Original Article

Available online at www.bpasjournals.com

# **Exploring the Accuracy of Citations: A Study of Four International Geological Journals**

## Bajrang Lal Swami<sup>1</sup> and Dr. Vishnu Kumar Gupta<sup>2</sup>\*

<sup>1</sup>Research Scholar, Department of Library and Information Science, University of Rajasthan, Jaipur (India) PIN- 302004 E-mail: bajrangswami222@gmail.com ORCID: http://orcid.org/0009-0004-4199-6024

**How to cite this article**: Swami B.L. and Gupta V.K. (2025). Exploring the Accuracy of Citations: A Study of Four International Geological Journals. *Library Progress International*, 45(2), 684-698

## **ABSTRACT**

**Objective-** This research investigated the accuracy of citations in four international peer reviewed indexed geological journals, viz. International Geology Review (IGR), Mathematical Geosciences (MGS), New Zealand Journal of Geology and Geophysics (NJG), and Russian Journal of Pacific Geology (RJP).

**Methods-** In Toto, one hundred article citations were randomly selected for checking of accuracy, choosing 25 citations from each journal's first issue of the year 2023. Each article citation was carefully verified either from the actual source article or from alternative sources such as Scopus, Web of Science, Google Scholar, and indexing and abstracting sources when the actual source was unavailable.

**Results-** In the study, 52 out of the 100 citations were found to be accurate, while the remaining 48 were inaccurate. The citations accuracy level was 52%. The ratio of number of errors (average number of errors) was 0.62. Twenty-two major errors and 40 minor errors were found in 100 citations.

**Conclusion-** Not only geological scientists and researchers need to be more attentive while compiling the reference list but also librarians should conduct referencing behaviour programs along with library orientation programs for research scholars. Training of skill development in reference management tools and software can be conducted in libraries.

**Keywords-** Citation accuracy; Reference errors; Citation behaviour; Scholarly communication, Geological Journals

#### INTRODUCTION

The list of references in a scientific paper, often referred to as "cited references," stands as a crucial component which enables users to trace pertinent information sources, if necessary. This list provides bibliographical details of the information sources directly or indirectly referenced during the research. It also showcases the authors thorough exploration of subject matter of the scientific paper (Gupta, 2017a; Shah, 2022).

Reference list compiled within a scientific paper can be categorized into two sections. First is quotation, which is integrated into the text, and second is citation, which is located at the end of the paper. In the first section, each segment of the article that relies on external information sources is identified with an inline citation, which can take the form of a footnote, parenthetical reference, or abbreviated citation, typically appearing as a superscripted numeral adjacent to the relevant words or ideas. The second section comprises a comprehensive list of all references, presented in a "References" or "Bibliography" section at the paper's end, offering complete formatted details to enable readers to retrieve and verify the sources. This list may

<sup>&</sup>lt;sup>2,\*</sup>Assistant Professor, Department of Library and Information Science, University of Rajasthan, Jaipur (India) PIN- 302004 E-mail: vishnu5966@gmail.com, \*Corresponding Author ORCID: http://orcid.org/0000-0003-4579-7132

be organized alphabetically by the surname of authors, editors, translators, or initial words of titles, or numerically according to the superscripted numbers used in the text.

Accuracy of citations stands as a crucial facet of scholarly communication and scientific advancement. As citations undeniably serve a paramount role in scholarly communication by aiding in the identification, search, and retrieval of earlier research works (Pandit, 1993). The accuracy and precision of citations in scientific papers cannot be overlooked. However, it is regrettable that authors often do not allocate adequate attention to compiling accurate references in their papers. The responsibility for meticulously examining the references lies with the author(s) (Adhikari, 2010; Davies, 2012).

Mis-citation poses a significant challenge in scholarly communication, particularly within scientific papers, as reference inaccuracies can lead readers astray (Sauvayre, 2022). The authors can reduce the frequency of referencing errors by investing time in compiling and correcting bibliographic references according to a standard referencing style and guideline (Shah, 2022). They should strictly follow the specific referencing guideline. Numerous referencing standards and guidelines exist, like the *APA Referencing Style, MLA Referencing Style, Turabian Style, Chicago Manual of Style, Vancouver Style, Harvard Style,* etc. Researchers are expected to adhere to one of these standards when writing papers or conducting research. The primary reason for reference inaccuracies is often attributed to authors not following these standard styles and guidelines (Gupta 2017b; Gupta, 2019; Harinarayana, et.at, 2011).

It goes without saying that perfection is the ultimate standard. In scholarly communication, such as scientific papers, inaccuracies in references raise doubts about the overall quality of the scientific paper and even the credibility of editors of the journal who published it (Doms, 1989). Poor practices of compiling references and citations by authors cut down their value (Todd and Ladle, 2008).

## REVIEW OF RELATED LITERATURE

Citation accuracy is paramount to the advancement of scholarly communication. The services of libraries and information centres like interlibrary loan (ILL), Document delivery services (DDS), and citation database management negatively affected due to citation or referencing errors. Other sub-fields of library and information science subject like bibliometrics, scientometrics, citation analysis studies, and evaluation of scientists' work are also affected by faulty citations (Pandit, 1993; Goodrich and Roland, 1977; Boyce and Banning, 1979).

Several scholars have conducted studies of citation errors and reference accuracy in the library and information science journals as well as PhD theses and dissertations (Davies, 2012; Boyce and Banning, 1979; Gupta, 2017a; Gupta, 2019; Gupta 2020; Lok et.al., 2001; O'connor and Kristof, 2001; Pandit, 1993; Siebers, 2001; Lukic, et al., 2004). According to Hernon and Metoyer-Duran (1992), librarians can help to conduct the literature search for scholars during the research process to mitigating citation errors.

Siebers (2000) examined the reference accuracy of three allergy journals, viz. 'Allergy', 'Clinical and Experimental Allergy', and 'Journal of Allergy and Clinical Immunology'. He selected the references from the issues of April, 1999 of all the selected journals and checked them with Medline (National Library of Medicine) and other electronic databases, and/or against original sources. He divided the errors into six bibliographic elements, i.e. author(s), title, journal, year, volume and page numbers. In this study, reference error rates were ranged from 22.1% to 30.4%.

