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Abstract: Accurately recognizing the objects in an image is known as image classification. The 
effective classification of high-resolution spatial images for extensive remote sensing archives is 
known as remote sensing image classification. Efficient extraction of features from images is 
directly related to high classification performance. Prior to deep learning being widely used in 
the field of remote sensing picture classification, the majority of feature extraction stages relied 
on manually created low level features, mostly concentrating on fundamental aspects like colour, 
form, and texture. However, CNNs (Convolution Neural Networks), which effectively extracted 
abstract information, soon supplanted these conventional handcrafted methods due to their poorer 
performance. Significant training restrictions affect deep convolution neural networks, including 
pre-trained models created on the enormous ImageNet dataset for the main objective of image 
classification and picture retrieval. These limitations must be appropriately considered during the 
training phase. This paper attempts to simplify all of the crucial elements that need to be 
considered while training an extremely deep neural network so that the model can produce the 
best classification results. In order for the model to generate optimal classification results, This 
paper examines the experiments conducted on four remote sensing datasets—UC-Merced, AID, 
NWPU-RESISC-45, and Patternet using the pre-trained model DenseNet and its variants, 
DenseNet169, DenseNet-121, and DenseNet-201. On the UC-Merced, AID, NWPU-RESISC45, 
and PatterNet datasets, the DenseNet pre-trained model DenseNet-201 achieved highest test 
accuracy of 97.60% and least Test Loss of 0.6402% respectively. This indicates that the PatterNet 
dataset is the most effective at classifying remote sensing images.There are several potential 
applications for the content-based remote sensing information retrieval system, including forestry 
and agricultural. With merely an aerial view, CBIR might be a huge help in agricultural regions 
to identify sick crops. By remotely monitoring the impacted region deforestation may be tracked. 
 
Keywords: Image Classification, Convolution Neural Networks, Pre-Trained Models 

1 Introduction 
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More abstract semantic information could not be efficiently extracted by Convolution Neural Networks since 
they were not deep enough. Due to the need for huge data samples and high processing power, training a deep 
convolution neural network is costly and time-consuming (Y. Wang, Ji, and Y. Zhang 2021; Alzu’bi, Amira, 
and Ramzan 2017). Furthermore, when given extensive training data samples, convolution neural networks 
are prone to overfitting. Compared to previous Convolution Neural Networks (CNNs) approaches utilised for 
feature extraction, Pre-Trained models employing Transfer Learning could yield better outcomes in the future 
era of deep learning (J. Zhang, Jin, et al. 2020; Karimpouli and Tahmasebi 2019). Transfer Learning 
demonstrated its superiority in extracting features of a specific task by using learnt features in the form of 
weights for a broader task (Fan, Hongwei Zhao, and Haoyu Zhao 2020). Through Transfer Learning, the 
knowledge of a previously trained model is applied to a separate but related problem (Risojevi´c and Stojni´c 
2021). Investigating training accuracy and training loss on remote sensing images through training of all 
DenseNet variants—DenseNet-169, DenseNet-121, and DenseNet-201—is the main topic of this paper. 
Because of its modest layer count, which makes it acceptable for four benchmark datasets, and its significantly 
higher validation accuracy when compared to other pre-trained models, the DenseNet pre-trained model has 
been chosen for classification in the remote sensing area. The network’s output class is determined by the 
classification layer. Using a modified network with transfer learning, the test images are categorised. Both 
the fully connected layer and the classification layer are used in transfer learning. These two layers are in 
charge of turning networks’ extracted characteristics into class probabilities and using those features to 
forecast labels. In accordance with the benchmark datasets UC-Merced, AID, NWPU-RESISC-45, and 
PatterNet, these two layers are swapped out in order to preserve a previously trained network for classifying 
new images with extra layers. Lastly, accuracy that is the proportion of accurately predicted labels of the 
network is estimated using the four benchmark datasets on the training and testing sets of images indicated 
above. Convolution neural networks in conjunction with a transfer learning technique have the potential to 
produce notable outcomes in the field of remote sensing image classification. 
2 Related Literature Survey 
To extract features and classify images, researchers have employed a variety of machine learning and deep 
learning techniques. Researchers addressed the problem of CNN training requiring large labelled samples 
(Yishu Liu, Ding, et al. 2020). By applying transfer learning to CNN training, the author’s proposed SBS-
CNN (Similarity Based Supervised Learning using Convolution Neural Network) method turns similarity 
learning into deep ordinal classification using CNN experts who have already been trained on large scale 
labelled everyday image sets. Together, it establishes visual similarity and offers fictitious classification 
labels. Compact feature vectors, a small network size, and a shorter retrieval time are all advantages of SBS-
CNN. To reduce error, gradient descent is computed at every step. The gradient descent is computed at each 
step to reduce error, which is a major research concern. The ReLU (Rectified Linear Unit) activation function 
receives negative values and converts them to zero, which reduces the model’s capacity to appropriately fit 
or train from data. 

