 0.418, the maximum
precision of 0.786, and the highest recall of 0.526. As training advances, the different loss functions of the model in the
target detection task decrease, and indicators such as precision and recall rate are significantly improved. In particular,
key performance indicators such as mAP50 and mAP50-95 are also stable, indicating that the model has good convergence
and significant performance improvement. Finally, the training process spans 500 epochs, requiring a total of 33.4 hours,
with an average of 4.008 minutes per epoch.

250 train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
; 0.8
I —s— results 26 0.55
2.25 25 smooth 0.7
t 24 - 0.50
2.00 |
2.0 224 0.6 0.45
175 20 0.40 E
0.5
1.50 15 18 | 035
0.30
125 16 o# l [
104, 8 a4 ‘ 0.25{!
0 200 400 0 200 400 0 200 400 0 200 400 o 200 400
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
l 275
2.0
2.50

0.4
2.4 0.6
1 2244 0.5 0.3
18 2251| -
2.00 2.0
0.4
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0
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P
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Figure 7. The loss of improved YOLOV8 model

EarlyStopping: Training stopped early as no improvement observed in last 100 epochs. Best results observed at epoch 400, best model saved as best.pt.
To update EarlyStopping(patience=100) pass a new patience value, i.e. patience=300" or use "patience=0" to disable EarlyStopping.
Ultralytics YOLOV8.2.38 «” Python-3.9.19 torch-1.9.0+cu102 CUDA:0 (Tesla T4, 15110MiB)
YOLOvV8 summary: 315 layers, 23560963 parameters, 23560947 gradients, 77.2 GFLOPs
Class Images Instances  Box(P R mAP50 mAP50-95): 100%| I ENEEEEEN
all 1150 42399 0.786 0.526 0.647 0418
500 epochs completed in 33.4 hours.

Figure 8. The performance results of the enhanced YOLOvVS model

D. Comparison of Model Results

This paper mainly improves the neck and head network of the model and introduces a new C2f-Faster layer, which
enhances the model's training speed while maintaining the accuracy of the experimental results. In addition, the loss
function of the model is improved and one 160 x 160 output head is added to further improve the model's accuracy in
detecting small targets and speed up its convergence. The experimental results show that the mAP50-95 of the enhanced
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model is improved by 29.01% ((0.418-0.324)/0.324=0.2901), and the model convergence speed is improved by 25.94%
((45.097-33.4)/45.097=0.2594). Table 4 shows the specific comparison results.
Table 4. Comparison of model results

comparison items original YOLO improved YOLO

mAP50-95 0.324 0.418

mAP50 0.716 0.647

best model epoch 270 500

epoch time duration 7.31 (minutes) 4.008 (minutes)

Total time 45.097 (hours) 33.4 (minutes)
Conclusion

This study aims to improve both the accuracy and training efficiency of the YOLOv8 model by enhancing the network
architecture of its neck and head layers. Specifically, the C2f module has been replaced with the C2f-Faster module, which
incorporates the FasterNet block instead of the conventional bottleneck structure, enabling faster training while preserving
model accuracy. Given that the dataset comprises drone-captured images—characterized by small object sizes and
significant object overlap due to distance and angle a 160x160 output head has been added to enhance the model's
detection capabilities for small objects, thus further improving accuracy. Additionally, a combined CIOU and SIOU loss
function has been employed to accelerate model convergence, thereby improving the overall training efficiency.
Experimental results show a 25.94% increase in training speed and a 29.01% improvement in mAP50-95 accuracy. And
the experimental results also show that when the ratio of SIOU and CIOU loss functions is 0.42 and 0.58, the model has
the best mAP50-95 value. The enhanced model significantly enhances the efficiency of rescue operations by enabling
rapid identification of trapped individuals, thereby reducing overall rescue time. Its application in disaster response
automates the processing and filtering of vast amounts of data, alleviating the need for continuous manual monitoring.
This approach can significantly reduce government expenditure. Future work will focus on refining model’s backbone
network to further boost feature extraction and overall model performance.
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