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  ABSTRACT 
The main purpose of the article is a comparative study of the existence of natural waves in an infinite viscoelastic 
waveguide with a sectoral cross section and a plate (based on the hypotheses of Kirchhoff and Timoshenko) with 
a variable cross section (in the form of a wedge) depending on various parameters of the object (wave number 
and geometric parameters). Using the Navier equations and the physical relation, a system of six differential 
equations in partial derivatives for a sector waveguide is obtained. After simple transformations, a system of 
differential equations with complex coefficients is obtained, which is further solved using the method of straight 
lines, which will allow using the software tool of the orthogonal sweep method with a combination of the Muller 
method on complex arithmetic in solving. Also, on the basis of the variational principle, a system of ordinary 
differential equations with complex coefficients is given. On the basis of numerical calculations, it has been 
established that the real parts of the phase velocity of propagation of the first mode are less from the Rayleigh 
wave velocity to 20%, on the segment   (the central angle in the wedge-shaped waveguide), and further 
asymptotically approaches the Rayleigh wave, which propagates in the viscoelastic half-plane. Similar results 
were obtained for a wedge-shaped plate according to the theory of plates by Kirchhoff and Timoshenko, in the 
entire wave range. The results on the dynamic theory of elasticity and the plate (based on the hypotheses of 
Kirchhoff and Timoshenko) differ by no more than 6% for wedge apex angles not exceeding 28°. In     calculation 
results differ up to 20 %.  It has been established that at small wedge angles, the simplified theory of Kirchhoff – 
Lyava  and Timoshenko can be used in the entire wave range. 
 
Key words: damped wave, viscoelastic cylinder, sectoral cross section, Navier equation, spectral boundary value 
problem, orthogonal sweep.

 
 
INTRODUCTION 
     Elastic waves have been studied for more than a hundred years, but work in this direction does not stop, which 
indicates both the undying interest in this problem and the lack of knowledge of the subject. In [1], a three-
dimensional problem of wave propagation in an elastic layer is considered. A characteristic equation is obtained 
for the phase velocity of symmetric and antisymmetric oscillations. The limiting case is considered: the 
wavelength is very large and very small compared to the layer thickness. 
 
The article [2] studied the propagation of shear waves in a two-layer medium in an antiplanar setting. We consider 
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the propagation of shear waves in a two-layer medium, when one layer is homogeneous and the other is 
inhomogeneous with exponential inhomogeneity. The dispersion equation has been studied. In monograph [3], 
the propagation of natural waves in extended waveguides is studied and dispersion relations are constructed. The 
change in phase and group wave velocities as a function of wave numbers is analyzed. In [4], at the limiting values 
of the parameters, the lower modes of the roots of the Pochhammer-Cree dispersion equation were obtained. As 
a result, they obtained a relationship between the phase velocity and the wave number. And in [5], these results 
were confirmed. They derive the dispersion equation from the system of differential equations of elasticity theory. 
The rod equation [6] was used to study the propagation of waves in a loaded reinforcement. In [7], with the help 
of a correction factor, dispersion curves are given for the phase and group velocities of a wave propagating in 
round rods. In the article [8], the Pochhammer-Cree dispersion equation was studied in a wide frequency range. 
The phase velocities of a one-dimensional wave were studied in [9] with and without dispersion. It was concluded 
in [9] that a one-dimensional problem (although with dispersion taken into account) will not characterize all 
dynamic processes occurring in a rod in a spatial formulation. 
In the article [10], differential equations of longitudinal free vibrations of a rod were obtained based on the 
variational principle of Hamilton. And also, in the article [11] the results of the above mentioned works were 
compared with the results obtained on the basis of the Pochhammer - Cree model. They concluded that the Bishop 
model quite accurately describes the dispersion relation of a rod with a circular cross section, but the dispersion 
curve asymptotically tends to the transverse wave velocity, while in the Pochhammer-Cree model, the asymptote 
is the Rayleigh wave velocity. In [12], the propagation of longitudinal waves in a rod in an axisymmetric 
formulation was studied and a characteristic equation was obtained. 
In [13, 14, 15], the solution of the Lame equation was obtained using the Green's expansion, i.e., displacements 
are constructed through the potentials of longitudinal and transverse waves. It is emphasized that according to the 
representation completeness theorem (Green's expansion), any wave process in an infinite elastic body can be 
described as a superposition of wave motions with velocities of longitudinal and transverse waves. In [16], for the 
first time, for plates, a theory of Rayleigh wave propagation based on Kirchhoff's hypotheses was constructed, an 
analogue of the Rayleigh wave in the theory of bending vibrations of a plate. The plate was considered under 
conditions of a plane stress state. Since the problems of plane deformation of a cylindrical body and the plane 
stress state of a plate are mathematically identical. Then a planar wave of the Rayleigh type must exist in the plate, 
the velocity of which is determined from the same equation as the velocity of the Rayleigh wave, with the change 
of the Lamé elastic constant   to the corresponding constant for the plate. This wave is called the Rayleigh-type 
bending wave or the Konenkov wave [17]. In [18], infinitely long plates or strips of variable thickness were studied 
taking into account the viscoelastic properties of materials.  
 Investigation of eigenwaves in a cylindrical viscoelastic waveguide with a sector cross section is an 
urgent task. Therefore, the present work is devoted to the study of the propagation of natural waves in a cylindrical 
viscoelastic waveguide with a sectoral cross section.   
 