The author experimented using the Everyday ImageSet, UC-Merced, and PatterNet datasets; the 
benchmark dataset yielded the best ANMR of 0.2185.In 2020, Shen, Qian, Huang, Jiru, Zheng, Yalan, and 
Wang, Min introduced OSA-HSR + CNN (Object Scale Adaptive High Spatial Resolution Remote Sensing 
Image Classification in conjunction with Convolution Neural Networks) (J. Wang et al. 2020). Segmentation 
and classification are two processes that are taken. Segmentation yields heterogeneous segments, from which 
features are subsequently extracted. Classification is done using the features that have been extracted. 
Increasing segmentation scale neighbour objects and decreasing classification quality are the main research 
concerns. Misclassification may result from both excessive and insufficient segmentation. Run time is 
increased by OSA-HSR+CNN. In order to reduce error, the stochastic gradient is assessed at each stage, which 
increases computing time. The Ohio State-wide Imagery Program collects the aerial images used in the 
experiments. A computation time of 188 seconds was attained. Some researcher suggested ANNs, 
EfficientNet-B3-Attn-2, which use the pre-trained EfficientNet-B3 CNN with an attention mechanism added 
(Paoletti et al. 2018). Using remote sensed images, experiments are conducted with CNN feature extractors 
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by building them from the ground up, using transfer learning, and optimizing them for the LCLU (Land Cover 
and Landuse) classification system. In the UCM dataset, the refined deep learning model produced remarkably 
accurate performance outcomes.Experimental results on six well-known remote sensing datasets—KSA, UC 
Merced, WHU-RS19, RSSCN7, OPTIMAL-31, and AID datasets—show that EfficientNet-B3-Attn-2 
performs accurately and efficiently, cutting down on computation time and increasing accuracy in the 
classification of hyperspectral images when compared to other traditional ANN techniques. 

DenseNet (Dense Convolutional Network) and connects all layers in a feed-forward manner (Huang et al. 
2017). In conventional convolutional networks, each of the L layers has a connection with its subsequent 
layers. There are direct links in a network (L(L+1))/2. Each layer’s feature map was used as an input for the 
layers that followed, while the current layer uses feature maps from earlier layers as an input. The vanishing-
gradient problem is resolved by DenseNets. Four benchmark datasets—SVHN, CIFAR-10, Imagenet, and 
CIFAR-100 (Canadian Institute For Advanced Research)—are used for the experiments. The author’s 
accuracy on the AID dataset was 97.44%, on the UC-Merced dataset it was 99.50%, on the Optimal it was 
95.89%, and on the NWPU-RESIS45 dataset it was 94.98%. Convolutional Neural Networks (CNNs) have 
two problems (J. Zhang, Lu, et al. 2019). 

Firstly, these models have multiple parameters, which leads to over-fitting, and secondly, they are not 
deep enough to extract abstract information. The author suggested the DenseNet pretrained model for remote 
sensing picture categorisation as a solution to these two issues. DenseNet generates a number of reusable 
features with fewer convolutional kernels. The network is deeper than 100 layers thanks to dense connections. 
They employ data augmentation. The AID (Aerial Image Dataset), UCM, NWPU-RESISC45, and Optimal-
31 datasets are used for the experiments. The accuracy that the author has attained on the UCM dataset is 
98.67% (50% training ratio), on the AID dataset it is 97.19% (50% training ratio), on the optimal-31 it is 
95.41% (80% training ratio), on the NWPU-RESISC45 dataset it is 92.90 (10% training ratio), and on the 
NWPU-RESISC45 dataset it is 94.95 (20% training ratio). 

In order to extract important characteristics from the image researchers suggested DenseNet-121 deep 
learning that was pre-trained using the transfer learning technique (Tan et al. 2023). DenseNet significantly 
reduces computational resources. Experiments are conducted using three benchmark datasets: urbansound8k, 
soundscapes1, and soundscapes2. With F1-scores of 80.7%, 87.3%, and 69.6%c respectively. Suggested pre-
trained model DenseNet-121 with multilayer perceptron performs better than previous studies on the 
soundscapes1, soundscapes2, and urbansound8k datasets. DenseDsc and Dense2net are two CNN 
architectures that were proposed by the researchers (Li et al. 2021). These two CNNs are coupled in a compact 
manner which makes it easier for the networks to reuse features.Dense2net employed efficient group 
convolution, while DenseDsc adopted more effective separable convolution employing depth. Both of these 
methods increased the parameters’ efficiency. The CIFAR and ImageNet datasets are used to assess the 
suggested methods. Using DenseDsc, the author obtained an accuracy of 74.2% on CIFAR-100 and 76.3% 
on ImageNet (top-1). Accuracy of 77% ImageNet utilising Dense2Net and 73.68% on CiFAR-100 were 
attained. Further advancements in image classification are yet possible. 
3 Deep Learning Pre-Trained Model : DenseNet 
In a traditional feed forward CNN, each convolution layer (aside from the input image) takes the output 
feature map produced by the previous convolution layer and sends it to the next convolution layer. There are 
thus L direct connections, one between each layer and the one that follows it, as shown in figure 1. As the 
number of layers of a CNN increases, the vanishing gradient problem arises. As the number of connections 
between the input and output levels increases, some information is lost or vanishes. 

Consequently, the network’s ability to learn efficiently is reduced. Therefore, training really deep networks 
was difficult. As they go deeper, CNNs transfer gradients and information in the opposite direction from the 
input layer, until the output layer is so big that it vanishes before it reaches the opposing side. DenseNets 
solves this issue since each layer has direct access to the loss function and gradients from the original input 
image. DenseNets solve this issue by simplifying layer-to-layer connectivity patterns and modifying the CNN 
architecture. 
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Figure 1: DenseNet Block Diagram 

The network is referred to as a Densely Connected Network because each layer in the DenseNet 
architecture is closely related to every other layer. DenseNet is substantially more accurate and efficient to 
train when it contains L layers since it has L(L+1)/2 direct connections between layers between input and 
output. DenseNet is a feed forward network since all of its levels are directly connected to the front layers. 
The ith layer’s input can be the (i−1)th, (i−2)th, and (i−n)th layers’ outputs. Batch normalisation is used by 
each directly connected layer in the network to normalise its input, reducing the absolute disparity between 
data. 

