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ABSTRACT 
Industrial robotics has advanced significantly as a result of automation's quick progress, and its applications in 
biomedicine, particularly in rehabilitation technology are growing. The goal of this project is to design, 
construct, manufacture and test a low-cost, six-degree-of-freedom 3D-printed Thor robotic arm that is controlled 
by surface electromyography (sEMG) signals. These signals were gathered from nine healthy volunteers 
utilizing a wireless Myo motions armband, and they made it possible to distinguish between seven different 
hand gestures.  

Because of its mechanical robustness, polylactic acid (PLA) was employed in 3D printing, which added to the 
Thor prototype's endurance and open-source nature. Two Arduino Mega controllers and Ramps interface boards 
improved the electronic system, and Marlin firmware and Arduino-based software were used to govern control. 
Workspace navigation was used to evaluate the system and install an extra stepper motor to increase torque at 
the base joint.  

Support Vector Machines (SVM), K-Nearest Neighbors (K-NN), and Linear Discriminant Analysis (LDA) were 
the three classifiers used for gesture detection. With an accuracy of 95.04% for dominant hands and 83.41% for 
non-dominant hands, SVM demonstrated the best accuracy. Additionally, SVM achieved near-perfect accuracy 
in elbow flexion-extension identification (99.55% for dominant and 98.73% for non-dominant), while LDA and 
K-NN also shown strong performance. 

 
 
I. INTRODUCTION 
A robotic arm consists of a series of movable links connected by joints, forming a chain. One end, typically 
fixed to a base, supports a hand or end-effector at the other end, which can move freely in space. Robotic arms 
can perform repetitive tasks with far greater speed and precision than human operators [1].The growing 
demands for quality and productivity in industrial settings necessitate the use of advanced solutions.  Computer-
controlled  robotic manipulators offer numerous benefits, including enhanced precision and flexibility in 
production processes and improved working conditions for human workers by taking over labor-intensive, 
hazardous, or repetitive tasks [2]. 

Industrial robots operate in a manner analogous to human arms, consisting of rigid links connected to a base. 
These links allow movement in six degrees of freedom, enabling the robotic arm to maneuver in various 
directions and perform complex tasks [3].Robotic arms are used for pick-and-place, manufacturing, and 
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assembly operations [4]. The industrial robotic arm is a product with high added value. However, advancements 
in 3D printing technology have made it possible to produce the necessary components for constructing a robotic 
arm at a reduced cost without compromising quality. This manufacturing process, which builds three-
dimensional objects through layer-by-layer material deposition, offers a cost-effective solution [5]. The 
procedure is directed by drawings generated using computer-aided design (CAD) software, enabling precise 
manufacturing of specific parts as shown in figure (1). In the context of globalization, numerous open-source 
projects for 3D printing are available in virtual repositories. This method offers several advantages, including 
flexibility, cost reductions, and potential applications in academic settings [6]. 

 
 

Figure (1): Complete assembly Thor robotic arm components design CAD model 

The majority of that research typically makes use of highly basic robotics, such as industrial robots or servo 
motors. There aren't many articles that describe the mechanical couplings, gears, and electronic drive systems of 
robotic systems in detail. Servo motors with low torque are typically used in robots with simpler structures [7]. 

Research on the application of robotic arms is constrained by the high costs and complexity of the required 
components. Currently, there is a strong interest in various control systems, particularly adaptive systems 
enhanced with artificial intelligence [8]. The application of advanced robotic systems through additive 
manufacturing has the potential to revolutionize robotics by enabling the low-cost production of highly complex 
robots with professional-quality finishing. A notable finding of this study is the use of stepper motors instead of 
servo motors [9]. As torque increases, servomotor costs grow exponentially. Stepper motors are also incredibly 
precise, but they are significantly less expensive and have very easy controls [10].In the field of robotics, there 
is currently a clear division between research conducted in university and industry. Although the bulk of 
products have a simplified control, robotic arms are found in the industry with high cost and robustness. 
Mathematical modeling and complex control systems are often used in the academy to create low-cost, low-
precision mechanical constructions [11]. 

