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ABSTRACT 
This paper reviews various methods of integration of AI and IoT technologies in renewable energy (RE) systems. 
The reason of the integration is to optimise the energy production, distribution and consumption. With this current 
reported work, we intended to study many AI applications, including machine learning (ML) and Deep Learning 
(DL). The work also highlights the potential techniques to enhance the efficacy, reliability and sustainably of RE 
energy sources. The various challenges associated with this integration are also studied here. This work analyses 
the current research and industry trends, which further is useful in providing insights in the AI driven future for 
RE energy solutions. The RE sources that are focused here are solar, wind and its energy management. Integration 
of AI into this domain will enhance the modelling and other process such as RE generation, grid management and 
distribution of energy. Further, it is noticed that the integration of IoT will help in optimising the consumption of 
energy which is the need of the hour. This will lead in the reduction of electricity bills in household and 
commercial places. Additionally, when AI and IoT are used in conjunction, the resilience of power systems us 
enhanced. 

 
 
Introduction 
Energy is a vital part of contemporary civilisation, driving growth in the economy, facilitating growth in society, 
and powering technical developments [1]. The wide variety of energy uses, from manufacturing and transport to 
domestic power usage, indicates its ubiquitous effect throughout several industries [2]. Nonetheless, rising 
worldwide energy consumption, along with the urgent need to prevent global warming and pollution, has fuelled 
the search for renewable energy alternatives. This necessity has fuelled research into alternate sources of energy 
[3], efficiency improvements, and novel systems for managing energy to guarantee mankind's long-term viability 
[4]. The inexorable development of population, urbanisation, and industrialisation has significantly risen the use 
of energy (Khan, 2024), putting enormous demand on limited fossil fuel supplies and amplifying greenhouse gas 
pollutants, resulting in negative climatic effects [5]. To solve these difficulties, attention has switched to sources 
of clean energy like wind [6] hydroelectricity, solar energy [7] and geothermal electricity [8], which provide more 
environmentally friendly and environmentally friendly alternatives [9]. In addition, boosting efficiency in 
numerous industries is now critical to minimising unused energy and emissions of greenhouse gases [10]. 
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Incorporating power-efficient technology, implementing Energy Management Systems (EMS), and encouraging 
lifestyle modifications are all critical stages towards reaching sustainable energy use habits. In the pursuit of 
Sustainable Energy Solutions (SES), the incorporation of sophisticated technology, notably Artificial Intelligence 
(AI), has been recognised as a possible path for revolutionising energy systems. AI is a collection of approaches 
that allow smarter choices and better EMS, include machine learning, optimisation computations, and data 
analytics. By using AI, electrical networks may improve grid activities, optimise the flow of energy, and enable 
demand-side response systems. AI technologies can analyse large volumes of energy data, detect usage trends, 
and generate accurate forecasts, allowing energy regulators, network managers, and customers to arrive at more 
educated decisions as shown in Figure 1 [10]. Adopting AI in the energy sector has the ability to generate huge 
advantages in the areas of energy effectiveness, reduced expenses, improved reliability of the grid, and the 
incorporation of renewable energy (RE) sources, moving humanity forward an environmentally friendly and 
lucrative future [4].  The focus of this paper is to investigate the interface between AI and RE, emphasising the 
ability of AI to transform how humans manufacture, share, and use energies. AI has the ability to improve energy 
usage, decrease junk, and encourage sustainable behaviours by assessing massive volumes of information, 
optimising structures, and allowing smart choices to be made. This paper covers a variety of ideas and possibilities 
for using artificial intelligence to solve energy concerns while contributing to a healthier, greener tomorrow [11]. 
 

 
Figure 1: Stages in the creation of modelling and optimisation resources for energy forecasting. 

[10]. 
 

1. AI, ML, DL, and Sustainable Development Goals (SDGs) 
AI and DL are novel technologies with great promise to help accomplish the Sustainable Development Goals 
(SDGs) [11-12]. Such technologies are fast evolving and have had significant implications in a variety of decision-
making sectors, like medical care, commerce, farming, schooling, and banking.  A thorough review of the 
influence of AI on every one of the 17 goals and 169 objectives of the 2030 Agenda for Sustainable Development 
(SD) revealed that AI might help accomplish 128 goals in all SDGs as shown in Figure 2.  
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Figure 2: SDG goals. [11]]. 