Methods 
Statement of the problem and basic relations 
 In this work, propagation of natural waves in an infinite viscoelastic cylinder with a sector cross section 
(Fig. 1) is considered. The waveguide has a collinear axis directed along the axis Оz. The problem of analyzing 
the spectra of normal elastic waves along the considered waveguide is formulated using the relations of a spatial 
linear mathematical model of the dynamic stress-strain state of deformable bodies, taking into account viscoelastic 
properties, in a cylindrical coordinate system.   
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Figure 1. Calculation scheme of an infinite viscoelastic cylinder with sectoral cross section. 

. 
 

 
Figure 2. Calculation scheme for a plate of variable thickness. 

 
These relations are formulated for the projections of the dimensionless vector of dynamic elastic wave 

displacements on the axes of the cylindrical coordinate system  , ,r zu u u , as well as for the dimensionless 

characteristics of the stress-strain state of the object under consideration on the main areas of the cylindrical 

coordinate system  , , , , ,rr r zz rz z        .  The basic equations of motion of an elastic medium 

occupying region B are given by three groups of relations [19]:  
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 Here ik - stress tensor elements, ik - strain tensor elements,  - bulk deformation, ~  and ~  - complex 

quantities: 
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where    Poisson's ratio, taken constant;   t – arbitrary function of time;    ,R t R t    – relaxation 

nuclei; 0E – instant modulus of elasticity. 

We take the integral terms in (2) small. Then the function     Ri tf t t e   , where  t - slowly changing 

function of time, R - real constant. Next, applying the freezing procedure [16], we replace relations (2) with 

approximate ones of the form  

                                        1 С S
R REf E i f       ,                                        (3) 

where      



0

cos  dR RR
C ,      




0

sin  dR RR
S - respectively, the cosine and sine 

Fourier images of the material relaxation kernel. As an example of a viscoelastic material, we take a three-

parametric relaxation kernel:     1/ tAetR t
. 

Relations (1), (2), (3) after identical algebraic transformations are reduced to a system of six differential equations 
resolved with respect to the first derivative with respect to the radial coordinate 
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Boundary conditions for φ , for an arbitrary sector angle in the case of a free side surface, should be written as: 

               ;
2

,
2

00          0 zr   ,                              (5) 

the boundary conditions along the radius are set in the form: 

                               0 0, : 0rz rr rr r R        ,                                           (6)                

where φ0  - angle at the apex of the wedge. Harmonic waves propagating 
along the axis  z, are the solutions of the boundary value problem (1), (4), (5) ,(6), periodic in  z and by time. 
 The periodicity conditions make it possible to eliminate the dependence of the main unknowns on time 
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and the axial coordinate z using the following substitution 
variables: 
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The boundary conditions are transformed similarly (6): 
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The boundary value problem for the system of partial differential equations (7), (8), (10) can be reduced to the 
boundary value problem for the system of ordinary differential equations using the method of lines, which will 
allow using the software of the orthogonal sweep method in the solution. 
The method of lines refers to semi-discrete methods. Semi-discrete methods are based on the following idea: to 
discretize a partial differential equation not completely, not in all independent variables, but only partially. For 
example, one can discretize only with respect to the variable  , while leaving r as a continuous variable.  The 