In a cross-sectional study, Luo et al. (2013) examined 249 references for citation accuracy and 408 quotes for quotation accuracy from 25 articles published in 5 peer-reviewed orthopaedic journals. They randomly selected all articles from 2009 publications. The citation error rate in these journals was 41% (103 out of 249). They emphasized that the authors may take the help of technical editing for minimizing the referencing errors.

Karabulut (2017) found bibliographical error rate of 17.3% especially these errors concern librarians. These inaccuracies influence the impact factor of journal. Wilks et al. (2017) conducted the research to examine the accuracy of 500 cited references, which were randomly selected and attached in articles published in the journal entitled 'Research on Social Work Practice' during the period of January, 2005 to March, 2015. They verified the selected references against the original and concluded that 27% of references were erroneous.

Pavlovic et al. (2021) examined the frequency of incorrect citations of commonly referenced works in the biomedical scientific literature. They included the primary writers of the references to verify the citation accuracy. They revealed that the citing of non-existent findings was the most prevalent issue.

Logan (2022) studied reference accuracy of articles from 'Research Quarterly for Exercise and Sport' (RQES) published in the issues of 1999, 2009, and 2019. He randomly selected the 50 articles, which contained 1341 references. He revealed through Chi-square analyses that the total error rate did not significantly change between years. The citation error rate was 40% in these three years. He believes that authors are mainly responsible for referencing accuracy. Logan et.al. (2024) in the article entitled 'Reference accuracy of primary studies about reference accuracy: A descriptive study' examined the reference accuracy of research articles on reference accuracy which were peer-reviewed. They pointed out that the scholars who studied about citation accuracy and reference errors were not familiar and aware about citation behaviour.

Nicoll et al. (2022) studied the accuracy of citations in a sample of 100 articles selected from 100 distinct nursing publications. They selected 666 references for analysis as a sample. They found a small percentage of references contained errors in the year, journal title, article title, or author name. They concluded on the basis of their findings that the utilization of modern technologies, such as electronic databases and reference management software, appears to have increased the overall correctness of reference lists. Cobb et al. (2024) analyzed the eight prestigious psychological journals for the citation accuracy, the largest analysis to date to in psychological literature. They examined 3347 cited references from 89 research articles and compared them to the original source. Findings showed that most of citations (81.2%) were accurate. They overall resulted that roughly one in ten citations entirely mischaracterizes previous research in prominent psychology journals.

Homeier et al. (2024) evaluated the reference errors in randomly selected twenty articles appended in two peer-reviewed and high impact factor orthopaedic sports medicine journals. A total 769 references with 1082 in-text citation were analysed. The most common error (32%) was failing to provide evidence for authors' claims. They suggested to authors that they should be careful to evaluate references carefully, paying close attention to the proper citation of original sources.

## **OBJECTIVES OF THE STUDY**

The main objectives of the research study are mentioned below:

- 1. To measure the quantity of inaccuracies in citations;
- 2. To examine the major and minor errors in citations;
- 3. To check the accuracy level of citations;
- 4. To check the inaccuracies in citing authors' names;
- 5. To check the inaccuracies in title of articles;
- 6. To check the inaccuracies in title of journals;
- 7. To measure the errors in year of publication and page numbers/article number; and
- 8. To examine the inaccuracies in volume number, and punctuations.

## MATERIAL AND METHOD

All these four journals, as presented in table 1, were selected through a random sample from the geological journals indexed in both Scopus and Web of Science citation databases in the year 2023. Total one hundred journal citations, choosing 25 citations from each journal, were selected by using MS-Excel random number generator (Table 2). The non-journal and non-English (i.e. Russian, Chinese, etc.) citations were replaced by next journal citation in case the selected citation was non-journal or non-English by random number generator The random number generator was used separately for all four journal citations. Each citation was carefully verified either from the actual source article or from alternative sources such as Scopus, Web of Science, Google Scholar, and other indexing and abstracting sources when the actual source was unavailable. Non-journal citations, like- books, conference proceedings, theses and dissertations, reports, websites, patents, reference sources, etc. were intentionally not considered in this study because these non-journals referred sources were not easily accessible and available.

**Table 1: List of selected journals** 

| S.N. | Name of the Journal                | Code | Publisher        | Vol. (issue) 2023 |
|------|------------------------------------|------|------------------|-------------------|
| 1    | International Geology Review       | IGR  | Taylor & Francis | 65 (1)            |
| 2    | Mathematical Geosciences           | MGS  | Springer         | 55 (1)            |
| 3    | New Zealand Journal of Geology and | NJG  | Taylor & Francis | 66 (1)            |
|      | Geophysics                         |      |                  | , ,               |
| 4    | Russian Journal of Pacific Geology | RJP  | Springer         | 17 (1)            |

**Table 2: Number of selected citations** 

| Journal | Vol.    | Number of                  | Number of cita    | Number of citations   |                 |           |  |  |
|---------|---------|----------------------------|-------------------|-----------------------|-----------------|-----------|--|--|
|         | (issue) | articles in selected issue | Journal citations | Non-journal citations | Total citations | citations |  |  |
| IGR     | 65 (1)  | 8                          | 860               | 91                    | 951             | 25        |  |  |
| MGS     | 55 (1)  | 6                          | 174               | 75                    | 249             | 25        |  |  |
| NJG     | 66 (1)  | 9                          | 368               | 102                   | 470             | 25        |  |  |
| RJP     | 17 (1)  | 8                          | 190               | 115                   | 305             | 25        |  |  |
| Total   |         | 31                         | 1592              | 383                   | 1975            | 100       |  |  |

The citations were initially classified into two parts: correct and incorrect citations. An incorrect citation deviated from the actual source in some manner, while a correct citation completely matched with the actual source. The number of incorrect citations was counted and the errors were classified into two groups: minor and major errors. Both type of errors was categorized into six components based on their type, such as author name, article title, journal name, volume, year, and page numbers. Minor errors included slight inaccuracies in author initials, article titles, journal titles, last page numbers, and punctuation. Major errors encompassed incorrect or missing author names, incorrect article titles, incorrect or missing journal names, incorrect or missing volume, incorrect or missing publication years, and incorrect or missing first page numbers. Issue number errors are ignored due to variation in journal's guidelines.