 
Yet, it has the potential to impede 58 targets, highlighting the importance of using these innovations with caution 
and ethics. AI has transformed areas such as farming, schooling, and banking as a component of Industry 4.0, 
helping to reduce poverty and boost economic development, especially in developing countries. In education, AI 
and DL have showed great potential in improving the learning processes and results. For example, the introduction 
of AI technologies such as ChatGPT has prompted a rethinking of established instructional assessment methods 
in higher learning. In addition, the use of DL methodologies has been shown to improve math skills and practical 
thinking in students at high schools. Particularly, in the context of linguistic acquisition, the importance of 
attentive listening, an often-overlooked ability, has been highlighted. Active listening is being shown to have a 
significant influence on numerous aspects of how languages are learnt, particularly phonetics, morphology, and 
pragmatics. Furthermore, the use of deep learning technology on physical education has allowed for continuous 
tracking and evaluation of students' activity movements and heart rates, providing important information into the 
efficacy of instructional strategies. These breakthroughs illustrate AI and deep learning's transformational 
capability of altering ways of teaching and improving the results of learning. In medical settings, AI has helped 
battle the COVID-19 epidemic and improve the delivery of healthcare. criteria for communicating medical AI 
studies to physicians were created, including the clinical artificial intelligence research checklists and particular 
performance measurement criteria for presenting and evaluating research that incorporates AI elements. The 
significance of comprehensible DL algorithms in the setting of building ethical AI systems and solutions based 
on data in accordance with the SDGs was highlighted. Visibility and comprehension in algorithms are critical for 
ensuring their moral and ethical usage. Outside medicine, AI and DL have showed success in plant biology, with 
conversations about the role of exascale computation and explainable AI in meeting the SDGs. Reliable testing 
and daily-resolution climate correlations are required to fine-tune ideotype creation to particular surroundings at 
varied granularities [12].  In the field of environmentally friendly facilities the significance of 3D concrete printing 
(3DCP) and AI-supported Digital Twin (DT) uses for fulfilling the relevant UN SDGs have been investigated. 
The subsequent studies will focus on developing a standardised theoretical structure for exploiting AI-supported 
DT associations.  The effects of AI on the SDGs are being examined, yielding a few important insights for ESG 
(the environment, community, economy) in the face of rapid technological and societal development. The 
environmentally friendly, cultural and political policy perspectives on the implications of AI on sustainable 
development, with a focus on the advancement of the SDGs, were reinforced.  Yet, the uncontrolled deployment 
of AI technology jeopardises progress towards the SDGs. Big Tech's unethical past implies it can't be entrusted 
to function without oversight from regulators. Appropriate preventive regulatory strategies have been offered to 
reduce the possibility of AI harming the SDGs.  Recent breakthroughs have emphasised the relevance of the 
IoTs and ML in meeting the SDGs, with applications in health, energy, and cities. In addition, Deep Graph 
Learning (DGL) was offered as a solution to social difficulties and enhance people's everyday life. A knowledge 
graph-based DL system has also been created to scan SDG data for similarities in content efficiently.  Rapid gains 
in AI and DL have been seen in a variety of industries, but a comparison review shows key differences. For 
example, Ukraine's machine-building business, an important sector for the economic development of the nation, 
has been struggling with digitalization's problems and prospects, particularly in terms of creativity generation. 
This demonstrates a gap between AI's promise and the real deployment in certain businesses. While poultry 
farming is increasing, pollution, soil degradation, and resource rivalry remain significant issues in agriculture [13]. 
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The combination of big data and AI provides a chance to overcome these difficulties and optimise poultry farming.  
In addition, the oceans science industry has been using AI to recognise fish behaviour, which may have a 
substantial influence on fishing gear selectivity. Nevertheless, the data needed to evaluate fish interactions with 
fishing gear, particularly for temperate species, remains scarce. This highlights the requirement for larger datasets 
to adequately train DL systems [14]. All these applications are shown in Table 1. 
 