Machine learning is one application of artificial intelligence. It is built on algorithms taught by data, which don't 
need to be explicitly coded in order to automatically learn to make predictions, improve over time, or act on data 
[12,13]. 

Three terms are combined to form the word electromyogram: myo, which is Greek for muscles, electro, which 
means related to electric activity, and gram, which means recording. Electromyography (EMG) is a medical 
diagnostic procedure that measures and examines the electrical signals produced by the skeletal muscles. An 
electromyography device, which produces an electromyogram, is used to do this [14]. Upon traversing several 
tissues, the EMG signal accumulates with overlapped noise. In addition to that, The EMG sensor collects 
signals. simultaneously from many motor units, particularly if they're close to the skin's surface, this can cause 
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different signals to interact. In biomedical engineering, the ability to detect EMG signals using innovative and 
efficient methods is gradually becoming essential. Clinical diagnostics and biological applications heavily 
depend on the analysis of EMG data. The definition of the field of motor disability rehabilitation and 
management is a major area of application. To classify EMG signal analysis and support the recommended 
actions, it is crucial to conduct an inquiry [15]. 

In many situations, the detection of sEMG signals is helpful and enhances fundamental techniques. Applications 
including biomedical engineering [16], robotic arms, and automation systems for controlling [17,18] are 
growing more and more in demand. The parameters of the electrodes and how they relate to the skin of the 
forearm or shoulder determine the measurements and accurate representations of the surface electromyography 
(sEMG) signals. 

Control systems that use myoelectric control fall into two categories: those that recognize patterns and those that 
don't. Occurrence analysis, proportionate level control, and threshold level control are components of the non-
pattern recognition control. Their degrees of freedom are limited, but they are all easy to employ in a real system 
[19]. 

In the past, myoelectric control algorithms and EMG signals have required expensive devices. Low-cost 
technologies (such as sensors, actuators, and controllers) and hardware support for simulation software 
programs like MATLAB have made myoelectric control studies more widely available [20]. It is important to 
choose the window length correctly in real time so that an appropriate delay may be achieved. Increased 
window length would result in higher classification accuracy but a slower classifier [21]. Time-domain (TD), 
frequency-domain (FD), and time-frequency-domain (TFD) features can be extracted from sEMG data. [22]. 
The implementation of TD features extraction is simple and doesn't involve a lot of computing power. From the 
data, RMS, the ZC, the SSC, the MAV, WL, and AR are retrieved from TD characteristics; these features are 
infrequently connected to the amplitude and frequency that are the original sEMG signals. On the other hand, 
Power Spectral Density (PSD) is extensively used to extract FD features [23]. 

The classifier will use the previously supplied feature-class sets to recognize the intended movement. The 
classifiers are used to differentiate across various feature sets. A number of techniques, such as popular 
techniques like fuzzy logic (FL), artificial neural networks (ANN), K-NN, SVM, and LDA, are employed for 
the purpose of classification [24]. The inexpensive generic wearable, the Myo gesture armband with many 
channels and integrated noise reduction filters, is the main component of the current work-study. This project's 
primary objective is to move the Thor 3D Printed Open Source 6-Dof Robotic Arm in real-time by substituting 
the wireless Myo gesture armband for the cable electrodes required for the sEMG signal. The subject's hand 
movement will be more comfortable and liberated with this replacement. Furthermore, compared to other sEMG 
sensors, the Myo armband is typically less priced. This study aims to demonstrate the implementation of an 
industrial robotic arm based on the open-source Thor project, emphasizing its modeling, firmware, and open-
source software. Changes were made to the electronic system by integrating two Arduino Mega systems with 
interface boards to control all actuators, along with software tailored for 3D printing. Modifications included 
enhancing torque at the base with an additional stepper motor at the first joint and installing new end-of-stroke 
sensors. Validation of the project involved operational testing of the robot. Challenges encountered and 
solutions devised were presented to suggest potential improvements. To reduce production costs and enhance 
durability, PLA material was substituted as planned for the project. This approach offers significant cost-
effectiveness, particularly in resource-constrained settings such as research and educational institutions in 
developing countries. Consequently, this research is expected to contribute to advancements in robotics 
education and research. 