essence of the method of lines is that the rectangular domain of the function of the main unknowns is covered 
with lines parallel to the axis r and evenly spaced from each other. Numerical values in the given areas are searched 
only on these lines, and the directional derivative φ, is replaced by approximate finite differences.  
 Note that the choice of boundary conditions on the slot faces in the form (9) was determined, first of all, 
by the possibility of separating the variables over the coordinates   r  and   φ, which greatly simplifies the solution 
of the original problem. According to the method of lines, the rectangular domain of the function of the main 
unknowns is covered with lines parallel to the axis r and evenly spaced from each other. The solution is sought 
only on these lines, and the directional derivative φ, is replaced by approximate finite differences. Used 
approximating formulas of the second order for the first and second derivatives have the form: 
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where i changes from 0 to   1,01  NiN ,        - projection of an unknown function onto a straight line with 

number i;  Δ – splitting step by coordinate φ. 
 As a result of discretization, the vector of main unknowns with a total dimension of 6N can be written 
as: 
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Central differences (12) are used for internal straight lines (1 <i<N), the left and right differences make it possible 
to take into account the boundary conditions for φ. In the first case, the derivative φ in the right parts of the system 
of equations (8) is expressed by the formulas: 
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Boundary conditions at 
2

0   is taken into account in the equations corresponding to the lines i = I.  For the 

main unknowns not included in the boundary conditions, wi , vi , ui  the right differences of the first relation are 
used (11): 
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For a variable    conditions (10) are taken into account using the central 
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The first and third conditions (10) are taken into account when approximating the derivatives of the function    В 

to φ,   

     





  2222 2213, 22021

ckuwvv
r
b

a r   

      2222 213202,1 kvruuBBBB                   (17) 

 
The derivatives for the straight line with the number i =N,  taking into account the boundary conditions at 

2
0  .  The only difference is the replacement of right finite differences by left ones: 

i=N : 

    243 21, NNNi wwww 
 

   23, Ni vv   

    211, iii UUU 
 

   23, Ni uu 
                                            (18) 

    21, N   

 
        

  








  

 2
22 1

1121,
N

NNNNNi ckuwvv
r

b
a

 
 

  


 
 2

22 1
12,

N
NNNi

B
kvruuB 

 

The number of straight lines can be halved if we use the conditions of antisymmetry of the transverse vibrations 

of the plate at  0 : 

                                  0 uw   .                                               (19) 

The corresponding difference relations taking into account conditions (19) can be written as: 

i =N:      21, Ni ww          21, Ni uu   

   23, Ni vv                                                              (20) 

       243 21, NNNi    

  








  

 2
22 1

1121,
N

NNNNNi ckuwvv
r
b

a
 

 

   ,

2

1, 2 iNNi kvruuB   . 

 
The resolving system of ordinary differential equations, according to 

       211, iii  
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(19), has the form: 
 

  ;, Rvwkuakw iiiii    

  Rwvv iiii  ,                                                               (21) 

izii kwu    

    ziiiiii krwRvww
i

  




  ,,

2 2  

    ;2,

2

iiziiizi wkukrBu   
 

   iiiiii kvRukrv    ,,
2 2 . 

 
In equations (21), the expressions for the derivatives wiφ , viφ , uiφ ,σi,φ  β i,φ τ i,φ are chosen from relations (19) - (21) 
depending on the boundary conditions along the coordinate  φ. The free surface conditions, which are equivalent 
to conditions (19) and together with Eqs. (21) form a boundary value problem, are obtained in the form 

                    ,0iB      ,0i     ,0    (i=1,N)         .             (22)                                                                         

Thus, the original spectral problem (21), (22) with the help of discretization with respect to the coordinate φ , by 
the method of lines, is reduced to a canonical problem, for the solution of which we apply the previously used 
method of orthogonal sweep. 
The system of ordinary differential equations of the first order for a wedge-shaped plate, resolved with respect to 
derivatives, has the form [15]:  

 

 





































;
6

1

;
3

;
16

;

1

2

1

4

3

2

4

2

2
3

43

1

2

332

21

zГ
C

hzк
hv

zvкz

zк
Гh

zz

zvкz
h

v
z

zz

k

s

k



 (23) 

The boundary conditions for this system can be written in the following form: 
а) free left edge of the record: 
z3(0) = z4(0) = 0     (24) 
b) free right edge of the plate: 
z3(l1) = z4(l1) = 0     (25) 
c) pinched right edge of the record: 
z1(l1) = z2(l1) = 0     (26) 

Thus, the spectral boundary value problem (23-26) has been formed with respect to the parameter  , 
describing the propagation of bending plane edge waves in a Kirchhoff plate. 
When the Timoshenko hypothesis is fulfilled, then the system of partial differential equations (23) takes the 
following form: 
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 