Table 1: Popular AI uses in the SDGs [14] 

SDG Goal Application 

No Poverty 
Forecasting impoverished zones, optimising welfare settlements, and 
enhancing services for microfinance  

Zero Hunger Harvest forecasting, identification of diseases, and precision farming. 

Good Health and Well-being Illness epidemic forecasting, telemedicine, and AI-assisted diagnostics.  

Quality Education Personalised schooling and AI-assisted assessment 

Gender Equality Evaluation of prejudicial views regarding gender data 

Clean Water and Sanitation 
Water safety tracking, shortage forecasting, and optimisation of distribution 
networks for water  

Decent Work and Economic 
Growth 

Increasing productivity, creating jobs, anticipating economic trends. 

Industry, Innovation, and 
Infrastructure 

Optimising operations, lowering expenses for upkeep, and proactive upkeep. 

Reduced Inequalities 
Recognising and anticipating societal disparity, using AI in policy 
development, and specific efforts to reduce inequity 

Climate Action 
Development and refinement of climate scenarios, changing the climate 
forecasting, and ecological footprint monitoring 

 
2. Role of AI, ML and DL in RE 

The RE business is undergoing a major transition, thanks primarily to advances in AI and DL. These innovations 
have brought in an exciting age of productivity and long-term viability piquing the curiosity of scholars and 
business operators equally. The breakthroughs and uses of AI and DL in the RE sector may be divided into many 
basic areas. As shown in Figure 3, such fields include a broad variety of activities, from energy prediction and 
identifying anomalies in electrical systems to more complicated tasks like RE system development and reliability 
of the grid. The interaction of AI and deep learning across various disciplines highlights their critical significance 
in altering the present and prospective environment of RE [14]. 
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Figure 3: The use of AI and DL in RE [14] 

 
3. Artificial Intelligence Applied to Variable Renewable Energy Systems 

Variable renewable energy (VRE) assets, especially those regulated by weather, are projected to play key roles in 
worldwide decarbonisation initiatives and the transition to RE [10]. To obtain the greatest efficiency in their 
utilisation, VRE devices must be deployed using optimisation approaches. AI approaches are extensively 
employed in VRE function prediction systems to predict, management, and make decisions. 
 

3.1. Solar Power Forecasting 
Several evaluations of the application of artificial intelligence for solar energy forecasting are currently 
undertaken. A precise projection of solar irradiance is critical for electrical system developers and utility 
companies to efficiently operate solar energy installations. Studies of Solar Power Forecasting (SPF) using 
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Photovoltaic (PV) systems give perspectives on present approaches and potential developments. Along with 
temperature, the amount of Global Horizontal Irradiance (GHI) has a significant impact on the effectiveness of 
the PV module. The effective architecture of a PV forecast systems is also reliant on aspects such as forecasts 
horizons, input choice using correlational analysis, preliminary and final processing of data, climate categorisation 
[11], networking optimisation, and estimation of uncertainty. GHI forecasting is typically carried out using two 
techniques: the first uses cloud photography with physical representations, and the subsequent methods use ML 
approaches for mathematical models of statistics [12-13]. Physical representations include weather conditions 
which are closely connected to sunlight production, which complicates the process owing to the unpredictability 
of the weather information utilised as input. On the other hand, statistical methods use historical data to establish 
a link between climatic factors and PV power output, which is then used to construct the energy forecasting 
framework Amongst the physical, mathematical, AI, ensemble, and hybrid algorithms, significant evaluations 
have revealed that ANNs, particularly convolutional neural networks (CNNs) [14-15], are particularly promise 
for short-term accuracy in forecasting and have received the greatest amount of attention. Research on ML 
approaches for solar energy forecasting predicted the adoption of SVM, regression trees, and RF in the next years 
owing to their positive outcomes in competition with ANN [16-17]. A proposal was made to employ ensemble 
predictions instead of straightforward ones. Figure 4 depicts the process of using AI for solar power predictions 
[10]. 
 

