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ABSTRACT 
 
This study examines the Total Factor Productivity Growth (TFPG) and its key components—technical efficiency, 
technological progress, scale efficiency, and allocative efficiency—within the Indian textile sector, using firm-
level panel data spanning from 1998 to 2018, sourced from the Annual Survey of Industries. The frontier 
production function is estimated through the Error Component Model (ECM), while the Divisia Tornqvist index 
is employed to decompose TFPG into its constituent components. Our findings reveal significant variability in 
productivity growth across the observed period, characterized by both positive and negative phases of growth. 
The fluctuations in TFPG indicate that firms in the Indian textile industry have faced considerable challenges in 
achieving consistent productivity improvements. These inconsistencies can be attributed to a range of factors, 
including market volatility, technological limitations, and inefficiencies in resource allocation. Additionally, our 
results suggest that while some firms have managed to achieve technical efficiency and scale economies, others 
have struggled, contributing to the overall variability in productivity growth. The study highlights the importance 
of targeted policy measures to foster technological innovation, improve resource utilization, and stabilize 
productivity growth within the sector. Strengthening these areas could enhance the competitiveness and 
sustainability of the textile industry in India. 
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1. Introduction 
The textile and apparel sector plays an important role in the economy of India. It is the second larges producer of 
Man-Made fiber. India is the third largest exporter of textile and apparel in world. The share of textile and apparel 
(T&A) including handicrafts in India’s total merchandise exports stood at a significant 10.5% in 2021-22. India 
has a share of 4.6% of the global trade in textiles and apparel. Major textile and apparel export destinations for 
India are USA, EU-27 and UK, accounts for approximately 50% of India’s textiles and apparel exports (Ministry 
of Textiles, 2023). The textiles and wearing apparel sector generated a gross value added (GVA) of INR 3.77 lakh 
crore (45.24 billion USD) in FY23, which was about 10.6% of the manufacturing GVA at current prices. The 
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contribution of the Indian textile industry will almost double from the current 2.3% to 5% of GDP by 2030 
(Fibre2Fashion, 2024). India’s textile and apparel exports (including handicrafts) stood at USD 28.72 billion in 
FY24. The textile sector in India accounts for 2.3% contribution to the GDP on average, 13% contribution to the 
industrial production, and 12% contribution to the economies exports earnings (IBEF, 2023). The textile value 
chain in brief is presented below. 
The present study is on the textile sector in India and it employs the Error Component Model (ECM) of Bat- tese 
and Coelli (1992), to estimate the stochastic frontier using panel data, from 1998 to 2018, incorporating a Translog 
production function with a time trend. This approach allows for the time-varying inefficiency effects to be 
modeled, capturing the dynamic nature of firm efficiency over the observed period. Additionally, the present study 
used the Divisia Tornqvist index to estimate Total Factor Productivity Growth (TFPG) and decompose it into its 
key components, including technical progress, changes in technical efficiency, scale efficiency, and allocative 
efficiency. This decomposition provides a detailed understanding of the various factors contributing to 
productivity changes across firms and over time. 
 

 
The 

industry has experienced low productivity and declining worldwide market share, especially in the recent past, 
despite a number of innate qualities, favourable natural endowments, and numerous government programs. The 
epidemic caused the domestic market for India’s textile and clothing industry to drop from 106 billion USD to 75 
billion USD in 2020–21; however, it is expected to rise to 190 billion USD by 2026. Between 2015–16 and 2019–
20, this sector’s export share decreased by 6.7% as well. India’s exports to the main markets—the United States, 
the United Arab Emirates, the United Kingdom, and the European Union—have decreased from 16,990 million 
USD in 2015–16 to 12,290 million USD in 2019–20. During the same time period, foreign direct investment (FDI) 
in this sector has decreased by about 48%. According to upstream supply chain connectivity, India’s textile and 
apparel industry is a significant market for agri- cultural products, with many farmers supplying their goods to 
over 4000 ginning (the process of extracting cotton fibres from seeds) facilities and about 3500 textile mills. It is 
significant to highlight that, in spite of its importance in terms of employment  
 
creation, especially for women, industrial  
contribution, and foreign exchange earnings,  
this sector lags behind many of India’s Asian competitors in terms of technology. According to (Saheed, 2022), 
around 75% of the industrial looms in use in the nation are antiquated and out of date, lacking any process or 
quality control. In comparison to its rivals, like Singapore, China, South Korea, and Hong Kong, the textile sector 
in India accounts for a small portion of world exports, and it has not significantly improved during the post-
liberalization era. Furthermore, from 28% in 1991 to 13% in 2015 (Dhiman, 2021), and to 14% in 2019 (Dhiman 
et al., 2020) prior to the pandemic, the proportion of Indian textile exports in the country’s overall exports has also 
decreased. N o rdå s  (2004) projected that China and India’s proportion of global clothing exports will treble 