Also focusing on the development and deployment of a flexible prototyping robot for testing myoelectric control 
algorithms for rehabilitation engineering, utilizing a low-cost Arduino board and MATLAB programming. A 
range of EMG-based algorithms can be implemented on the platform in order to: (1) Process signals; (2) Extract 
features; (3) Identify patterns; (4) Combine sensor data; and (5) Perform real-time myoelectric control. By using 
pattern recognition-based myoelectric control to categorize seven human actions at the upper limb level and to 
operate a robotic upper extremity, the study platform was assessed. Subsequently, a real-time program was 
implemented to simulate the user's movements on the robotic arm. 
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In this article, in section II, the materials and methods used in the project are presented. Then, in section III, the 
obtained results are presented, as well as their discussion. The final conclusions are found in section IV. Section 
V concludes with recommendations for further research. 

II. MATERIALS AND METHODS 
The open-source design developed by Muro (2019) for a printable Thor robotic arm was utilized in this paper 
we to guide and conduct the investigation. With six degrees of freedom and a rotating wrist, this robotic arm is 
comparable to the majority of the current robot manipulators available on the market today, which feature 
rotating joints at every joint. [25] 

More accurate and inexpensive movement transmission is made possible by the seven Nema17 stepper motors 
(original design) with different parameters that regulate its joints' movement. Figure (2) displays both the 
developed prototype and the adopted model. For more torque, joints 2 and 3 were equipped with motors that had 
a 5:1 gearing. The last two joints (5 and 6) feature smaller stepper motors because it is not optimum to have too 
much weight in this section of the robot. As motor drivers, seven Pololus A4988 [25] were employed. GT2 belts 
and pulleys powered joints 3, 5, and 6. 

According to the original project, all required drivers can be inserted into an electronic system made up of an 
Arduino Mega and an interface board. It was also mentioned that the robot may be controlled by using the 
Universal GCODE Sender and the GRBL firmware. This project made use of the same hardware used in 
RepRap open-source 3D printers. As shown in figure 3, the electronic system consisted of two Arduino Mega 
boards and two Ramps. 

 
Figure 2: Thor robotic arm [25] on the left and prototype developed by the author on the right. 

Characteristics Nema 
17 

Nema 17 
Without 

box 

Nema 17 
of reduction 5:1 

Length (mm) 40 34 34 

Phase Current 
(A) 

0.4 0.4 0.4 

Holding Torque 
(N.cm) 

40 110 25.4 

Phase angle (◦) 1.8 1.8 1.8 
Mass (g) 240 500 280 

Position 
(Together) 

J1 J2, J3 J4, J5, J6 

Table 1: specification of engines 

Table (1) displays the specifications of the original engines used in each of the joints. The project model 
suggests using PLA plastic (polylactic acid) as the printing material. 
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Figure 3: Ramps shield, Pololu A4988 driver and Arduino Mega board. 

Figure (8) shows a block diagram of the myoelectric control-based platform. The target controller was 
determined to be the open-source Arduino MEGA2560 model. The mechanical structure was made of 
aluminum, and the segments were connected by articulating joints that allowed for rotation. The articulated 
robot has six degrees of freedom, allowing it to evaluate myoelectric control algorithms in real time and execute 
complex movements that are similar to those of a human arm. 

Simulink has been offering hardware support packages for third-party products like Arduino since MATLAB 
version R2020b. It is necessary to obtain drivers from the Internet and choose the right product (in this case, an 
Arduino Mega). The model must then be configured to operate on the target, in this example an Arduino 
MEGA2560. One of Simulink's most useful features for Arduino hardware support is the real-time connection 
for model parameter adjustment. 