 
Figure 4: Diagram depicting the procedure of inputting parameters into AI algorithms to generate solar power 

estimates  [10] 
 

The calculation of prediction intervals (PIs) for spot predictions of solar power, as well as their enhancement, has 
recently attracted attention in the field of research. The application of optimisation approaches combined with 
ANNs may be utilised to customise PIs to various periods of the day instead of intervals. For example, the amount 
of electricity generated throughout the nighttime is nil, therefore the interval of PIs throughout those times can be 
smaller than throughout the daytime. Research on solar installations in Australia computed intervals for prediction 
utilising a multifaceted PSO combined with ANN [17-19]. The forecasting ranges were shown to be enhanced 
whenever actual solar energy was combined with climatic projections for short forecasting timeframes of 1-2 
hours, lowering ambiguity  [20]. The effects of varying weather conditions in various areas complicate the 
generalisation idea. Climate variables have been demonstrated to impact the efficacy of several machine learning 
systems for predicting solar irradiance. An instance is solar power projection research done in Kuwait's Shagaya 
Renewable Energy Park [21] an arid desert environment with mostly bright and clear skies. The usage of a regime-
dependent technique, in which k-means clustering was employed to separately identify regimes prior using an 
ANN, resulted in lower results. The prevalence of clear sky circumstances in Kuwait's weather patterns causes 
regime-identification algorithms to perform poorly, since there are few occurrences of overcast sky situations, and 
these methods may be well suitable for climatic regimens that have more diversified cloud situations [22]. Another 
example is the Nordic climate, that is distinguished by prolonged days in the summer and short winters days, 
considerable snowfall, and very varied weather patterns caused by rapidly changing clouds. Such cloud motions 
may have serious consequences for PV systems connected to low-voltage networks. In addition, the snow-caused 
soiling impact throughout the winter is a crucial consideration. The complicated optical properties of snow make 
it difficult to estimate the drop in power output caused by soiling. An assessment of ML techniques to forecasting 
revealed that the ML algorithm used was determined by the research area's weather circumstances. During steady 
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meteorological circumstances, the predictable part dominates the stochastic part, giving traditional ML methods 
like SVM and Random Forest (RF) feasible options. In uncertain meteorological situations, when the stochastic 
element is as significant as the predictable, standard algorithms frequently fail badly, and DL approaches are 
discovered to better reflect the intricate framework of the procedures.  
 
PV power production has an underlying issue of interruption, which reduces power system dependability. As a 
result, it is critical to develop trustworthy forecasting models for these systems. The work in [21] provides an 
organised and thorough summary of SPF strategies. The study highlighted five essential topics: learning 
approaches, analysing data, forecasting approach categorisation, significant variables influencing forecast 
efficiency, and forecast uncertainty estimate. It was discovered that supervised methods were utilised more often 
than unsupervised approaches, as well as that most forecasting algorithms included a data cleaning and 
normalisation procedure to decrease predicting mistakes. Various extracted feature approaches were utilised, 
notably the most popular techniques, Wavelet Decomposition and Empirical Mode Decomposition. Particularly 
interesting is the fact that many ML models that utilise optimum procedures have gotten increased attention, 
including PSO, GA, and WOA among the most frequently utilised optimum algorithm. Solar irradiation, velocity 
of the wind, and temperatures were found as the key parameters influencing predicting outcomes, and as such, 
they are the most widely utilised input variables. While predictive models containing uncertain data are 
particularly valuable for system performance, deterministic predictions are still the major approaches employed; 
nonetheless, the relevance of both of them is likely to rise. 
 
To assess the performance of the suggested deep approach, we conducted the following tests using gathered PV 
power datasets. The work in [22] was trained and evaluated via the Python 3.8-based Pytorch DL structure, which 
was combined with an AMD Ryzen 5 5600X CPU running at 3.70 GHz, an NVIDIA RTX 2070 GPU, and a 16 
GB RAM physical setup.  The suggested dual CNN-LSTM system forecasts PV power production, as seen in 
Figure 5. In step 1, power production data collected from a PV generator is divided into bright and overcast days 
data. In step 2, the acquired data is pre-processed to eliminate any noise components, such as values that are absent 
or anomalies, that might disrupt the procedure. The data is subsequently normalised for use as a network input. In 
step three, the CNN and LSTM are trained on the training data. Every model solely considers power production 
data. Step 4 involves testing and verifying a forecast model's output using different matrices. 
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Figure 5: Illustration for the suggested PV energy production forecasting system [22] 