All the levels are connected to ensure the optimum flow of information. The layers that come before them 
provide their feature maps and other inputs to all subsequent layers. At the moment widely used neural 
network topologies including 

AlexNet (Krizhevsky, Sutskever, and Hinton 2012), ResNet (J. Zhang, Lu, et al. 2019), GoogleNet (C. 
Wang et al. 2019), VGG (variants include VGG-16 and VGG-19) (S. Zhou et al. 2018), and Inception (Pathak 
and Raju 2021) are used to classify remote sensing scenes. 

Many methods based on these networks have limitations even though they significantly improve 
classification accuracy. These networks overfit because they are trained with limited data and have a large 
number of parameters (Li et al. 2021). Consequently, it is not sufficiently efficient to extract relevant semantic 
information from distant sensing images (J. Zhang, Lu, et al. 2019). 

The deeper CNN DenseNet is proposed in this study as a solution to this issue. Because DenseNet has 
L(L+1)/2 direct and shorter connections between layers near input and output, it is more efficient at training 
and attaining better accuracy (Huang et al. 2017). 

DenseNet is a feed forward network, which means that each layer is directly connected to the front layers, 
claims Zhang (2019). The ith layer’s input can be the (i1)th, (i − 2)th, and (i − n)th layers’ outputs. The 
network’s direct connection of each layer reduces the absolute difference between data by normalising each 
layer’s input using batch normalization (Imbriaco et al. 2021). All the levels are connected to ensure the 
optimum flow of information. Additional inputs from all previous layers are used to send its feature maps to 
all subsequent layers (Li et al. 2021). 

DenseNet-201 is a densely connected convolutional neural network with 201 deep layers. The 224*224 
input image is passed through several convolutional layers in DenseNet-201, and each convolutional layer 
uses channel-wise concatenation to send its feature maps to all succeeding layers. The depth of the ImageNet 
models is represented by variations with distinct layers. Every DenseNet variation uses an input image with 
three colour channels and dimensions of 224 by 224. DenseNet has multiple variations, including DensetNet-
169, DenseNet-121, and DenseNet-201. The only difference between these variants is the number of layers, 
as seen in figure2 (Gao et al. 2021; J´egou et al. 2011). 
3.1 Components of DenseNet 
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Bottleneck layers, growth rate, density blocks, and connection are DenseNet’s four core components. 
Concatenated feature maps from all previous levels are used as inputs in each layer. The ith layer receives the 
feature maps of all preceding layers, x0,...., xi-1. Redundant feature maps are removed and features are reused. 
Therefore, DenseNet requires less parameters than traditional CNNs. 

 
Figure 2: Dense Blocks 

DenseNets concatenate the input feature maps with the output feature maps of the layer. Each layer has 
access to its predecessor’s feature maps. Consequently, each layer adds new information to the corpus of 
knowledge. 
 Xl = Hl([x0,x0........Xl − 1]) (1) 
[x0,x1 < ldotp.......Xl − 1]inthiscase stands for the feature-maps’ concatenation, which is the result of all the 
layers before layers (0,...,l-1). For additional implementation, the several inputs of Hl are concatenated into a 
single tensor. 
3.2 Dense Block Structure 
All of the feature maps from the previous layers will be used as input for the ith layer of DenseNets. 
Concatenation of feature maps from previous layers results in a feature map explosion. Dense blocks are made 
in order to solve the feature map explosion problem. A predetermined number of layers are contained within 
each DenseNet. When feature map sizes differ, it is impossible to group them together. Only feature maps of 
the same size that have been concatenated from the previous layers may be concatenated. 

 
Figure 3: Connectivity of Layers 

Dense blocks are used to separate DenseNets. While the number of filters may vary from block to block, 
the feature map size in these blocks stay constant. The blocks are separated by transitional layers. A dense 
block’s output is sent to the transition layer. This transition layer is in charge of downsampling, which 
involves making feature maps smaller. With transition layers, there are half as many channels as there were 
before. This transition reduces the size of feature maps by using 1 × 1 convolution and Max pooling. 

 
Figure 4: Transition Layer 

H is described in the equation 1 as a composite function that applies three successive operations: a 
Convolution (Conv), a Rectified Linear Unit (ReLu), and Batch Normalisation. 
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Concatenation is made possible by feature maps having the same size, as seen in figure 4. Down sampling 
is the process of reducing the size of feature maps using a transition layer that consists of convolution and 
pooling. Growth rate is the rate at which feature maps expand in size after passing through thick layers, each 
of which adds ”k” features to preexisting features. 

The network’s growth rate, which measures the amount of data added to each network layer, is represented 
by this ”k”. If each function H1 produces k feature maps, then the lth layer has kl = k0 + k × (l − 1) input 
feature maps.K0 represents the number of channels in the input layer. Since each layer produces k output 
feature-maps, the number of inputs for later layers may be quite large. A 1 × 1 convolution layer is employed 
as a bottleneck layer prior to each 3 × 3 convolution. It improves the efficiency and speed of calculations. 

To determine which of the four suggested datasets is the best variant to utilise as a feature extractor, 
experiments have been conducted on each DenseNet variant, including DenseNet-169, DensetNet-121, and 
DensetNet-201, for feature extraction of remote sensing images. 

In conclusion, by adding new information to the network’s common knowledge, the input picture and the 
output of each DenseNet layer within each Dense Block are concatenated. The 32 new feature maps from the 
preceding layer are being added to by each layer. For this reason, after six levels, we move from 64 to 256. 
Additionally, Transition Block divides the volume and feature map count in half by performing 1x1 
convolutions with 128 filters and then a 2x2 pooling with a stride of 2. 
3.3 Unique Features of DenseNet Pre-Trained Model 
The compact network structure of the DenseNet network is one of its distinctive properties when compared 
to other pre-trained networks. Higher computational and memory efficiency results from compact structures 
(Salim et al. 2023). 