III. RESULTS AND DISCUSSION 

A. Development 
First, the design of the components that were going to be printed out of the robot and their corresponding 
assemblies were studied using the free CAD program. Following the study, the project's starting point was 
completed, which involved printing 51 pieces without additive wrist and 68 pieces with it. In order to install the 
motors, belts, and optical sensors, a few instances of part reworking were required. Ultimately, the joints were 
partially assembled (figure 4). The additive wrist showed in figure (5). 

 
Figure (4): components that are printed as well as incomplete joint assemblies. 

 

Figure (5): The additive wrist for the original system 

B. Modifications 
It was discovered during testing using the prototype's whole assembly that the motor listed in joint 1's model 
does not have sufficient dynamic torque to move the structure. To move the same joint in the same rotational 
direction, a new motor was thus put on. Table VI displays more engine specifications. 
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c. Comparison 
To qualify the developed prototype, physical properties were compared with those of industrial robotic arms that 
are currently on the market; the results are displayed in Table (2)[26]. 

Table (2): Comparison of Specifications of Industrial Robotic Arms 

Because of the sampled data, it is easy to see that the prototype and the other models differ significantly in 
material mass and payload. 

The prototype has a mass that is roughly 5.75 times lower than the Am501C/5L Fanuce model and the TX40 
Staubl model, respectively, however it is only 17% and 52% lighter in mass.  
In terms of degrees of freedom (DOF), most robots show a similar behavior. Table (3) provides more technical 
information on the prototype. It is possible to see the range of motion of the joints. The physical limitations 
caused by the model's design define the movement angle values of the prototype, which also make an effort to 
prevent internal wire twisting. 

Characteristics 
Proto type Base Dimension (mm)  Ø200 

Height Dimension (mm) 635 

Joint name Angle of Movement 
Joint one +180◦ to -180◦ 

Joint two +90◦ to -90◦ 
Joint three +135◦ to -135◦ 
Joint four +180◦ to -180◦ 

Joint five +90◦ to -90 
Joint six +180◦ to -180 

Tabel (3): Specify Prototype Techniques 

To illustrate a prototype's working space, it was A schematic figure is created (Fig. 6). Similar to the movement 
angles, the values given to the prototype are based on the model's physical constraints. 

Model Payload 
kg 

mass DOF reach(mm) 

WAM 3 25 7 3.5 m3 
     

RV-2A Mitsubishi 2 37 6 706 
S1A10D Motoman 10 60 7 720 

Am501C/5L Fanuce 5 29 6 892 

TX40 Staubl 2 27 6 515 
IRB120 ABB 3 25 6 700 

S560 Adept Viper 2.5 28 6 653 

KR5 R560 KUKA 5 28 6 650 
RS03N Kawasaki 3 20 6 620 

Prototype 0.75 6.1 6 427.5 
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Figure (6): Work space prototype (measurements in millimeters) 

D. Specifications of the Model 
There are a few abnormalities with the approved model that could keep the prototype from moving as well as 
possible. Considerable friction is allowed to exist in joints 1 and 4 due to their bearing systems. Joint 1 has a 
totally PLA-printed bearing, while Joint 4 has airsoft balls for handling (Figure 7). 

 
Figure (7): The corresponding bearing systems for joints 1 and 4 [25]. 

E. Expectations, Differentials, and Contributions 
This project shows how an open design for an industrial robotic arm may be validated and put into practice, 
showcasing its efficacy and suggesting ways to improve functionality. Especially in scientific and educational 
settings, creativity is enhanced by recording the stages of development. 

Moreover, the project is renowned for its cost-effectiveness, giving significant added value compared to 
standard industrial robotic arms. Given the frequently low resources available for education and research in 
emerging nations, this feature is especially important. Using PLA materials—which are readily accessible in 
developed countries—the effort has successfully cut expenses without sacrificing the model's fidelity. 