Figure 1: Textile Industry Value Chain 

Courtesy: Report on the Impact of Textile Industry on Income and Employment Generation by Textile 

Committee, Ministry of Textiles, Govt. of India 
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following the Multi Fibre Agreement (MFA) phase- out in 2005. India’s participation has increased from about 3% 
to 4% between 2000 and 2016, whilst China’s portion has doubled from 18.2% to 36.7% during this time. Although 
India has a comparative advantage in this market, Vietnam and other developing economies like Bangladesh and 
Pakistan have emerged as major exporters of textile and clothing, especially after the MFA phase out in 2005 due 
to their low labour costs. As a result, they pose a threat to India’s export competitiveness. The USA is the largest 
export market for the Indian textile and apparel industry (Kim, 2019). The percentage of clothing exported from 
India rose from 3% in 2000 to just 3.3% in 2018, compared to increases of 18% to 31.3% in China and 0.9% to 
6.2% in Vietnam over the same period. Additionally, India’s textile exports have seen only a slight increase in 
technology content compared to significant increases in China’s and Vietnam’s textile exports. During this time, 
Bangladesh and Vietnam have overtaken India in terms of their respective shares of global garment exports. For 
the Indian textile sector to remain competitive in the global market, technical modernisation is therefore necessary.  
The total factor productivity in an important determinant of the future growth trajectory of an industry. It’s role 
in the textile and apparel industries in India becomes all the more critical given the employment intensive nature 
of these sectors. The present paper seeks to explore and quantify the Total Factor Pro- ductivity Growth (TFPG) 
and decompose it into components of technological progress, technical efficiency, scale and allocative efficiency. 
The use of panel data obtained from Annual Survey of Industries (ASI), which is the most exhaustive firm level 
industrial survey in India, for the period of 1998 to 2018 and parametric technique of estimating the stochastic 
frontier using translog production function make this research stand apart from the existing literature on this topic. 
The remainder of the paper is organized as follows. Next section presents a brief review of different theoretical 
and empirical literature reviewed on this issue. The is followed by the methodology which presents a brief 
overview of the statistical models used. This is followed by results and discussion sections as well as the 
conclusion and policy implications section. 
 