• The efficiency of the network is improved by feature reuse through concatenation of feature maps learnt 
by several layers, which enhances variety in the input of following layers (Albelwi 2022). 

• Lower parameter countable the easy training of model. Reusable features can be learnt with very few 
kernels (Abai and Rajmalwar 2019). 

• It also avoids over fitting and vanishing gradient Connections from early to late layers. Vanishing 
gradient problem occurs while training deep neural networks with gradient based learning method and 
back propagation. During each iteration of training each of the neural network weight receives an update 
proportional to the partial derivative of the error function with respect to current weight. While training 
in some of the cases the gradient becomes vanishing small thus effectively preventing the weight from 
changing its value. Vanishing gradient may completely stop the neural network from further training 
(Riasatian et al. 2021). DenseNet overcomes the situation of vanishing gradient well. 

• Furthermore DenseNet have small number of convolution kernels that generates a large number of 
reusable feature maps by dense connections which makes the network deeper yet does not increase 
number of parameters (J. Zhang, Lu, et al. 2019). 

4 Experimented Datasets 
Remote sensing image retrieval system has been promoted with the advancement of new feature extraction 
methods experimented over new datasets. Benchmark datasets are the basis for implementing RSIR methods 
and performance evaluation. The literature has committed the recognizable progress for developing 
benchmark datasets for RSIR system. Datasets have two different categories according to retrieval modes. 
First is Unisource retrieval and second is cross source retrieval. In unisource retrieval both the query and 
retrieved images belong to same source. In cross source retrieval, both the query and retrieved images belong 
to two different sources. popularly used remote sensing datasets are explained in further sections. 
4.1 UC-Merced Land Use Dataset 
Dataset is also termed as UCM/UC-Merced. UCM contains 100 images having 21 classes. UCM is small in 
size having restricted classes. These classes belong to land use/land cover classification. All images have 
identical spatial resolution having measures of 256x256 pixels. There is collection of large aerial images 
obtained from US Geological Survey from USGS National Map Urban Area with spatial resolution of 0.3 
meters. Classes in dataset include: airplanes, agricultural areas, forests, freeways, beaches, buildings, 
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intersections, baseball diamonds, harbors, mobile home parks, chaparral, rivers, runways, sparse and dense 
residential areas, overpasses, parking lots, tennis courts, and storage tanks.Some overlapping classes are there 
in the dataset including medium, dense and sparse residential areas (Jiang et al. 2018) (Dong and Q. Zhang 
2019) (C¸IKLAC¸ANDIR and Semih n.d.). 
4.2 AID 
A vast collection of aerial images gathered from Google Earth Imagery is called AID. The spatial resolutions 
of the scene images range from 0.5 to 8 meters.Airport, baseball pitch, undeveloped land, bridge, beach, 
centre, church, business, dense residential, forest, desert, meadow, farmland, industrial, mountain, medium 
residential, park, parking, pond, port, resort, playground, railway station, river, school, sparse residential, 
square, stadium, storage tanks and viaduct are among the classes in the dataset. It has thirty classes and 10,000 
images. Each class contains between 220 and 420 (600X600) pixel images (Xia et al. 2017), (W. Zhang, 
Tang, and L. Zhao 2019). 
4.3 PatterNet 
The Google Map API of a few US cities gathered high-resolution images from Google Earth photography to 
create the very big dataset known as PatterNet. There are 800 256 x 256 pixel images in 38 classes. Aircraft, 
beach, baseball field, bridge, basketball court, charparral, cemetery, Christmas tree farm, crosswalk, closed 
road, coastal mansion, dense residential, ferry terminal, football field, forest, harbour, golf course, freeway, 
nursing home, intersection, mobile home park, parking lot, parking space, railway, river, runway, runway 
marking, shipping yard, solar, panel, sparse residential, storage tank, tennis court, swimming pool, 
transformer station and wastewater treatment plant are some of classes contained in PatterNet. 

For the classification and retrieval of remote sensing images, PatterNet is an excellent collection with 
tagged data.Deep learning methods that require a lot of labelled data might benefit greatly from this labelled 
data (W. Zhou et al. 2018), (Yishu Liu, Yingbin Liu, et al. 2020). 
4.4 NWPU-RESISC45 
The NWPU-RESISC45 benchmark dataset is used to classify scenes using remote sensing. There are forty-
five scenario classifications. Each class contains 700 images. A total of 31,500 256 by 256 pixel images are 
included.NWPU (Northwestern Polytechnic University) was the one who created it. The spatial resolution of 
the photographs varies from 0.2 to 30 meters. Airport, aeroplane, basketball court, baseball diamond, beach, 
bridge, church, chaparral, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, 
ground track field, golf course, harbour, intersection, industrial area, island, lake, medium residential, 
meadow, mobile home park, mountain, flyover, parking lot, palace, railway station, rectangular farmland, 
roundabout, river, runway, snowberg, sea ice, ship, sparse residential, storage tank, stadium, thermal power 
are the scene classes included in NWPU-RESISC45 (Yishu Liu, Yingbin Liu, et al. 2020), (Jiang et al. 2018). 