 
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
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
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
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2
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h

z
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лл

л

л

n









 (27) 

The boundary conditions for this system can be written in the following form: 
a) the free left edge of the plate: 
z4 =z5 = z6 =0,  x1 = 0;    (28) 
b) free right edge of the plate: 
z4 =z5 = z6 =0,  x1 = l1;     (29) 
c) pinched right edge of the record: 
z1 =z2 = z3 =0,  x1 = l1;     (30) 

 Thus, the spectral boundary value problem (27-30) has been formulated with respect to the parameter , 
describing the propagation of bending plane edge waves in the Timoshenko plate. 
 
 Results and Analysis  
 
 As an example of a viscoelastic material, we take a three-parametric relaxation kernel: 

    


 1/ tAetRtR t . The dimensionless quantities are chosen so that the shear rate Сs , density 

ρ and outer radius  R  have unit values, Poisson's ratio υ = 0,25 , and kernel parameters 

1,0;05,0;048,0  A  The calculations were carried out in dimensionless parameters. The 

change in the complex phase velocity 0 0 0R IC C iC   from corners m m  at different values of the 

instantaneous modulus of elasticity. The calculation results are shown in Fig.3 and Fig.4. 

Figure 3 shows the change in the real part of the complex phase velocity С0 to m  for different values of the 

instantaneous modulus of elasticity: ( 0 0 /R R RC C C  , RC - rayleigh ox speed) 1. Е=0.01;2. Е=0.05; 3.Е=0.1; 

4.Е=0.8, where 0 / pE E E ,  pE - modulus of elasticity of steel). From Fig. 3 it can be seen that with an increase 

m  the phase velocities increase and asymptotically approach the Rayleigh wave. Figure 4 shows the change in 

the imaginary part of the complex phase velocity from m at different values of the instantaneous modulus of 

elasticity 

( 0 0 /R R RC C C  , RC - rayleigh ox speed): 1. Е=0.01;2. Е=0.05; 3.Е=0.1; 4.Е=0.8, where 0 / pE E E ,  pE - 

modulus of elasticity of steel).    
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Fig. 3. Dependence of the real part of the complex phase velocity on at different values of the instantaneous 
modulus of elasticity. 
 

 
     Fig. 4. Dependence of the imaginary part of the complex phase velocity on at different values of the 
instantaneous modulus of elasticity. 
 
For a Kirchhoff plate of variable thickness, we studied the first five modes with the lowest complex phase 

propagation velocities IR iCCC  , where RC - phase velocities propagate waves; IC - damping speed.  

Figure 5 shows the dispersion curves of the first mode depending on the thickness, which varies linearly. It is 
assumed here that both edges of the plate are free. Straight line I corresponds to a constant thickness h1=h2=0,1. 
In this case, the plate oscillates like a rod. Curve II - option h1=h2/2=0,05; curve III - option h1=h2/100=0,001, 
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curve IV- 0001,01000/21  hh  and 

.10,/109,6,/109,6 428

max

26

min

 мкЕмкE s   It is seen that at 9  damping speed 

increases depending on  к. Для  пластинки  постоянной  толщины  ГC  for a segment 7010 4  C  

decreases in a straight line. It can be seen that the dependence of the damping coefficient on the wave number 
starts from the wave number 3.6. With the entrainment of the wave number, the damping coefficient tends to the 
side of decrease.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Dispersion curves of the first mode 
I. h1=h2=0,1; II. h1=h2/2=0,05; III. h2/100 = 0,001; IV. h1=h2/1000=0,001 

 
 The calculation results obtained by equations (8)-(11) are compared with approximate equations obtained 
on the basis of the Kirchhoff and Timoshenko hypotheses (23)-(30). Based on the numerical results, the following 
relationship was obtained  

 0 s inRC С m  ,                                  (31) 

in mφ < 90°  (m = 1, 2, …,), which is given in [16,18]. The waves that appeared in the acute angle of the wedge 
were called wedge waves or Troyanovsky-Safarov waves. The damping decrements of these waves turned out to 
be small numbers, but they change rapidly, i.e. turned out to be nonmonotonic functions of the parameters of 
harmonic waves. 
When taking into account the viscosity С0 the velocities of these waves are reduced to 15%. As the opening angle 
decreases, the corresponding damping coefficients also decrease exponentially. For the damping factor, based on 
the numerical results, the following empirical relationship is proposed 
 