Citations with errors in only one component (such as author's name, article title, journal name, volume, year, or page number) were categorized as having one error. Citations with errors in two or more components were categorized as having two or more errors.

#### **RESULTS**

## Quantity of inaccuracies

The number of inaccuracies in article citations across four selected geological journals is shown in Table 3 and figure 1. The total number of inaccuracies in 100 citations was found 62. The average number of errors, or the ratio of errors, is 0.62. The journal IGR contained highest number of errors (19), followed by NZJ (15). The journals MGS and RJP consisted equal number of errors (14).

**Table 3: Inaccuracies in citations** 

|                                           | Journal n |       |       |       |                  |
|-------------------------------------------|-----------|-------|-------|-------|------------------|
| Category                                  | IGR       | MGS   | NZJ   | RJP   | Total            |
| Number of citations verified = a          | 25        | 25    | 25    | 25    | $\Sigma a = 100$ |
| Number of errors = b                      | 19        | 14    | 15    | 14    | $\Sigma b = 62$  |
| Average numbers of errors $c = b/a$       | 0.76      | 0.56  | 0.60  | 0.56  | 0.62             |
| Percentage of errors $D = b/\Sigma b*100$ | 30.65     | 22.58 | 24.19 | 22.58 | 100              |

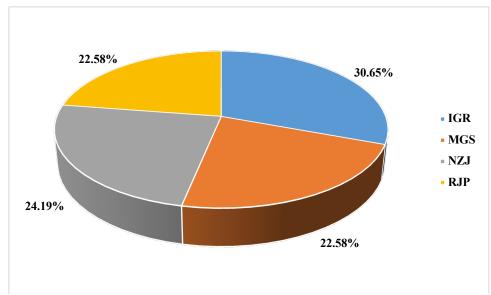



Figure 1: Percentage of errors Major and minor errors in citations

The volume of major errors in the selected citations is shown in Table 4 and figure 2. Twenty-two major errors were discovered in 100 citations appended in the four Geological journals. These major errors make it difficult for readers to find out and access the cited sources of information. The highest number of major errors (8) were found in NZJ while lowest number of major errors (4) were in RJP. The journals IGR and MGS contained 5 major errors each.

Readers' ability to locate and access the cited information sources is not influenced by minor errors. The quantity of minor errors in the selected article citations is shown in Table 5 and figure 2. Forty minor errors were detected among the 100 citations in the four Geological journals. The IGR contained highest number of minor errors (14), followed by RJP (10) and MGS (9). The NZJ had lowest minor errors (7).

Table 4: Major and minor errors in citations

|                                                 | Journal | Journal name |       |       |                  |  |
|-------------------------------------------------|---------|--------------|-------|-------|------------------|--|
| Category                                        | IGR     | MGS          | NZJ   | RJP   | Total            |  |
| Total numbers of citations verified = a         | 25      | 25           | 25    | 25    | $\Sigma a = 100$ |  |
| Numbers of major errors = b                     | 5       | 5            | 8     | 4     | $\Sigma b = 22$  |  |
| Percentage of major errors $c = b/\Sigma b*100$ | 22.73   | 22.73        | 36.37 | 18.18 | 100              |  |
| Numbers of minor errors = d                     | 14      | 9            | 7     | 10    | $\Sigma b = 40$  |  |
| Percentage of minor errors $e = d/\Sigma d*100$ | 35.00   | 22.50        | 17.50 | 25.00 | 100              |  |

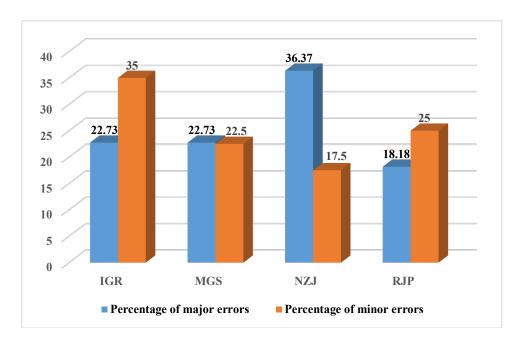



Figure 2: Major and minor errors in citations

## Accuracy level of citations

Accuracy is a crucial factor while assessing quality. The accuracy level of the citations in the four Geological journals is shown in Table 5 and figure 3. Fifty-two out of the 100 citations were found to be accurate, while the remaining 48 were found to be inaccurate. The citation accuracy level is 52%. This indicates that nearly every second citation that is cited is inaccurate. The highest number (13) of inaccurate citations were observed in the journal IGR whereas lowest number (11) were found in NZJ. The journals MGS and RJP had equal number (12) of inaccurate citations. Existence of erroneous citations are due to carelessness of the authors, reviewers, and journal editors.

**Table 5: Accuracy level of citations** 

|                                          | Journal | Journal name    |       |       |                  |  |  |
|------------------------------------------|---------|-----------------|-------|-------|------------------|--|--|
|                                          | IGR     | IGR MGS NZJ RJP |       |       |                  |  |  |
| Category                                 |         |                 |       |       |                  |  |  |
| Total numbers of citations verified = a  | 25      | 25              | 25    | 25    | $\Sigma a = 100$ |  |  |
| Correct citations = b                    | 12      | 13              | 14    | 13    | $\Sigma b = 52$  |  |  |
| Incorrect citations = c                  | 13      | 12              | 11    | 12    | $\Sigma c = 48$  |  |  |
| citation accuracy percentage d = b/a*100 | 48.00   | 52.00           | 56.00 | 52.00 | 52.00            |  |  |



Figure 3: Accuracy level of citations

## Inaccuracies in citing author's name

The inaccuracies in citing author's name are displayed in table 6. The most frequent inaccuracies in author's name are addition/spelling (42.86%) followed by punctuation (28.57%), and omission (28.57%). Maximum number (5) of inaccuracies in author's name element were detected in journal IGR followed by MGS (4) and NZG (3) while minimum in the journal RJP (2). Annexure-1 enlists the inaccuracies in the author's name element in the four geological journals.