Table 1: Remote Sensing Datasets 

DATASET 
SELECTED 

SCENE 
CLASSES 

TOTAL IMAGES 
CONTAINED IN DATASET 

IMAGE 
SIZE (Pixels) 

SPATIAL 
RESOLUTION 
(m) 

UC-Merced 21 2100 256×256 0.3 

AID 30 10000 600×600 8-0.5 

NWPU-RESISC45 45 31500 256×256 30-0.2 

PatterNet 38 30400 256×256 4.69-0.06 

5 Evaluation Metrics 
Evaluating the algorithms is an essential part of any research. Well known evaluation metrics used by 
researchers are: Confusion Matrix, Accuracy, Precision, Recall and F1-Score. 
5.1 Confusion Matrix 
Confusion Metrics is used for binary classification problem like two classes: YES or NO as presented in 
table?? 
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Table 2: Confusion Matrix 

n=165 Predicted No Predicted 
Yes 

Actual: NO 50 10 

Actual: YES 5 100 

When the classifier predicted yes and the actual output was also yes, these are known as true 
positives.When the classifier predicted no and the actual output was no, these are known as true negatives. 
When a classifier predicted yes but the actual result was no, this is known as a false positive. When the 
classifier predicted no and the actual result was yes, this is known as a false negative. 
5.2 Accuracy 
The ratio of the number of predictions to the total number of predictions is known as accuracy. The percentage 
of correct predictions made by our model is known as accuracy. The number of real positive and negative 
results divided by the total number of samples is known as accuracy. 

  (2) 
5.3 Precision 
Precision indicates the ratio of actual positive results by the number of positive results as predicted by the 
classifier. 

  (3) 
5.4 Recall 
Recall indicates the ratio of correct positive results by the number of all actual samples. 

  (4) 
5.5 F1-Score 
F1 Score is the Harmonic Mean between precision and recall. 

  (5) 
The F1 Score range is [0, 1].It shows how accurately the classifier is inferring the number of cases that it 
correctly classifies and does not miss a sizable number of instances.The F1 Score is the equilibrium of recall 
and precision. High accuracy combined with low recall produces incredibly precise answers, but it has the 
drawback of missing many hard-to-classify occurrences. The better the selected model performs, the higher 
the accuracy, precision, recall, and F1 Score values. 
5.6 Training Accuracy 
The accuracy of a model based on the dataset samples it was trained on. Generally the accuracy of model 
increases with increasing number of epochs. 
5.7 Validation Accuracy 
Also termed as testing accuracy, computed on the dataset on which the model has not been trained. Model 
has not seen these dataset examples during training. It indicates the generalization of the model. Validation 
accuracy is expected to be either less than or close to the training accuracy. The significance difference 
between validation accuracy and training accuracy indicates under fitting and overfiting respectively. 
5.8 Training Loss 
It is used to update the model’s parameters to minimize loss on training data. It represents how well the model 
is fitting the training data. It decreases over time as model learns from data. 
5.9 Validation Loss 
During training the portion of data not used for training is kept aside as a validation set. It measures how well 
the model is performing on validation set. It monitors model generalizes to unseen during training. If 
validation loss increases while training loss decreases it represents overfitting. 
6 Remote Sensing Image Classification based on Pre-Trained Models 



Nisha Gupta, Ajay Mittal, and Satvir Singh 
 

Library Progress International| Vol.43 No.2 | Jul-Dec 2023 2056 

The investigations are based on selected pre-trained models like VGG-19, Inception-v3 and DenseNet etc. 
Out of all these models, one best model with highest testing accuracy and least test loss achieved for image 
classification may be adopted for Remote Sensing classification and retrieval system. 
7 Remote Sensing Image Classification based on Pre-Trained Models 
In order to determine the best dataset for remote sensing picture classification, the studies are based on a pre-
trained model called DenseNet, along with its versions, DenseNet-169, DenseNet121, and DenseNet-201 
using four remote sensing datasets: UC-Merced, AID, NWPU-RESISC-45 and PatterNet. 
7.1 General Flow of Transfer Learning Algorithm for Remote Sensing Image Classification 

• Load the remote sensing datasets selected for experiments 
Division of the dataset into a train, test and validation splits like 70% and 30% ratios is 

 
Figure 5: Remote Sensing Image Classification based on Pre-Trained Models performed. Train 
dataset consists of images to train the model. Validation dataset contains the images to validate 
the model in every epoch. They are used to obtain the training and validation accuracies and loss 
in every epoch while training the model. Test dataset contains the completely unseen images of 
Remote Sensing dataset. • Set the size of input image given as input to pre-trained model(224,224). 

Generally pre-trained models accepts the input image of 224×224 of Remote Sensing dataset but 
actually the dataset images are of different dimensions. Thus, the dataset images must be resized 
according to required dimensions. 

• Model Training 
1. Model building 

(a) Load pre-trained base model with its pre-trained weights. 
(b) Customize the mode: Changing last layer according to number of classes of containedin 

dataset. 
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(c) Predicting Classes: Multiclass classification is done using Softmax activation functionat dense 
output layer. 

2. Compiling Model 
Categorical cross entropy function is evaluated using Adam optimizer. Adam optimizer decides 
the best training rate itself for compiling model. 

3. Fitting the Model 
Now model is fit to train. Early stopping is used to stop training the model if further validation loss 
gradually increases. 

4. Performance Evaluation 
Accuracy and loss learning curves are plotted. Accuracy, precision, recall, F1-scores are analyzed. 