2. Literature Review 
The estimation and decomposition of Total Factor Productivity (TFP) have been widely studied across various 
industries, particularly in the context of understanding efficiency, technological progress, and input utilization. In 
the case of the Indian textile industry, the growing importance of productivity enhancement amidst competitive 
global markets and evolving technological frameworks has motivated extensive research. This study adopts the 
Divisia Tornqvist index to estimate TFP growth and decomposes it into its key com- ponents, such as technical 
efficiency, scale efficiency, and allocative efficiency, with a focus on the use of Error Component Models (ECM) 
in the estimation of the stochastic production frontier using a translog production technology and panel data on 
the Indian textile industry from 1998 to 2018. Previous literature provides a foundation for understanding the role 
of technological change, innovation, and resource allocation in shaping TFP trends, especially within industries 
that are labor-intensive and rely heavily on international trade, such as textiles. The following sections presents 
key studies that have examined TFP growth, its decomposition, and efficiency analysis using both parametric and 
non-parametric approaches, with a focus on the methodologies and findings most relevant to the Indian textile 
sector. Hulten (2001) offers an extensive review of the development of measurement approaches to total factor 
pro- ductivity and therefor is an essential paper to be reviewed in any work of the present kind. The paper traces 
the development of the concept from being a residual measure, to be computed using index numbers, to production 
function approach which was first proposed by Solow (1957). The paper also details several ar- guments by 
researchers that are critical to the Solow’s proposal, including the Griliches and Jorgenson (1967) paper. The 
criticism to the production function approach stems mainly from the restrictive assumption that it imposes, such 
as, constant return to scale, perfect competition, and the assumption of technical change is Hicks neutral. The 
other problem with this production function approach to measuring productivity is that the measurement is based 
on the concept of Divisia index which is not necessarily path independent. Hulten (1973) explains the condition 
under which the index is path independent. This method has been briefly described in the methodology section of 
the present paper.  Fare et al. (1994) was reviewed to understand theoretical concepts and practical applicaiton 
areas of Malmquist Productivity Index. The paper computes the productivity index and its decomposition into 
technical change and efficiency change, for 17 OECD countries from 1979 to 1988. Malmquist index is based on 
the idea of distance function. Distance functions represents multipe output and multiple inputs of firms as distance 
from the frontier. The ratio of these distances provide a measure of the productivity of firms. As opposed to the 
Tornqvist index of TFP, whic is a discrete form of Divisia index, this index is a quantity based index and does not 
require data on cost or revenue share.  
Caves et al. (1982) explores the relationship between firms with different production technologies by defin- ing 
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and analyzing the input distance function, which carries the same informational content about a firm’s technology 
as the traditional production function. The paper first derives the derivative of the distance function with respect 
to input and output variables by applying the implicit function theorem, connecting it directly to the production 
function. The Malmquist input index is then introduced as the ratio of the input distance functions between the 
firms. Assuming a translog distance function, the author demonstrates that for a firm minimizing costs, the 
derivative of the input distance function can be represented as the ratio of input prices. Building upon this 
foundation, the paper proves that the geometric average of the Malmquist indices of two firms (or the same firm 
over different time periods) equates to the Tornqvist input index. A parallel result is derived for the Tornqvist 
output index using the output distance function. 
Further, the paper defines output- and input-based productivity measures and establishes their relationship with 
similar Tornqvist indices. It concludes by showing that the geometric mean of the Malmquist productivity indices 
of two firms equals the product of a scale factor and the Tornqvist index, a result that holds true for both input- 
and output-based measures. 
There are various functional form, also called aggregator functions, to represent the input-output dynamics for a 
firm or industry. There are also various types of indexing approaches available for constructing ag- gregate price 
and quantity series for both input and output data. Cobb Dougla and CRS are examples of aggeagtor functions 
and Laspayers and Paasche indices and also the Fisher’s Ideal index which is a product of the other two are 
exmples of indices for aggregating price and quantity data over multiple input and output. Diewert (1976) uses a 
theorem which says that under certain conditions, the aggregator function for period 𝑟 denoted by 𝑓(𝑥௥) =

(𝑋்𝐴 𝑋)ଵ ଶ⁄  can be represented by Fisher’s Ideal index. The conditions are, for an aggregator function 
max

௫
𝑓(𝑋): 𝑝௥ ≤ 𝑝௥𝑋௥ Where 𝑋௥ is the solution and maximization takes place over a concave region of the 

feasible set. The theorem has been proved by econometricians like Frisch, Wald, Afriat and Pollak. It obviates the 
need of estimating the aggregator function, i.e. the coefficients in matrix A. If an aggregator function can be 
expressed as a quantity index, then it is said that the quantity index is exact for that aggregator. An index is called 
superlative if it is exact for an aggregator function which is a second order approximation of a linearly 

homogenous arbitrary function. Using quadratic approximation lemma that says 𝑓(𝑧ଵ) −  𝑓(𝑧଴) =  
ଵ