It is therefore expected that the approach offered in this work will greatly aid robotics research and instruction, 
particularly in environments with limited resources. 

Numerous investigations have classified characteristics obtained from the sEMG using various methods, such as 
support vector machines (SVM), fuzzy classifiers, hidden Markov models, multi-layer perceptron (MLP), 
Bayesian classifiers (BYN), and linear discriminant analysis (LDA) [27–32]. Three popular classifier algorithm 
types are used in this study: LDA, SVM, and K-NN. A statistics classifier called an LDA is used to identify 
which fresh observations fall into classes that are mutually exclusive. Comparable to the SVM method, The 
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LDA seeks to identify a hyperplane capable of classifying the data points into different groups [33].The graphic 
below shows a block diagram of the proposed myoelectric algorithm. A feature extraction method that complies 
with a set of temporal domain parameters is applied to every epoch (or data window) in order to extract data 
from sEMG.   
 

 
Figure (8): Block schematic of the myoelectric mechanism in practice 

Eight files contained the seven gestures made by nine healthy participants. Each dataset has a 35-second 
duration, with each gesture starting with a hand gesture that is at rest and lasting five seconds. The complete 
dataset recording for each individual is 280 seconds long. A cross-validation technique was used to divide the 
dataset into training and testing sets. For cross-validation, the original dataset is randomly split into k equal-
sized sub-datasets. One sub-dataset is retained as validation data for the model's testing, and the other sub-
datasets are used as training sets. To do cross-validation, the recorded datasets were split up into eight smaller 
datasets. The data for each of the nine healthy study participants is shown in the table below. 

Table (4): Information about the volunteered persons. 
Number of 
Volunteer 

Gender Length (cm) Weight (Kg) Age (year) Hand side 

Volunteer 1 Male 186 102 35 Right and Left 
arm +forearm 

Volunteer 2 Male 168 81 45 Right and Left 
arm +forearm 

Volunteer 3 Female 164 99 36 Right and Left 
arm +forearm 

Volunteer 4 Male 165 80 32 Right and Left 
arm +forearm 

Volunteer 5 Male 176 96 42 Right and Left 
arm +forearm 

Volunteer 6 Male 165 63 25 Right and Left 
arm +forearm 

Volunteer 7 Male 158 66 33 Right and Left 
arm +forearm 

Volunteer 8 Male 167 70 30 Right and Left 
arm +forearm 

Volunteer 9 Male 166 75 48 Right and Left 



 
Natiq A. Omran, Muhammed A. Al-Sattar, Mithaq N. Raheema 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                 2337 

arm +forearm 

Because of motion artifact, ambient noise, intrinsic noise in electronics equipment, and inherent instability of 
the sEMG signal, the obtained sEMG signals are usually noisy [34]. When utilizing the Myo gesture armband, 
the noise ratio in sEMG signals is essentially low and has no bearing on the sEMG data. The sEMG signals, 
which are typically very low in voltage between 0 and 2 mV, are enhanced by the Myo gesture armband [35]. 

For pattern recognition system, its parts can be summarized as below: 

1. Segmentation 
The window length of the signals had a substantial impact on the processing time and classification accuracy of 
sEMG signals in online mode. The information is greatly altered when the window length is very small, which 
results in low classification accuracy. It is therefore challenging to get important information from every 
window. To provide both high accuracy and short delay times, a trade-off between the two should be carefully 
considered. The window size in this study is adjusted from 30 to 120 milliseconds, with an increment of about 
half the window size. Figure (9) shows the result of increasing the window size applied on subject one dataset 
for SVM, LDA and KNN classifiers. 