General flow of transfer learning is presented in figure 8. 
8 Train, Validation, Test Dataset Details on variants of DenseNet 
Every DenseNet variation is learnt using 100 epochs. The following tables compare four benchmark datasets’ 
total parameters, non-trainable parameters, validation accuracy, validation loss, precision, recall, and f1-
scores. Test Accuracy measures the predictive performance of the model by evaluating how well its 
predictions match the actual data. The test loss metric which calculates the cumulative mistakes on the 
validation set after each iterative optimisation shows how effective the model is. 
8.1 DenseNet-169: AID 
The results of the trials on the AID dataset are shown in Figure5.These investigations yielded a test accuracy 
of 87%, indicating that the model’s predictions were extremely accurate. Furthermore, figure5 displays the 
associated test loss, which was measured at 2.0396 and suggests a relatively larger degree of error in the 
model’s predictions. 
8.2 DenseNet-169: UC-Merced 
Figure6 displays the outcomes of the tests conducted using the UC-Merced dataset. The model’s predictions 
were quite accurate, as evidenced by the 90% test accuracy obtained from these studies. Additionally, the 
comparable test loss of 1.2614 is shown in figure 6 suggesting a comparatively smaller degree of error in the 
model’s predictions. 
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Figure 6: Remote Sensing Image Classification based on Transfer Learning 

 
 (a) Accuracy: 0.8769 (b) Loss: 2.0396 

Figure 7: DenseNet-169: AID Dataset 

 
 (a) Accuracy: 0.9048 (b) Loss: 1.2614 

Figure 8: DenseNet-169: UC-Merced Dataset 
8.3 DenseNet-169: PatterNet 
Figure 7 displays the outcomes of the experiments conducted on the PatterNet dataset.As a consequence of 
these studies, the test accuracy was 96.3%, which indicates that the model’s predictions are highly accurate. 
The related test loss measure was 1.0238, which indicates that the model’s predictions are somewhat 
moderately inaccurate. 
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 (a) Accuracy: 0.9632 (b) Loss: 1.0238 

Figure 9: DenseNet-169: PatterNet Dataset 
8.4 DenseNet-169: NWPU-RESISC45 
Figure 8 displays the outcomes of the tests conducted using the NWPU-RESISC45 dataset.As a result of these 
trials, the test accuracy was 93.2%, which indicates that the model’s predictions were highly accurate. The 
corresponding test loss was 0.8443, which indicates that the model’s predictions were significantly less 
inaccurate. 

Systematic analysis of Test Accuracy and Test Loss Scores on proposed remote sensing datasets AID, 
UC-Merced, NWPU-RESISC45 and PatterNet with the variants of the pre-trained models is presented in this 
section. 
Table 3 presents the precision, recall, F1-score and accuracy scores as observed on DenseNet-169. 

 
 (a) Accuracy: 0.9325 (b) Loss: 0.8443 

Figure 10: DenseNet-169: NWPU-RESISC45 Dataset 

 
Figure 11: DenseNet-169: Test Accuracy Test Loss Analysis AID, UC-Merced, ,PatterNet, NWPURESISC45 
8.5 Observing Learning Curves of Train Accuracy and Train Loss Scores on DenseNet-121 8.6 DenseNet-

121: AID 
The results of the studies are shown in DenseNet-121 Figure 10, which yields an accuracy of 88%. This 
outcome shows that the model performed rather well in predicting the test data’s class labels. Similarly, a 
wider range for loss optimisation was indicated by the equivalent test loss, which was found to be 1.6608. 

 
 (a) Accuracy: 0.8838 (b) Loss: 1.6608 

Figure 12: DenseNet-121: AID Dataset 
Table 3: DenseNet-169: Investigations on Precision, Recall, F1-Scores on AID, UC-Merced, Patter- 
Net and NWPU-RESISC45 Datasets 
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Dataset Precision Recall 
f1- 

Score Accuracy Support 

UC-Merced 0.91 0.90 0.90 0.90 210 

AID 0.89 0.88 0.88 0.88 1007 

NWPU- 
RESISC45 

0.93 0.93 0.93 0.93 1067 

PatterNet 0.97 0.96 0.96 0.96 3040 

 
8.7 DenseNet-121:UC-Merced 
DenseNet-121 The results of studies on the UC-Merced dataset are shown in Figure 11, which yielded a test 
accuracy of 93%. This result shows that the model performed reasonably well in predicting the test data’s 
class labels. Similarly, a lower range for loss optimisation was indicated by the matching test loss, which was 
found to be 0.4508. 

 
 (a) Accuracy: 0.4508 (b) Loss: 0.9381 

Figure 13: DenseNet-121: UC-Merced Dataset 
8.8 DenseNet121: PatterNet 
The results show that the DenseNet-121 model performs reasonably well in categorising the test images, with 
a test accuracy of 97% in figure 12. Furthermore, a matching test loss of 0.6076 was found, indicating a 
comparatively reduced degree of error in the model’s predictions for this specific dataset. 

 
 (a) Accuracy: 0.9727 (b) Loss: 0.67076 

Figure 14: DenseNet-121: PatterNet Dataset 
 
8.9 DenseNet-121: NWPU-RESISC45 
DenseNet-121 Figure 13 displays the outcomes of the tests conducted using the NWPU-RESISC45 
dataset.With a test accuracy of 92.2%, these experiments demonstrated that the model’s predictions were 
highly accurate. A comparatively small degree of error in the model’s predictions was shown by the 
corresponding test loss, which was assessed at 0.7884. 

 
 (a) Accuracy: 0.9228 (b) Loss: 0.7884 

Figure 15: DenseNet-121: NWPU-RESISC45 Dataset 



Nisha Gupta, Ajay Mittal, and Satvir Singh 
 

Library Progress International| Vol.43 No.2 | Jul-Dec 2023 2061 

9 Analysis of Train Accuracy and Train Loss Scores on Proposed Datasets based on Investigations 
using DenseNet201 

 
Figure 16: Test Accuracy Test Loss Analysis DenseNet-121: NWPU-RESISC45,PatterNet, UCMerced and 
AID datasets 
DenseNet-121 is trained on 100 epochs. Comparison of total parameters, non-trainable parameters, validation 
accuracy, validation loss, precision, recall and F1-scores on four benchmark datasets is represented in 
following tables. 
9.1 DenseNet-201: AID 
The results obtained with the experiments carried out on the AID dataset are presented in figure 15.These 
experiments resulted in test accuracy of 86.6%, indicating a high level of accuracy in the model’s predictions. 
Corresponding test loss was measured at 2.709 indicating a relatively higher level of error in the model’s 
predictions. 