Table 6: Inaccuracies in citing author's names

| Citation | Type of Inaccuracies           | Name of the journal |     |     |     | Total | Percentage |
|----------|--------------------------------|---------------------|-----|-----|-----|-------|------------|
| elements |                                | IGR                 | MGS | NZG | RJP |       |            |
| Author's | Omission inaccuracies          | 2                   | 0   | 2   | 0   | 4     | 28.57      |
| name     | Addition/spelling inaccuracies | 1                   | 3   | 1   | 1   | 6     | 42.86      |
|          | Punctuation inaccuracies       | 2                   | 1   | 0   | 1   | 4     | 28.57      |
|          | Total                          | 5                   | 4   | 3   | 2   | 14    | 100.00     |

#### Inaccuracies in article title

The inaccuracies in article's title are shown in table 7. In Toto, 12 inaccuracies were observed in article title element in 100 citations. The journal RJP contained the most numbers (5) of inaccuracies in article title element and the journal MGS had the least number (1). The journals IGR and NZG had equal number (3) of inaccuracies in article's title. Annexure-2 provides a list of article title errors in the four geological journals.

**Table 7: Inaccuracies in article titles** 

| Citation      | Type of Inaccuracies           | Name | Name of the journal |     |     | Total | Percentage |
|---------------|--------------------------------|------|---------------------|-----|-----|-------|------------|
| elements      |                                | IGR  | MGS                 | NZG | RJP |       |            |
| Article title | Wrong/missing title            | 1    | 0                   | 2   | 0   | 3     | 25.00      |
|               | Addition/spelling inaccuracies | 1    | 0                   | 1   | 3   | 5     | 38.46      |
|               | Punctuation inaccuracies       | 1    | 1                   | 0   | 2   | 4     | 33.33      |
|               | Total                          | 3    | 1                   | 3   | 5   | 12    | 100        |

## **Inaccuracies in journal titles**

The inaccuracies in journal titles are presented in table 8. The most common inaccuracies (81.81%) were found in punctuation/abbreviation in journal title element. The journal title contained 18.18% wrong/incomplete errors, while no error was observed in addition/spellings. Findings revealed that journal NZG had no errors in journal title element while journal MGS had maximum number (6) of errors in journal title. Annexure-3 presents the journal title errors in the citations in the four geological journals.

**Table 8: Inaccuracies in journal titles** 

| Citation      | Type of inaccuracies           | Name | Name of the journal |     |     |    | Percentage |
|---------------|--------------------------------|------|---------------------|-----|-----|----|------------|
| elements      |                                | IGR  | MGS                 | NZG | RJP |    |            |
| Journal title | Wrong/incomplete title         | 0    | 1                   | 0   | 1   | 2  | 18.18      |
|               | Addition/spelling inaccuracies | 0    | 0                   | 0   | 0   | 0  | 0          |
|               | Punctuation/abbreviation       | 1    | 5                   | 0   | 3   | 9  | 81.81      |
|               | Total                          | 1    | 6                   | 0   | 4   | 11 | 100        |

## Errors in year and page number

Errors in the publication year and pages/article number in the article citations prevent the searching and retrieving the original article. Therefore, both type of errors is regarded as major errors. Year of publication and page number/article number problems were also seen by Doms (1989) as major error. Total nine errors were measured in year and page number/article number elements. Table 9 reveals that 7 (77.78%) inaccuracies in page number/article number, and 2 (22.22%) errors in year of publication were detected in 100 citations in four geological journals. In the journal RJP no error was detected and, in the journal NZJ maximum number (5) of errors were found. The journals IGR and MGS had equal number (2) of errors in year of publication and page number element.

Table 9: Errors of Year and Page number/article number

|                             | Journa | Journal name |     |     |       |            |
|-----------------------------|--------|--------------|-----|-----|-------|------------|
| Citation elements           | IGR    | MGS          | NZJ | RJP | Total | Percentage |
| Year                        | 0      | 0            | 2   | 0   | 2     | 22.22      |
| Page number/ article number | 2      | 2            | 3   | 0   | 7     | 77.78      |
| Total                       | 2      | 2            | 5   | 0   | 9     | 100        |

## Inaccuracies in volume number and punctuation mark

Readers rely on the journal's volume number to locate their cited articles quickly with confidence. The volume number of a journal, along with punctuation, play important role in citations. Punctuation helps to separate the citation elements and clarify the meaning of each element, ensuring consistency in citations. Table 10 presents the inaccuracies in volume number and punctuation marks. Wrong/missing volume number classified as major error, whereas punctuation errors are categorized as minor errors. Findings show that inaccuracies in punctuation marks (50.00%), and wrong/missing volume number (50.00%) are in equal proportion. The journal RJP contained highest number (3) of inaccuracies in volume number element and journal MGS contained lowest (1). The journals IGR and NZJ contained equal number (2) of inaccuracies in volume element. The journals MGS and RJP has least punctuation inaccuracies, whereas IGR has highest (6) inaccuracies in punctuation element.

Table 10: Inaccuracies in volume number and punctuation marks

|                             | Journal | name |     |     |       |            |
|-----------------------------|---------|------|-----|-----|-------|------------|
| Citation elements           | IGR     | MGS  | NZJ | RJP | Total | Percentage |
| Wrong/missing volume number | 2       | 1    | 2   | 3   | 8     | 50.00      |
| Punctuation mark            | 6       | 0    | 2   | 0   | 8     | 50.00      |
| Total                       | 8       | 1    | 4   | 3   | 16    | 100        |

## **DISCUSSION**

The reference error rate in geological journals in the study was found 48%. This reference error rate is higher than the most previous reference error studies of other subjects as mentioned in the table 11. Only two studies, Azadeh & Vaez (2013), and Gupta (2020) have reported more error rate as compared to this study. Azadeh & Vaez carried out referencing error study of PhD theses in the subject of medical science submitted to Tehran and Tabriz Universities and found 62% and 53% error rate in references respectively. Gupta also found 77.92% error rate in references in PhD theses in Library and Information science submitted to Banasthali University, Rajasthan.