 
Figure (9): Effect of window size on system accuracy (%) 

2. Feature Extraction 
Certain features are chosen from each window of the sEMG signals after the signals have been separated into 
windows of the same size. These feature classes ensure high separation gesture accuracy. Features cannot be 
extracted from individual sEMG signal samples.The time domain characteristics in this work that were chosen 
for their simplicity of usage and little processing overhead are RMS, WL, AR (4), ZC, MAV, and SSC. A 
matrix of features is produced after these features are eliminated from each window for each channel of the 
sEMG signals. Both the number of rows in the matrix and the total number of features for every channel 
represent the total number of sEMG data windows. Results for SVM classifier as example shown. 

No. of 
volunteers 

RMS WL AR(4) ZC SSC MAV All Features 
 

Volunteer 1 95.72 93.20 70.67 47.69 34.38 94.55 94.22 
Volunteer 2 92.85 91.24 64.78 48.74 40.41 92.28 94.11 

Volunteer 3 94.90 91.06 60.86 39.53 28.90 92.48 93.87 
Volunteer 4 93.27 91.14 61.63 43.96 37.92 90.31 95.55 
Volunteer 5 94.32 92.47 65.93 44.71 33.19 93.99 93.52 
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Volunteer 6 92.95 90.50 54.22 40.24 30.79 93.48 93.65 

Volunteer 7 91.93 89.97 63.85 42.48 34.79 95.01 95.86 
Volunteer 8 93.78 90.89 61.89 40.91 30.76 90.28 94.32 

Volunteer 9 93.08 91.07 61.94 41.09 31.87 92.68 92.65 

Average 93.64 91.28 62.86 43.26 33.66 92.78 94.19 
Table (5): Results of TD features using SVM classifier show the system accuracy (%) crosses all subjects. 

2.1 Time Domain (TD) features 
The frequency and amplitude measurements are particularly helpful when interpreting the sEMG movement 
state [36]. Features related to amplitude, such as mean absolute value (MAV) and waveform length (WL), and 
features related to frequency, such as zero crossings (ZC) and slope sign changes (SSC), will be used to extract 
relevant information about frequency and amplitude from the temporal sEMG signals [37-38]. Thus, one of the 
various applications of TD that have emerged recently is the pattern detection of sEMG signals for the purpose 
of controlling upper limb prosthesis. 

3.  Feature’s classification 
In order to determine which classifier is more effective at generating higher system accuracy, the study carefully 
compares three classifiers: Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and K-
Nearest Neighbors (K-NN) with K set to 7. Delving into a rich dataset, the analysis spans a spectrum of gestures 
across diverse channels, encompassing wrist movements (right, left, up, down), hand closure, hand opening, and 
rest hand positions. This exhaustive exploration is further enriched by the repetition of each gesture sequence 
eight times, while meticulously considering variations in transradial. 

Number of 
volunteers 

 

KNN Classifier LDA Classifier SVM Classifier 

dominant non dominant non dominant non 

1ST volunteer 80.93 75.88 89.22 80.56 94.62 85.06 

2ND volunteer 81.28 76.75 89.02 76.85 94.08 82.45 

3RD volunteer 83.52 78.63 88.66 79.97 94.98 82.98 

4TH volunteer 83.83 75.93 90.11 80.86 95.95 85.13 

5TH volunteer 84.67 74.32 87.87 79.98 94.06 81.22 

6TH volunteer 79.39 71.94 86.73 78.12 93.75 82.87 

7TH volunteer 85.71 80.93 91.36 83.29 96.28 84.94 

8TH volunteer 84.44 79.26 90.41 78.27 95.89 82.76 

9TH volunteer 84.02 81.39 90.25 77.33 95.83 83.33 

The average 80.03 77.22 89.29 79.47 95.04 83.41 
Table (6): Classification accuracy of all transradial healthy volunteers for movement configurations of three 

degree of freedom (wrist flexion-extension, open-close hand, up-down hand with rest hand). 

IV. CONCLUSION 
This research demonstrates that, with access to a 3D printer, it is possible to create complex mechanical systems 
with acceptable finishing in resource-constrained environments. This approach helps bridge the gap in the 
quality of mechanical structures used in academic robotics. The proposed robot showcases the use of stepper 
motors instead of the more commonly employed servo motors for similar applications, achieving comparable 
torque and precision. 