 
 

3.2. Wind Power Forecasting (WPF) 
The instability and randomness in the speed of the wind is the fundamental contribution to the difficulty of 
generating a consistent supply of electricity from wind sources. Wind velocity is influenced by many 
meteorological variables like the direction of the wind and pressure in the atmosphere [23-26]. Power production 
in wind farms swings dramatically with variations in wind speed owing to the non-linear connection between 
power output and the speed of the wind. Improved WPF skills are thus crucial for windmill choice, generation 
organising, and grid reliability. A search for research revealed a variety of evaluations on the application of AI 
for WPF, with AI methodologies resulting in advancements in the method of forecasting [27-29].  
AI approaches such as ANNs and SVMs have been used for wind speed forecasting, particularly to provide point 
predictions. Because wind speed and power conversions are stochastic, uncertain predictions using a probabilistic 
structure are an important topic of study in WPF. PIs thus make use of to measure ambiguity using limits that are 
higher and lower on the anticipated quantity [30-32]. To improve accuracy, it is advised to employ several ANNs 
to anticipate wind speed, as well as suitable initial and final processing approaches. Ensemble approaches have 
also shown potential for future applications. 
 
The work in [9] offer a WPF system and a demand control technique. To participate in the weekly marketplace 
that governs both demand and supply in the Maine a microgrid a novel demand control system is suggested that 
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employs big based on data wind energy forecasts. A precise forecast is required for successful demand 
administration [33-34]. A DL algorithm called EDCNN is used to successfully estimate day-ahead hour windy 
output on Maine wind farm data. The numerical findings support the suggested algorithm's effectiveness in WPF. 
The suggested DSM algorithms typically spread the burden. The findings show that the suggested DSM approach 
effectively distributes the load, resulting in a load profile that is virtually equally distributed. Furthermore, the 
suggested DSM method significantly cuts costs related to consumption as shown in Figure 6. 
 

 
Figure 6: WPF model. [9] 

 
In [34] , the authors suggested a day-ahead WPF model using numerous ML methods, a precise small-area NWP 
approach, and hourly data series containing electricity generated by wind turbines which may be used on a national 
scale in Poland as well as in nations that have comparable climatological limitations. The authors showed that 
every model (RF, XGB, ANN, and DNN) generated predictions with comparable, excellent accuracy. The XGB 
method was particularly reliable for hourly projections, achieving a mean absolute percentage error (MAPE) of 
26.7%, whereas the ANN technique was most effective for daily totals of generated energy, with a MAPE of 
13.6%.  While the contrast of ML approaches wasn't the primary focus of this study, there were a disparity between 
results across times of year, hours of the day, and if the machine produces a lot or little actual energy. The 
outcomes, which are shown in a variety of error measurements, scatter plots, rows, and Taylor sketches, reveal 
that all of the offered approaches can estimate day-ahead wind output with excellent precision, despite modest 
score discrepancies. Two decision tree-based approaches (XGB and RF) outperformed ANN and DNN in 
circumstances with very high hourly production of energy. On the contrary hand, the findings of two neural 
network-based approaches (ANN and DNN) show decreased MAPE variation on an everyday and month scale. 
For all methodologies, June had the greatest MAPE and January had the least, whereas wintertime had the least 
variances and summer has the largest.  Special examples were investigated, including both highly precise 
production of energy projections and those with significant inaccuracies. In steady weather circumstances with 
medium winds, every model projected wind energy generation with excellent accuracy; however, when weather 
conditions are severely unstable or the wind velocity is exceptionally high, errors in forecasting will rise. With 
the suggested strategy, NWP prediction accuracy has a significant influence on scores. In a case study dated 
August 27, 2020, while the convection storm existed in a region of Poland with a large concentration of deployed 
wind turbines, the ALARO model's exaggeration of the wind speed led to a significant positive bias in energy 
output, particularly in the late hours. A study conducted on December 27, 2020, highlighted a circumstance in 
which the ALARO model accurately forecasted extremely high wind speeds in Poland; nevertheless, owing to 
acknowledged limits of ML models, extreme circumstances were often overestimated. Another cause could be 
that a few wind turbines were turned down owing to excessive energy output. The third category of case studies 
includes instances such as the one shown on February 5, 2020, featuring modest winds and steady situations, in 
which the suggested technique functions effectively. 
 