Table 11: Comparison to some earlier published significant researches

| Sr. | Author(s) (Year)           | Journal/Subject                             | Error rate in cited references |
|-----|----------------------------|---------------------------------------------|--------------------------------|
| 1.  | Goodrich and Roland, 1977  | US Medical journals                         | 29%                            |
| 2.  | Boyce and Banning, 1979    | Personnel and Guidance                      | 10.7 % and 13.6%               |
| 2.  | Boyce and Banning, 1979    | Journal, and JASIS                          | 10.7 70 and 13.070             |
| 3.  | De Lacey et al., 1985      | Medical journals                            | 24%                            |
| 4.  | Pope, 1992                 | Library science journals                    | 30%                            |
| 5.  | Fenton et al., 2000        | Otolaryngology/ Head and                    | 37.5%                          |
|     |                            | Neck Surgery                                |                                |
| 6.  | Faunce and Job, 2001       | Experimental Psychology Journals            | 31.5%                          |
| 7.  | Lok et al., 2001           | Nursing Journals                            | 43%                            |
| 8.  | O'Connor and Kristof, 2001 | Business and Economics<br>Journals          | 41.7%                          |
| 9.  | Siebers, 2001              | Clinical Chemistry Journal                  | 25.3%                          |
| 10. | Lukic et al., 2004         | Anatomy Journals                            | 27.5%                          |
| 11. | Spivey and Wilks, 2004     | Social Work Journals                        | 41.2%                          |
| 12. | Aronsky et al., 2005       | Biomedical Informatics Journals             | 34.3%                          |
| 13. | Raja and Cooper, 2006      | Emergency Medical Journal                   | 19%                            |
| 14. | Boya et al., 2008          | Hand Surgery Journals                       | 14.6%                          |
| 15. | Lopresti, 2010             | Environmental science journals              | 24.4%                          |
| 16. | Todd et al., 2010          | Marine Biology Journals                     | 25%                            |
| 17. | Davies, 2012               | Library and Information<br>Science Journals | 45.3%                          |
| 18. | Azadeh and Vaez (2013)     | Medical Science Theses                      | 53% and 62%                    |
| 19. | Wilks et al., 2017         | Research on Social Work<br>Practice Journal | 27%                            |
| 20. | Gupta, 2020                | Library and Information<br>Science theses   | 77.92%                         |
| 21. | Gupta, 2021a               | Journal of Scientometric<br>Research        | 44.25%                         |
| 22. | Cobb et al., 2024          | Psychology journals                         | 18.8%                          |
| 23. | Homeier et al., 2024       | Orthopaedic sports medicine journals        | 6.6%                           |
| 24. | Logan, 2025                | Journal of Motor Learning and Development   | 28.2%                          |

An ideal and perfect reference list is an essential and inevitable part of a scholarly writing. In order to prepare such a reference list, authentic and reliable information sources which are referred to and consulted during the research process should be compiled according to a specific reference style guideline.

Not only librarians but also research scholars feel frustration and inconvenience while retrieving any cited information source that are not existing or impossible to retrieve due to erroneous bibliographic details in references appended in scholarly writings, especially in research articles. Major errors in cited references create problems for librarians in retrieving documents demanded by users for Interlibrary loan (ILL) and document delivery services (DDS). The work of ILL staff is to cooperate of library professionals at several other libraries who all depend on receiving accurate bibliographic data (Dewey and Zophi-jordan, 2023). Reference errors in journal title element negatively influence the impact factor of journal (Karabulut, 2017). Errors in author name element in references are very serious in nature. Many scholars may feel dishonour if somebody writes their names inaccurately (Garfield, 1981; Gupta, 2021b).

#### **CONCLUSION**

The level of reference accuracy in the four peer-reviewed geological journals ranged from 48% to 56%. The geological researchers who cite and refer to different information sources in their academic writings without exploring and reading could enhance the volume of errors in cited references attached in research articles. The geological researchers and scientists should be aware of searching and retrieving sources of information and citing them perfectly in their research articles. The scholar should strictly follow the referencing guidelines provided by journal publishers.

Errors in cited references directly damage the efficiency of information retrieval in library and information centres (Pandit, 1993). Garfield (1990) argues that indexing of works of academic scholars and journals in citation databases become difficult due to citation errors. Therefore, every scholarly journal more or less negatively influenced by the problem of citation errors.

Referencing errors are also directly associated with plagiarism and ethical issues in scholarly communication. According to Garfield (1991), "Acknowledging prior research and intellectual debts is of crucial ethical importance." Compiling the error-free reference list is one of the excellent quality of researchers and scientists. While authors bear the primary responsibility for providing accurate references. Reviewers and Journal editors also play a crucial role in ensuring the accuracy of references.

The main responsibility of reducing the errors in references in scholarly writings lies on the shoulders of librarians. They should conduct referencing behaviour programs along with library orientation programs for users and scholars. Training of skill development in reference management tools and software can be conducted in libraries. Now a day, most of the institutional library and information centres have antiplagiarism tools to curb the academic theft in research work. Almost every kind of research writing is being checked plagiarism before submission to the journal. Here librarians can guide and instruct the researchers and writers for verifying the cited reference in their research work. In other words, librarians can be a peer reviewer at this initial stage. As suggested by Harper (2001), only cited reference could be reviewed by librarians partly or fully. Reference accuracy is luxury in research practice and most essential for advancement of scholarly communication.

## **Source of funding**

No external financial support was received to conduct this research work.

#### REFERENCES

- Adhikari, P. (2010). Accuracy of references in Indian journal of otolaryngology and head & neck surgery. *Indian Journal of Otolaryngology and Head & Neck Surgery*, 62(4), 338-341. DOI: 10.1007/s12070-010-0048-y.
- Aronsky, D., Ransom, J., & Robinson, K. (2005). Accuracy of references in five biomedical informatics journals. *Journal of the American Medical Informatics Association*, 12(2), 225-228. DOI: 10.1197/jamia.M1683
- Azadeh, F. & Vaez, R. (2013). The accuracy of references in PhD theses: A case study. *Health Information and Libraries Journal*, 30(3), 232-240.