                               3 . 2
0 s i nm

I RC С e m   .                              (32) 

 Table 1 lists the limiting values of the real part of the phase velocity of the first edge mode as a function of the 
wedge angle. The phase velocities found within the framework of the above method for calculating a three-

CR 

0,27 

0,18 

0,09 

0 

I 

II 

III 

IV 

1 3 5 7 9 

K 
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dimensional wedge are given in columns 5–6 for various boundary conditions. Column 5 corresponds to the 
calculation variant with three internal straight lines (N = 3) and boundary conditions (11), column 6 corresponds 
to the boundary conditions: 

                                     

.0:0

;0:
2

0













zr

zr

uu
      .                   (32) 

Column 6 shows the results of calculations obtained by formula (31). 
Also, in columns 3 and 4, respectively, the limiting values of the real part of the phase velocity of the first edge 
mode, obtained in [20, 21] according to the theory of Kirchhoff and Timoshenko plates, are given. 
In accordance with the numerical results and the results given in Table 1, it can be concluded that the calculation 
options according to the Kirchhoff, Timoshenko and three-dimensional theory methods are consistent with each 
other within 7% for wedge angles with a thickness at the base h2 , not exceeding 0.5 ( wedge angle φ0 = 28°). Note 
that for the angle  φ = 90°  the limiting phase velocity was also calculated in the works [15],   where the value is 
given for it 0,901 (  = 0,25). Thus, in contrast to waveguides with a rectangular cross section, in wedge-shaped 

waveguides with a sufficiently small wedge angle, when analyzing the dispersion dependences of the first mode, 
it is permissible to use the Kirchhoff–Lyava plate theory. 
 
Table 1. Limiting values of the phase velocity of the first edge mode depending on the wedge angle 
 

R 

0   By 
Krichhoff 
hypothesis 

By 
Timoshenko's 
hypothesis  

By 
three-
dimensional 
theory, boundary 
conditions (11) 

By 
3D theory, 
boundary 
conditions 

According to 
the formula 
(3.36) 

0  RR  

0,2 100 0,2260 0,1862 0,1761 0,2542 0,1827 

0,3 150 0,3802 0,2964 0,2982 0,3082 0,2763 
0,5 280 0,5385 0,4329 0,4626 0,4755 0,4335 
0,7 400 0,7014 0,5535 0,5923 0,6059 0,5746 

1 600 1,0144 0,6718 0,7294 0,7414 0,7368 
2 900 2,8637 0,8441 0,8792 0,8949 0,9212 

 
 It turns out that for sufficiently small wedge angles, when analyzing the dispersion dependences of the 
first mode, it is permissible to use the theory of Kirchhoff plates, and the oscillation modes near an acute wedge 
angle are also satisfactorily described by the plate theory [15]. This phenomenon should be considered as a 
characteristic feature of the dynamic behavior of a variable thickness waveguide. In the case of a cylinder with a 
sectorial cross section, the first mode has a cut-off frequency, and the phase velocity tends to infinity. At large 
wave numbers, the limiting phase velocity of this mode also coincides with the velocity of the Rayleigh wave. On 
locking, the axial displacements are equal to zero and the oscillations of an infinite viscoelastic cylinder of a 
sectorial cross section occur in a flat deformed state. In the second mode at the cut-off frequency, only real and 
opinion parts of the axial displacement are observed, the circular and radial displacements are equal to zero. Unlike 
edge waves in a sharp wedge, viscoelastic waves in an infinite cylinder of a sector cross section do not have a 
limiting solution as the outer radius tends to infinity. 
 
Conclusion 
Based on the results of the research, the following conclusions were made:  
1. The results of calculations of the limiting velocity of propagation of the first mode in a wedge-shaped waveguide 
according to the theory of Kirchhoff plates and according to the dynamic theory of elasticity differ by no more 

than 6% , for angles whose wedge vertices do not exceed 28°. In  00 9028     results differ by up to 20%. 

At small wedge angles, the simplified theory of Kirchhoff and Timoshenko can be used in the entire wave range. 
2. Asymptotic dependences are obtained that describe the phase velocities of wedge-shaped waves (31) and (32), 
the so-called Troyanovsky-Safarov formulas. 
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3. Damping decrements turned out to be small numbers, but they change quickly, those. turned out to be 
nonmonotonic functions of the waveguide parameters. When taking into account the viscosity С0R drops to 15%. 
As the opening angle decreases, the corresponding damping coefficients also decrease exponentially. 
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