4. IoT in RE predication 
Fossil fuels are still the backbone of the energy industry and provide around 80% of the world's total energy 
output. There are many negative effects on the environment, human health, and the economy that result from 
burning fossil fuels too much. These include, but are not limited to, air pollution and global warming. Two major 
possibilities to reduce the negative consequences of fossil fuel consumption are energy conservation, which is 
using less power to provide the equivalent assistance, and the introduction of RE sources. Energy losses and 
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carbon dioxide emissions may be significantly mitigated with the help of the Internet of Things. At each point in 
the production chain, an IoT-based EMS may keep tabs on actual energy use and raise consciousness regarding 
energy efficiency [28]. 
 
In the 1990s, software for controlling and acquiring data from supervision controls as well as automating various 
other operations gained popularity in the electrical industry. In the early phases of the IoT, the power industry 
benefited from its ability to track and control machinery and procedures, which reduced the likelihood of output 
loss or outage. Outdated power plants primarily face problems with effectiveness, dependability, impact on the 
environment, and upkeep. High levels of electrical loss and instability may be caused by the electrical sector's old 
technology and issues with inadequate upkeep. Certain possessions are over 40 years old, very costly, and difficult 
to replace. The IoT has the potential to alleviate a number of these difficulties associated with energy plant 
administration. IoT sensors allow gadgets connected to the internet to detect anomalous drops in energy use or 
operational failures and notify the user when repair is required. The system's efficiency and dependability are 
enhanced, and servicing expenses are decreased, as a result of this. If a current electricity plant of the same scale 
were to be fitted on the IoT platform, it could save fifty million dollars over the lifespan, while a brand-new power 
plant centred on the IoT could save two hundred and thirty million dollars, according to [29]. Many nations are 
encouraging RESs as a means to lessen their reliance on fossil fuels and increase their use of alternative power 
sources. The electrical power system is faced with additional issues, referred to as "the intermittency challenge," 
when it comes to RE sources like wind and solar that are weather-related or unpredictable. Because of supply as 
well as demand being unpredictable and causing an imbalance on different time frames, it is very challenging for 
a power system with a significant percentage of VRE to correlate the production of energy with demand. More 
incorporation shares of renewable energy and lower GHG emissions may be achieved via the use of IoT systems, 
which provide an opportunity to balance production with consumption. This, in consequently, may reduce the 
obstacles associated with adopting VRE [30]. With the aid of ML algorithms, which are made possible by the IoT, 
it is possible to find the sweet spot between various consumption and supply methods, leading to more effective 
energy usage [31-34]. One example is the use of AI procedures to alternate thermal plant generation with internally 
power-producing sources, such as a collection of a smaller scale PV panels.  
 
Because of their vitality capacity and the advanced state of these methods, RE sources like wind and PVs are 
getting a lot of focus in the effort to lower releases of greenhouse gases and increases in the rate of adoption of 
RE sources. Electricity for self-consumers and rural areas may be sourced from these other sources of energy, 
which can replace more traditional methods. Devices might be set up to operate in either a grid-dependent or 
independent mode depending on the energy arrangement. The short-term nature of RE sources makes it difficult 
to incorporate a large number of them into the power system. Integrating distributed energy resources (DERs) and 
allowing for bidirectional energy and data movement in the electrical distribution network are made possible by 
the connectivity facilities becoming the fundamental component and primary foundation for potential intelligent 
grids. A graphical picture illustrating the grid's incorporation of hybrid renewable energy systems (HRES) could 
be seen in Figure 7. By bolstering various services like demand handling and demand-side leadership, HRES will 
offer energy companies with a plethora of benefits during times of high consumption. In order to integrate DERs 
with enhanced resiliency, dependability, and effectiveness, a foundational communications system is crucial [30].  
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Figure 7: HRES [30] 