- Boya, H., Ozcan, O., Mete, A. M. & Günal, I. (2008). Accuracy of references in journals of hand surgery. *Journal of Scholarly Publishing*, 39(2), 174-180. DOI: https://doi.org/10.1353/scp.2008.0008
- Boyce, B. R., & Banning, C. S. (1979). Data accuracy in citation studies. *Reference Quarterly*, 18(4), 349-350.
- Cobb, C. L., Crumly, B., Montero-Zamora, P., Schwartz, S.J. & Martínez, C. R. Jr. (2024). The problem of miscitation in psychological science: Righting the ship. *American Psychologist*, 79(2), 299–311. DOI: https://doi.org/10.1037/amp0001138
- Davies, K. (2012). Reference accuracy in library and information science journals. *Aslib Proceedings: New Information Perspectives*, 64(4), 373-387. DOI: 10.1108/00012531211244734
- De Lacey, G., Record, C., & Wade, J. (1985). How accurate are quotations and references in medical journals?. *British Medical Journal*, 291(6499), 884-886. Retrieved from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1416756/pdf/bmjcred00467-0046.pdf
- Dewey, S.H. & Zopfi-Jordan, D. (2023). Mitigating citation errors in the interlibrary loan system. *Law Library Journal*, 115(4), 407-434.
- Doms, C.A. (1989). A survey of reference accuracy in five National dental journals. *Journal of Dental Research*, 68(3), 442-444.
- Faunce, G.J. & Job, R.F.S. (2001). The accuracy of reference lists in five experimental psychology journals. *American Psychologist*, *56*(10), 829-830. DOI: 10.1037//0003-066X.56.10.829
- Fenton, J., Brazier, H., Souza, A., Hughes, J., & McShane, D. (2000). The accuracy of citation and quotation in otolaryngology/head and neck surgery journals. *Clinical Otolaryngology*, 25(1), 40-44. DOI: 10.1046/j.1365-2273.2000.00322.x
- Garfield, E. (1981). What's in a surname? Essays of an Information Scientist (1981-82), 1(5), 26-30.
- Garfield, E. (1990). Journal editors awaken to the impact of citation errors. How we control them at ISI. *Current Comments*, 13(41), 367-375. Retrieved from http://www.garfield.library.upenn.edu/essays/v13p367y1990.pdf
- Garfield, E. (1991). Bibliographic negligence: A serious transgression. Scientist, 5(23), 14.
- Goodrich, J.E. & Roland, C.G. (1977). Accuracy of published medical reference citations. *Journal of Technical Writing and Communication*, 7(1), 15-19. DOI: 10.2190/2B2A-F34L-0TXG-WNQ7.
- Gupta, V. K. (2017a). Accuracy of references in two Indian library and information science journals. *Annals of Library and Information Studies*, 64(3), 181-189.
- Gupta, V. K. (2017b). Quality control through peer review process in scholarly communication: Review of related literature. *IRA- International Journal of Management and Social Sciences, 8*(3), 248-255. DOI: http://dx.doi.org/10.21013/jmss.v8.n3.p3
- Gupta, V. K. (2019). Accuracy of references in Malaysian Journal of Library and Information Science. *Journal of Indian Library Association*, 55(2), 27-41.
- Gupta, V. K. (2020). Accuracy of references in the doctoral theses in library and information science submitted to Banasthali Vidyapith. *Annals of Library and Information Studies*, 67(3), 183-196. Available at: http://op.niscair.res.in/index.php/ALIS/article/view/37856/465478110
- Gupta, V. K. (2021a). Flawed citations in Indian scientometric literature: A case study. *Library Philosophy and Practice (e-Journal)*, Article No. 5033. Available at: https://digitalcommons.unl.edu/libphilprac/5033
- Gupta, V. K. (2021b). Missing and defective identity of authors cited in Library and Information Science Literature. *Library Philosophy and Practice (e-Journal)*, Article No. 5699. Available at: https://digitalcommons.unl.edu/libphilprac/5699
- Harinarayana, N.S., Chikkamanju & Raju, N.V. (2011). A study of citation accuracy in psychology theses submitted to the University of Mysore. *Annals of Library and Information Studies*, 58(4), 326-334.
- Harper, J.A. (2001). Citation inaccuracy in a scientific journal. *Science & Technology Libraries*, 20(4), 39-44. DOI: 10.1300/J122v20n04 05
- Hernon, P. & Metoyer-Duran, C. (1992). Literature reviews and inaccurate referencing: An exploratory study of academic librarians. *College & Research Libraries*, 53(6), 499-512.