 
 (a) Accuracy: 0.8669 (b) Loss: 2.7096 

Figure 17: DenseNet-201: AID Dataset 
9.2 DenseNet-201: UC-Merced 
DenseNet-201 Figure 16 displays the outcomes of the tests conducted on the UC-Merced dataset on 
DenseNet-201.A test accuracy of 94% was obtained from these studies, suggesting that the model’s 
predictions were highly accurate. A comparatively larger degree of error in the model’s predictions is 
indicated by the equivalent test loss of 1.323. 

 
 (a) Accuracy: 0.9429 (b) Loss: 1.3238 

Figure 18: DenseNet-201: UC-Merced Dataset 
9.3 DenseNet 201: PatterNet 
The results of the studies are shown in Figure 17, which shows a test accuracy of 97.6%. This outcome shows 
that the model performed rather well in predicting the test data’s class labels. Similarly, a lower range for loss 
optimisation was indicated by the equivalent test loss, which was found to be 0.640. 
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 (a) Accuracy: 0.9760 (b) Loss: 0.6402 
Figure 19: DenseNet-201: PatterNet Dataset 

9.4 DenseNet 201: NWPU-RESISC45 
DenseNet-201 Figure 18 displays the outcomes of the tests conducted using the NWPU-RESISC45 
dataset.The model’s predictions were quite accurate, as evidenced by the 90% test accuracy obtained Table 
4: DenseNet-201: Investigations on Precision, Recall, F1-Scores on AID, UC-Merced, NWPURESISC45 and 
PatterNet Datasets 

Dataset Precision Recall f1-Score Accuracy Support 

UC-Merced 0.95 0.94 0.94 0.94 210 

AID 0.90 0.89 0.89 0.89 1007 

NWPU-RESISC45 0.93 0.93 0.93 0.93 1062 

PatterNet 0.98 0.98 0.98 0.98 3040 

from these studies. Additionally, the comparable test loss, which was 0.8955, is shown in figure 13, suggesting 
a comparatively higher degree of error in the model’s predictions. 

 
 (a) Accuracy: 0.9275 (b) Loss: 0.8956 

Figure 20: DenseNet-201: NWPU-RESISC45 Dataset 
10 Analysis of Train Accuracy and Train Loss Scores on DenseNet-201 

 
Figure 21: Test Accuracy Test Loss Analysis DenseNet-201: NWPU-RESISC45,PatterNet, UCMerced and 
AID datasets 
11 Analysing DenseNet-169, DenseNet-121 and DenseNet201 evaluations with existing approaches and 

syntactic analysis 
Table 5: Performance Analysis of DenseNet used as feature extractor and State-of-the-art Machine Learning 
and Deep Learning feature extraction methods adopted for Image Classification in recent past decade. 
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 2019
 Dong

 ResNet-
101 

 ISPRS
 Accuracy

 86.67% 

2020 M.K. Alsmadi 
YCbCr + 

GLCM Corel 
Average Precision 

Average Recall 
90.15 
18.03 

G. Li, 
2021 

M.Zhang 

DenseDsc 

CIFAR-10 
CIFAR-100 
ImageNet 

Accuracy 
Accuracy 
Accuracy 

94.05% 
74.24% 
76.3% 

Dense2Net 

CIFAR-10 Accuracy 94.19% 

CIFAR-100 Accuracy 73.68% 

ImageNet Accuracy (Top-5) 76.3% 

   Accuracy (Top-1) 77.1% 

2022 Z.Zhang 

MKANet 
kam Class 

RSSCN7 

Precision 
mAP 

0.8963 
(89.6%) 
0.9167 
(91.6%) 

MobileNetV3 RSSCN7 
Precision 

mAP 
0.8573 
(85.7%) 

Year Author Mehodology  Observations  

DATASET 
Evaluation 

Metrics 
Score 

2014 G.Sumbul DAS-RHDIS 

UC-Merced 

Accuracy 
Precision 

Recall 
F1-Score 

56.8% 
65.3% 
70% 

67.5% 

BigEarthNet 

Accuracy 
Precision 

62.7% 
77.7% 

    Recall 75.7% 
    F1-Score 76.7% 

2015 C.Szegedy Inception-v3 ImageNet Top-1 Error 17.2% 

    Top-5 Error 3.58% 

2016 B.Chaudhari ARGM 

2100 
aerial 
orthoimagery 

Precision 
Recall 
ANMR 

59.76% 
70% (Top-20) 

60% 
0.5748 

2017 Do & Cheung 

SASH 
Supervised 

CIFAR 10 
MNIST 

NUS-WIDE 

MAP 
MAP 
MAP 

53.17% 
75.48% 
64.01% 

SASH 
Unsupervised 

CIFAR 10 
MNIST 

MAP 
MAP 

77.22% 
63.31% 

   NUS-WIDE MAP 45.05% 

2017 J.Li DMINTIR 
Oxford 5k 

Mean Average 
Precision 85.34% 

   
Paris 6k 

Mean Average 
Precision 

81.75% 

2018 Jabeen 

SURF 
based 

FREAK 

Corel 1K 
Corel 1.5K 
Caltech 256 

Accuracy 
Accuracy 
Accuracy 

86% 
83% 
38% 

   GID Accuracy 77.74% 
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0.8586 
(85.8%) 

MKANet 
Class OPTIMAL-31 

Precision 
mAP 

0.7447 
(74.4%) 
0.7399 
(73.9%) 