 
Both the electrical network and the network's communication tiers make up the HRES, which is a cyber-physical 
system (Figure 7). The Transformers, the feeders, conversion devices, and electrical lines make up the electrical 
network layer, which also includes different forms of energy including battery packs, PVs, wind turbines, and 
diesel engines. An underpinning network of communications connecting nodes in the physical framework with 
actuators and sensor arrays is supported by the communications architecture level. The local control centre may 
then oversee the system's functioning thanks to this. Information and communication technologies (ICTs) are 
crucial to this incorporation because they facilitate the incorporation of HRES, which is necessary for the 
migration from the current, antiquated electrical system to a future-proof connected grid.  From various angles, a 
number of studies have examined HRES. These include EMS, response to demand, financial cost, greenhouse gas 
pollutants and impact on the environment, optimised origin size, communication system, IoT-enabled smart grid, 
HRES optimisation, modelling according to international norms, optimal setting, planning of capacity, and many 
more [38].  
 
A HEMS monitors and manages the house's consumption of energy as well as the scheduling and functioning of 
various devices [39]. With the help of demand-side management, that encourages people to move appliance usage 
away from peak hours and towards off-peak ones, one can achieve this goal and reduce home power bills. It is 
critical to alter the appliance use pattern by scheduling them in a manner that meets all of the optimisation criteria 
set by the RASP. For many years, scientists have been trying to find ways to provide renewable energy sources 
(RES) that are not only cheap, simple to create, and good for the environment  (Rabah et al., 2023). RE integration 
offers the most economical options, based to many research. In order to maximise customer satisfaction, minimise 
peak-to-average power consumption, and minimise energy costs, home device timing is defined as an optimisation 
issue. This challenge seeks to arrange intelligent home equipment in the most efficient manner possible. 
Scheduling strategies that make use of optimisation techniques are therefore able to address this issue [32]. The 
method for scheduling home appliances in [32] is the bald eagle search optimisation algorithm (BES). Figure 8 
depicts a recommended intelligent grid infrastructure that incorporates energy internet connection, burdens, the 
public power grid, and RE sources [40]. 
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Figure 8: Smart Grid parts [32] 