- Homeier, D., Adams, M., Lynch, T. & Cognetti, D.J. (2024). Inaccurate citations are prevalent within orthopaedic sports medicine literature. *Arthroscopy, Sports Medicine, and Rehabilitation, 6*(1), 1-5. DOI: https://doi.org/10.1016/j.asmr.2023.100873
- Karabulut, N. (2017). Inaccurate citations in biomedical journalism: Effect on the impact factor of the American Journal of Roentgenology. *American Journal of Roentgenology*, 208(3), 472-474.
- Lok, C.K.W., Chan, M.T.V., & Martinson, I.M. (2001). Risk factors for citation errors in peer-reviewed nursing journals. *Journal of Advanced Nursing*, 34(2), 223-229.
- Logan, S.W. (2022). Reference accuracy in Research Quarterly for Exercise and Sport: A 30-year follow-up to Stull et al. (1991). *Research Quarterly Exercise and Sport*, 93(2), 401-411.
- Logan, S.W., Hussong-Christian, U., Case, L. & Noregaard, S. (2024). Reference accuracy of primary studies about reference accuracy: A descriptive study. *Journal of Librarianship and Information Science*, 57(2), 516-523. DOI: https://doi.org/10.1177/09610006231224437
- Logan, S. W. (2025). Reference accuracy of articles published in volume 11 (2023) of the Journal of Motor Learning and Development. *Journal of Motor Learning and Development*, 13(1), 11-16. DOI: https://doi.org/10.1123/jmld.2024-0074
- Lopresti, R. (2010). Citation accuracy in environmental science journals. Scientometrics, 85(3), 647-655.
- Lukic, I.K., Lukic, A., Gluncic, V., Katavic, V., Vucenik, V., & Marusic, A. (2004). Citation and quotation accuracy in three anatomy journals. *Clinical Anatomy*, 17(7), 534-539. DOI: 10.1002/ca.10255
- Luo, M., Li, C.C., Molina, D., Andersen, C.R. & Panchbhavi, V.K. (2013). Accuracy of citation and quotation in foot and ankle surgery journals. *Foot & Ankle International*, *34*(7), 949-955. DOI: https://doi.org/10.1177/1071100713475354
- Nicoll, L.H., Oermann, M.H., Carter-Templeton, H., Wrigley, J. & Owens J.K. (2022). Exploring the accuracy of cited references in a selected data set of nursing journal articles. *Advances in Nursing Science*, 45(3), 209-217.
- O'Connor, L.G. & Kristof, C. (2001). Verify your citations: Accuracy of reference citations in twelve business and economics journals. *Journal of Business and Finance Librarianship*, 6(4), 23-40. DOI: http://dx.doi.org/10.1300/J109v06n04 03
- Pandit, I. (1993). Citation errors in library literature: A study of five library science journals. *Library & Information Science Research*, 15(2), 185-198.
- Pavlovic, V., Weissgerber, T., Stanisavljevic, D., Pekmezovic, T., Milicevic, O., Lazovic, J.M. et al. (2021). How accurate are citations of frequently cited papers in biomedical literature? *Clinical Science* (London), 135(5), 671-681. DOI: 10.1042/CS20201573
- Pope, N.N. (1992). Accuracy of references in ten library science journals. *Reference Quarterly*, 32(2), 240-243. Retrieved from: http://www.istor.org/stable/25829256
- Raja, U.Y. & Cooper, J.G. (2006). How accurate are the references in Emergency Medical Journal? *Emergency Medical Journal*, 23(8), 625-626.
- Sauvayre, R. (2022). Misreferencing practice of scientists: Inside researchers' sociological and bibliometric profile. *Social Epistemology*, 36(6), 719-730. DOI: https://doi.org/10.1080/02691728.2021.2022807
- Shah, J.N. (2022). Appropriate citation and accuracy of references: read full text before citing. *Journal of Patan Academy of Health Sciences*, 9(1), 1-4. DOI: 10.3126/jpahs.v9i1.45539
- Siebers, R. (2000). The accuracy of references of three allergy journals. *The Journal of Allergy and Clinical Immunology*, 105(4), 837-838. DOI: 10.1067/mai.2000.104935
- Siebers, R. (2001). How accurate are references in clinical chemistry? Clinical Chemistry, 47(3), 606-607.
- Spivey, C.A. & Wilks, S.E. (2004). Reference list accuracy in social work journals. *Research on Social Work Practice*, 14(4), 281-286. DOI: 10.1177/1049731503262131
- Todd, P.A. & Ladle, R.J. (2008). Citations: Poor practices by authors reduce their value. *Nature*, 451(7176), 244.
- Todd, P.A., Guest, J., Lu, J., & Chou, L. (2010). One in four citations in marine biology papers is inappropriate. *Marine Ecology Progress Series*, 408, 299-303. DOI: 10.3354/meps08587

Wilks, S. E., Geiger, J. R., Bates, S. M. & Wright, A. L. (2017). Reference accuracy among research articles published in research on Social Work Practice. *Research on Social Work Practice*, *27*(7), 813-817. DOI: 10.1177/1049731515626802

Annexure-1: Referencing errors in citing the author's name

| Name of the journal | Name of the author(s) as cited in the journal                                                 | Missing author(s) /initial(s) /correct spellings with punctuations                             | Type of errors                        |
|---------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|
| IGR                 | Peccerillo, A., and Taylor, A.R.                                                              | Peccerillo, A., and Taylor, S.R.                                                               | Wrong initial (minor error)           |
|                     | Li, X.H., Liu, Y., Li, Q.L., Guo, C.H., and Chamberlain, K.R.                                 | Li, XH., Liu, Y., Li, QL., Guo, CH., and Chamberlain, K.R.                                     | Punctuation<br>error (minor<br>error) |
|                     | Lee, C.T., Morton, D.M., Kistler, R.W., and Baird, A.K.                                       | Lee, C.T.A., Morton, D.M., Kistler, R.W., and Baird, A.K.                                      | Missing initial (minor error)         |
|                     | Han, S., Yang,Y., Bo, J., Zhang, G., and Wang, X.                                             | Han, S., Yang,Y., Bo, J., Zhang, G., Khomich, V.G., Huang, Y., Vang, Y., and Wang, X           | Missing three authors (major error)   |
|                     | Pei, F.P., Xu, W.L., Yang, D.B., Yu, Y., Meng, E., and Zhao, Q.G.                             | Pei, FP., Xu, WL., Yang, DB., Yu, Y., Meng, E., and Zhao, QG.                                  | Punctuation<br>error (minor<br>error) |
| MGS                 | Liu Y, Zhang ZL, Liu X, Xia WL, XH                                                            | Liu Y, Zhang ZL, Liu X, Wang L, Xia X                                                          | Wrong authors (major error)           |
|                     | Talebi H, Mueller U, Peeters LJM,<br>Otto A de Caritat P, Tolosana-<br>Delgado P              | Talebi H, Mueller U, Peeters LJM,<br>Otto A de Caritat P, Tolosana-Delgado<br>R                | Wrong initial (minor error)           |
|                     | Yang N, Zhang Z, Yang J, Hong Z,<br>Shi S                                                     | Yang N, Zhang Z, Yang J, Hong Z, Shi<br>J                                                      | Wrong initial (minor error)           |
|                     | Petitgas P, Renard D, Desassis N,<br>Huret M, Romagnan JB, Doray M,<br>Woillez M, Rivoirard J | Petitgas P, Renard D, Desassis N,<br>Huret M, Romagnan J-B, Doray M,<br>Woillez M, Rivoirard J | Punctuation<br>error (minor<br>error) |
| NZG                 | Blank HR                                                                                      | Blank HR Jr                                                                                    | Missing designation (minor error)     |
|                     | Craw D, MacKenzie DJ, Grieve P                                                                | Craw D, MacKenzie D, Grieve P                                                                  | Extra initial added (minor error)     |
|                     | Dilalos S, Alexopoulos J                                                                      | Dilalos S, Alexopoulos JD                                                                      | Missing initial (minor error)         |
| RJG                 | WN. Wu, Y.T. Yen, YJ. Hsu, YM. Wu, JY. Lin, and SK. Hsu                                       | WN. Wu, YT. Yen, YJ. Hsu, YM. Wu, JY. Lin, and SK. Hsu                                         | Punctuation<br>error (minor<br>error) |
|                     | C. Li, Ya. Wu and X. Hou                                                                      | C. Li, Y. Wu and X. Hou                                                                        | Wrong initial (minor error)           |