There are two ways the system can function: offline and online (real-time). The live mode is utilized to move 
the robotic arm in real time, while the offline mode is designed to calculate system accuracy and enhance system 
performance. MATLAB R2020 has been utilized to implement these two modes. 

A. OFFLINE MODE 
Every time the Myo gesture armband is used to record datasets, it must be worn in the same manner to guarantee 
that its sensors are positioned consistently. To avoid unpredictable readings, this problem must be considered 
when recording data. For this investigation, raw sEMG data from each channel during muscle contraction 
activity were collected using a Myo gesture armband. The Myo armband collects data, which is transferred to 



 
Natiq A. Omran, Muhammed A. Al-Sattar, Mithaq N. Raheema 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                 2339 

the computer via Bluetooth for processing and analysis by MATLAB R2020. When the number of features (six 
features: RMS, MAV, SSC, ZC, WL, and AR with order=4) per window (segment) is multiplied by the number 
of Myo channels (eight channels), 48 features are obtained for each set for all channels. 

B. ONLINE MODE 
As indicated in table (1), the physical parts of the entire system in its real-time condition consist of the 6-DoF 
Thor robotic arm, Due Arduino microcontroller, Dell laptop, and Myo gesture armband. 

To move the robotic arm like a human arm, data is collected by the Myo armband and sent to the computer via 
Bluetooth. A majority vote yields the classifier's most often predicted final motions. The robotic arm's reaction 
time to a human arm gesture plays a critical role in defining the system's performance. 

Feature selection is essential to extracting information from sEMG signals since the classifier can distinguish 
between motions based on the retrieved information of these features. For six extracted features and eight 
channels for nine subjects in this trial, the average accuracy of the system was 94.19%, 91.11%, and 85.51% for 
SVM, LDA, and K-NN, respectively. The RMS feature had a substantial impact on the system's accuracy, while 
the ZC and SSC features had less of an impact, according to the offline findings displayed in table (5). 
Consequently, in order to save processing time and lower computational costs, these characteristics might be 
eliminated from the feature vector collection. As a result, the four features that determined online mode were 
AR, WL, RMS, and MAV. The wireless devices the system's adaptability and mobility were enhanced by the 
Myo gesture armband, which also processed the sEMG signals efficiently. It can be concluded from the trials 
that the SVM and LDA classifiers yielded the best results since they show how the size of the window and the 
arrangement of the sensors affect the accuracy of the system. However, reasonable results were obtained with 
the K-NN classifier. displays initial study findings for developing a cost-effective upper-limb robotic platform 
for the assistance and rehabilitation of patients suffering from motor impairments. 

The platform will enable the development and evaluation of new myoelectric control algorithms for application 
in rehabilitation apparatus. As validation, a myoelectric control method was developed to decode seven upper-
limb movements. Muscle activity signal classifiers (SVM, LDA, K-NN) are improved by optimizing feature 
selection, particularly when AR, WL, RMS, and MAV features are the emphasis. Processing of muscle activity 
signals is made simpler by using the Myo gesture armband. This study highlights the significance of window 
size and sensor placement, with SVM and LDA exhibiting the greatest results. Using myoelectric control 
algorithms, the research offers a low-cost robotic platform for upper body rehabilitation. 

Finally, the project shows that the overall costs are far less than the average costs of industrial robot 
manipulators, which is in line with the study's goals of leveraging additive manufacturing. The project is 
especially attractive in resource-constrained environments because of its cost-effectiveness, which also draws 
attention to the significant disparity between project costs and the market value of industrial robotic arms 

V. FEATURE WORK 
This project's evolution can be used as a model for robotics, computer numerical control (CNC), and industrial 
processes research and teaching. Future work will investigate more algorithm features for real-time applications 
using the same approach. 
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