 
5. Challenges 

When AI is added to RES, it creates both exciting possibilities and big problems.  AI has the potential to improve 
the efficiency, effectiveness, and dependability of RE sources, but there are some problems that need to be fixed 
before they can be fully integrated. A lot of excellent information is needed for AI systems to learn and make 
decisions. It can be hard to get complete and precise data on winds, sun rays, weather trends, and various other 
crucial variables that affect green energy.  AI models and estimates may not work as well as they could if they 
have incomplete or wrong data. RES are usually complicated and not linear, with many factors and relationships 
that change over time. Making AI models that correctly show how complicated these systems work can be hard. 
Adding different types of sustainable energy, like wind, solar, and water, to a single infrastructure makes it more 
complicated. RE sources, like solar and wind, aren't always reliable, which makes it hard for AI-based forecast 
controls to work. For AI to work well with RE, it needs to be able to deal with unpredictable and quick changes 
in how energy is generated. Various kinds of green energy don't all use the same data forms, connection methods, 
or management interactions, which makes it harder for AI to work with them all.188 Standardising systems and 
standards is important for making it easier for different parts of RES to work together and interact with each other. 
A lot of computing power is often needed for AI systems, especially DL models. Due to the need for strong 
computer facilities, it can be hard to use these methods in real-time uses for RE sources, particularly in places that 
are far away or don't have a lot of resources. Most people think of AI models, especially complicated ones like 
ANNs, as "black boxes," which makes it hard to figure out how they make decisions. Explicitness and openness 
are important for building trust and knowing why AI-driven choices are made in important systems like green 
energy. RES are affected by changes in the climate, malfunctioning equipment, and new technologies.18 It's hard 
to make sure that AI models are strong and flexible enough to deal with changes and problems that come up out 
of the blue. For long-term stability, it is important that model update and modification procedures work all the 
time. Adding AI to RE sources (RES) could mean paying a lot of money up front for gear, programs, and 
competent employees. Small sites or ones with limited resources may have trouble designating assets to AI 
integrating, which makes it harder for these innovations to be widely used. As AI becomes more important to 
RES, the risk of hacking dangers rises. To make sure that green energy infrastructure can operate safely and 
reliably, it is important to keep algorithms, controls, and internet connections safe from hackers. Laws and rules 
that govern AI may not be able to keep up with how quickly it changes. Regulations that aren't clear or are too 
strict could make it harder for AI to be used in RES. To make responsible and broad adoption easier, there needs 
to be clear guidance and help from regulators. To solve these problems, experts, people who have a stake in the 
business, and lawmakers need to work together. As technology improves and recommendations become clear, 
these problems will be solved, making it easier to combine AI with RES and creating a more stable and long-
lasting energy future. This part does a great job of explaining the problems that come up when you try to combine 
AI and RES and the possible solutions. It narrows the conversation to specific, doable ways to deal with these 
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problems, maybe with the help of cases from new studies or pilot programs [33-38]. Putting AI to use in RES can 
have big effects on society and the world, both good and bad. AI can help make RES work better and cut down 
on carbon pollution, but it leaves its own mark on the world. It takes a lot of computing power to train AI models, 
which means a lot of energy is used and carbon is released. So, the ecological impact of AI processes needs to be 
carefully controlled to make sure that the beneficial effects of AI in green energy are greater than its environmental 
prices. AI could make accessibility to energy  through making green energy easier for more people to get and 
cheaper for more of them. EMS that use AI can improve the way energy is distributed and allow for decentralised 
energy production. This lets groups make their own renewable energy and depend less on centralised power lines. 
AI programs may pick up prejudices from the data that was used to teach them. This could lead to unfair or unjust 
results, like not everyone having the same utilisation of renewable energies. It is very important to get rid of these 
flaws and make certain AI systems are built and used in a fair way. Concerns have been raised about data security 
and confidentiality because AI systems used in alternative energies may gather and analyse private data. Protecting 
personal information and making sure data is safe are important for keeping people's trust in AI apps. The use of 
AI to automate work in RES could mean the loss of jobs in some areas, like the usual production and transfer of 
energy. It is essential to come up with and use policies and programs that help people change and improve their 
skills for new jobs in the green energy sector. The use of AI in RES could have big positive effects on the climate 
and society, like lowering carbon pollution and making energy access more equal. But it's important to think about 
how AI operations affect the environment, make sure AI usage is fair and equal, and deal with ethics issues like 
anonymity, security of information, and job loss. By handling these factors correctly, AI can change the energy 
environment and speed up the move to a fair and safe power era.  
 

6. Conclusion and Future Work 
As AI and IoT technologies come together in RE systems, it becomes a good platform for solving many unsolved 
problems. This will also lead in the development of advanced sustainable deployments. This paper has focussed 
on significant developments of AI in RE which will improve the system efficiency. The RE sources that are 
focused here are solar, wind and its energy management. Integration of AI into this domain will enhance the 
modelling and other process such as RE generation, grid management and distribution of energy. Further, it is 
noticed that the integration of IoT will help in optimising the consumption of energy which is the need of the hour. 
This will lead in the reduction of electricity bills in household and commercial places. Additionally, when AI and 
IoT are used in conjunction, the resilience of power systems us enhanced. With this, there are challenges that 
should be tackled to make this process a success. There is a need for standardisation of protocols for various RE 
systems. There are also computational requirements that needs to keep in mind and suitable models are to be 
designed. Ethical concern that is related with data security is very crucial to bee considered during the 
development of such systems.  
 
There is need for more robust and explainable AI models which will assist in more positive effects on 
sustainability.  Hybrid AI techniques can be employed so that unique features of carious models can be used in 
enhancing the overall system and its efficiency. Edge computing may also be used in the future to optimise the 
system. This may give a path to solve the ethical concerns that are discussed here. AI models should also look 
into the energy storage optimisation and also in grid stability. There is also a need for educating students about 
the environmental and socio-economic effects of AI integration in RE systems to have sustainable 
implementations. These solutions may result in better AI integration of RE sources along with IoT.  This also 
leads to a low-carbon energy future, which in turn will bring about drastic changes in the climate and provide a 
cleaner energy ecosystem. 
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