(\* corrected name is underlined)

Annexure-2: Referencing errors in article title

| Name of the journal | Title as cited in the journal                                                                                                                                             | Correct title                                                                                                                                                           | Type of errors                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| IGR                 | Deformation and metamorphism at the eastern border of Tenda Massif (NE Corsica)                                                                                           | Deformation and metamorphism at<br>the eastern border of the Tenda<br>Massif (NE Corsica)                                                                               | Word missing (minor error)              |
|                     | Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for Ultra-deep origin and hydroxyl defects in mantle garnets | Sodic amphibole exsolutions in garnet from garnet-peridotite, North Qaidam UHPM belt, NW China: Implications for Ultradeeporigin and hydroxyl defects in mantle garnets | Wrong spelling<br>(minor error)         |
|                     | The Cretaceous Songliao Basin<br>Volcanogenic Succession,<br>Sedimentary Sequence and Tectonic<br>Evolution, NE China                                                     | The Cretaceous Songliao Basin: Volcanogenic Succession, Sedimentary Sequence and Tectonic Evolution, NE China                                                           | Punctuation<br>missing (minor<br>error) |
| MGS                 | The third porosity System Understanding the role of hidden pore systems in well-test interpretation in carbonates                                                         | The third porosity System:<br>Understanding the role of hidden<br>pore systems in well-test<br>interpretation in carbonates                                             | Punctuation<br>missing (minor<br>error) |
| NZG                 | Metamorphic discontinuities in orogenic belts: example of the garnet-biotite-albite zone in the Otago schist,                                                             | Metamorphic discontinuities in orogenic belts: example of the garnet-biotite-albite zone in the Otago schist, New Zealand                                               | Word missing (major error)              |
|                     | Ontogenetic development of the nervus terminalis in toothed whale                                                                                                         | Ontogenetic development of the<br>nervus terminalis in toothed whale:<br>Evidence for its non-olfactory<br>nature                                                       | Missing subtitle (major error)          |
|                     | Summary of the age and Palaeoecology of the Miocene Manherikia Group, Central Otago, New Zealand                                                                          | Summary of the age and<br>Paleoecology of the Miocene<br>Manherikia Group, Central Otago,<br>New Zealand                                                                | Wrong spelling<br>(minor error)         |
| RJG                 | Supplementary Modification and introduction of code number to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973;1975)                                     | Supplementary Modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973;1975)                                  | Wrong spelling<br>(minor error)         |
|                     | USGS "did you feel it?" science and lessons from 20 years of citizen science based macroseismology                                                                        | USGS "did you feel it?" science<br>and lessons from 20 years of citizen<br>science-based macroseismology                                                                | Punctuation<br>missing (minor<br>error) |
|                     | The tailings damp failure of 5<br>November 2015 in SE Brazil and its<br>preceding seismic sequence                                                                        | The tailings dam failure of 5<br>November 2015 in SE Brazil and<br>its preceding seismic sequence                                                                       | Wrong spelling (minor error)            |
|                     | Early Paleozoic tectonics of Asia: towards a fullplate model                                                                                                              | Early Paleozoic tectonics of Asia: towards a full-plate model                                                                                                           | Punctuation<br>missing (minor<br>error) |
|                     | Flexible paleoclimate age-depth models using an 601autoregressive gamma process                                                                                           | Flexible paleoclimate age-depth models using an autoregressive gamma process                                                                                            | Extra addition (minor error)            |

(\*corrected part is underlined)

Annexure-3: Referencing errors in journals name in IGR, MGS, NZJ and RJP

| Name of<br>the<br>journal | Journal name cited in the journal       | Correct journal name                    | Type of errors                         |
|---------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|
| IGR                       | Geochemistry: Geophysics,<br>Geosystems | Geochemistry, Geophysics,<br>Geosystems | Punctuation error (minor error)        |
| MGS                       | J Int Assoc Math Geol                   | Math Geol                               | Wrong journal<br>name (major<br>error) |
|                           | Geol Soci                               | Geol. Soc.                              | Abbreviation error (minor error)       |
|                           | Aid Geomet Design                       | Aided Geom. Des.                        | Abbreviation error (minor error)       |
|                           | J Volcanol Geoth Res                    | J Volcanol Geotherm Res                 | Abbreviation error (minor error)       |
|                           | Pattern Recogn Lett                     | Pattern Recognit. Lett.                 | Abbreviation error (minor error)       |
|                           | Data Min Knowl Disc                     | Data Min Knowl Discov                   | Abbreviation error (minor error)       |
| RJG                       | Stratigraphy Geol. Correlation          | Stratigr. Geol. Correl.                 | Abbreviation error (minor error)       |
|                           | Mar. Micropaleontology                  | Mar. Micropaleontol.                    | Abbreviation error (minor error)       |
|                           | Quatern. Int.                           | Quat. Int.                              | Abbreviation error (minor error)       |
|                           | Geophys. J.                             | Geophys. J. Int.                        | Wrong journal<br>name (major<br>error) |

(\*corrected part is underlined)