   ANMR 0.0325 
(32.5%) 

2023 P.S.Tan DenseNet-121 

Soundscapes1 
Soundscapes2 

F1-score 
F1-score 

80.70% 
87.30% 

  Urban- 
Sound8k 

F1-score 69.60% 

Table 6: Evaluations done on DenseNet-169, DenseNet-121 and Densenet-201 
Method 

(DenseNet-169) 

 

NWPU- 
RESISC45 

Precision 
Recall 

F1-score 
Accuracy 

0.93 
0.93 
0.93 
0.93 

  Test Accuracy 0.9325 

  Test Loss 0.8443 

PatterNet 

Precision 
Recall 

F1-score 

0.97 
0.96 
0.96 

  Accuracy 0.96 
  Test Accuracy 0.9632 

  Test Loss 1.0238 

TECHNIQUE 
 OBSERVATIONS  

DATASET EVALUATION METRICS SCORE 

Proposed 

UC-Merced 

Precision 
Recall 

F1-score 
Accuracy 

Test Accuracy 
Test Loss 

0.91 
0.90 
0.90 
0.90 

0.9048 
1.2614 

AID 

Precision 
Recall 

F1-score 
Accuracy 

Test Accuracy 
Test Loss 

0.89 
0.88 
0.88 
0.88 

0.8769 
2.0396 
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Proposed 
Method 

(DenseNet-121) 

UC-Merced 

Precision 
Recall 

F1-score 
Accuracy 

Test Accuracy 
Test Loss 

0.95 
0.94 
0.94 
0.94 

0.9381 
0.4508 

AID 

Precision 
Recall 

F1-score 
Accuracy 

Test Accuracy 
Test Loss 

0.90 
0.88 
0.88 
0.88 

0.8838 
1.6608 

NWPU- 
RESISC45 

Precision 
Recall 

F1-score 
Accuracy 

0.93 
0.92 
0.92 
0.92 

  Test Accuracy 0.9228 

  Test Loss 0.7884 

PatterNet 

Precision 
Recall 

F1-score 

0.97 
0.97 
0.97 

  Accuracy 0.97 
  Test Accuracy 0.9727 

  Test Loss 0.6076 

  Precision 0.95 

  Recall 0.94 

UC-Merced 
 F1-score 0.94 

Proposed Accuracy 0.94 

Method Test Accuracy 0.9429

(DenseNet-201) Test Loss 1.3238

AID 

Precision 
Recall 

F1-score 

0.90 
0.89 
0.89 

 Accuracy 0.89 
 Test Accuracy 0.89 

 Test Loss 2.7096 

NWPU- 
RESISC45 

Precision 
Recall 

F1-score 
Accuracy 

0.93 
0.93 
0.93 
0.93 

 Test Accuracy 0.9275 

 Test Loss 0.8956 
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PatterNet 

Precision 
Recall 

F1-score 

0.98 
0.98 
0.98 

 Accuracy 0.98 
 Test Accuracy 0.9760 

 Test Loss 0.6402 

Table 5 and 6 presents the performance analysis of various state of the art feature extraction methods 
adopted by researchers in past decade compared with the proposed pre-trained model DenseNet on proposed 
remote sensing datasets. 
12 Complexity and Challenges 
DenseNet-169 has a depth of 338 and a size of 57 MB. DenseNet-121 has a depth of 242 and is 33 MB in 
size. DenseNet-201 has a depth of 402 and a size of 80 Mb. Variants of DenseNet have demonstrated greater 
computational efficiency than VGG-19 and Inception Networks (GoogLeNet/Inception v1), both in terms of 
the quantity of parameters produced by the network and the financial cost paid (memory and other resources). 
Care must be made when training DeneNet networks with large and complex sizes to ensure that the 
computational benefits are maintained. 
13 Contribution of the research work proposed 
The content-based remote sensing information retrieval system could be helpful in forestry and agriculture, 
among other industries. Agricultural fields may benefit from CBIR’s ability to identify damaged crops just 
by looking at them from above. The impacted area can be remotely sensed to track deforestation. The RSIR 
system is also used in geosciences, where satellites may collect images to determine the earth’s geological 
characteristics at a specific time and location. Through remote sensing of planet positions, astrologers can get 
information regarding planet motions. The minerals that are present on planets can be recorded by scientists. 
To predict the weather, the weather forecasting department may employ remote sensing. 
14 Conclusion 
The goal of DenseNet is to maximise the flow of information between the network’s intermediary levels. It 
immediately connects every layer. The key component of DenseNet is Dense Block. The primary 
characteristic is that every network layer is interconnected. Each layer’s input is derived from the output of 
every layer before it. Each layer in a dense block architecture is directly connected to input and loss, which 
encourages information transmission and lowers the gradient, allowing the network to converge more 
effectively. 

In order to classify remote sensing images, this paper experiments with transfer learning using variations 
of the DenseNet pre-trained deep learning model. The four benchmark datasets previously indicated are used 
for the evaluations. In light of the aforementioned findings, DenseNet-201 speeds up training and gets rid of 
over-fitting. With fewer parameters, DenseNet-201 increases the remote sensing scene’s classification 
accuracy. Additionally, overfitting can be avoided and training accelerated by using pre-training parameters 
that were trained on ImageNet. 

Comparing with other datasets, the PatterNet dataset is found to be the most appropriate for classifying 
remote sensing images. This conclusion is based on the remarkable low validation loss of 0.640 and the 
excellent accuracy of up to 97%. The distinctive features of the PatternNet dataset, such as its extensive 
collection of high-resolution images on a huge scale, are largely responsible for its appropriateness. 
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