ଶ
[𝛻𝑓(𝑧ଵ) +

𝛻𝑓(𝑧଴)](𝑧ଵ − 𝑧଴) where 𝛻𝑓(𝑧௥) is the gradient vector, the paper proves that Tornquvist is a superlative index for 
translog aggregator functions. This paper provides valuable insight to many important concepts related to index 
number theory. 
Battese and Coelli (1992) presents the mechanics of Error Component Model (ECM) and its application on paddy 
production panel data for a village in India. The models propose several alternatives for the ineffi- ciency 
component of the composite error term. Besides the one specification discussed in the methodology section, paper 
proposes this 𝜂௜௧ = 1 + 𝜂ଵ(𝑡 − 𝑇) +  𝜂ଶ(𝑡 − 𝑇)ଶ two parameter specification. Additionally, the alternative 
specification proposed is 𝛾(𝑡) = [1 + exp(𝑏𝑡 + 𝑐𝑡ଶ)ିଵ] where 𝑡 = 1,2 …  𝑒𝑡𝑐. The estimation model takes into 
account inputs such as irrigated and unirrigated land, bullock, labour, cost of inputs to build a model for the total 
value of output. 
A comprehensive exposition of methodology and application of foundational concepts of Stochastic Frontier 
Analysis (SFA) has been provided in Kumbhakar and Lovell (2003). The book starts by introducing the basic 
concepts of efficiency, productivity, and the need for measuring them in various economic contexts. It 
distinguishes between technical efficiency (the ability to produce the maximum output from a given set of in- 
puts) and allocative efficiency (the ability to use inputs in optimal proportions given their prices). The book 
presents the theoretical foundations of SFA, emphasizing its stochastic nature, which accounts for random errors 
in production processes. He discusses the formulation of the stochastic frontier production function and the role 
of the error components—representing inefficiency and statistical noise. It also discusses ad- vanced topics in 
SFA, such as time-varying inefficiency, panel data applications, and the integration of SFA with other 
methodologies like data envelopment analysis (DEA). Kumbhakar highlights the flexibility of SFA in 
accommodating different assumptions about the distribution of inefficiencies.  
Kathuria et al. (2011) conducts a comprehensive analysis of productivity measurement methodologies in the 
context of Indian manufacturing. It specifically compares various approaches, including Total Factor Productivity 
(TFP) measurement techniques, such as the Cobb-Douglas production function, stochastic frontier analysis (SFA), 
and data envelopment analysis (DEA). The authors aim to highlight the strengths and weaknesses of each method, 
as well as their implications for understanding productivity dynamics in the Indian manufacturing sector. The 
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paper outlines different productivity measurement methods, detailing how each approach quantifies productivity 
and accounts for inputs and outputs. The authors emphasize the importance of selecting an appropriate 
methodology based on the specific characteristics of the industry being studied. Using data from Indian 
manufacturing firms, the authors apply the various methods to assess TFP growth over a specified period. They 
analyze how each approach handles issues such as input quality, returns to scale, and efficiency. 
Goldar (2004) analyzes the productivity trends in Indian manufacturing before and after the economic re- forms 
initiated in the early 1990s. The study aims to assess the impact of these reforms on productivity growth, 
efficiency, and the overall competitiveness of the manufacturing sector. The paper begins by outlining the 
economic environment of India prior to the reforms, highlighting the challenges faced by the manufacturing 
sector, including protectionist policies, inefficiencies, and technological stagnation. The authors describe the 
major reforms implemented in the early 1990s, including liberalization, deregulation, and trade policy changes. 
These reforms aimed to enhance competition, encourage foreign investment, and promote techno- logical 
advancements. Employing various techniques of analysing the TFP, the paper reports a significant increase in 
productivity in the post-reform period compared to the pre-reform period. TFP growth rates improved markedly, 
suggesting that the reforms contributed to greater efficiency and competitiveness in the manufacturing sector. 
Technical efficiency of a firm can be transient or long term. The Stochastic Frontier Model on cross sectional data 
does not capture the distinction between long term and transient inefficiencies. While firm level heterogeneities 
can be modelled using panel data as ln 𝑌௜௧ = (𝜔௜ −  𝜂௜) + 𝑓(ln 𝑋௜௧; 𝛽) + (𝑉௜௧– 𝑈௜௧) where 𝜔௜ captures the 
unobserved heterogenieties, 𝜂௜  represents the persistent inefficiencies and 𝑈௜௧  is the transient inefficiency 
component. The parameters of the model are estimated using simulated log likelihood function. The paper 
further explores the beta convergence, also called the catching up effects. The paper concludes that there 
exist catching up by inefficient firms despite the existence of both transient and persistent inefficiencies. 
Joshi and Singh (2012) examined the technical efficiency of the Indian garment industry using cross-
sectional data from 275 firms across various states for the year 2004–2005. They employed a two-stage 
analytical pro- cess: first, Data Envelopment Analysis (DEA) was used to measure technical efficiency 
scores, and then Tobit regression was applied to identify factors affecting efficiency. The findings revealed 
that garment firms could potentially increase output by 32.1% by improving input-use efficiency and 
optimizing plant size. Overall technical efficiency was found to be more sensitive to variations in pure 
technical efficiency than scale efficiency. The study also indicated that micro-sized firms were more efficient 
in resource utilization than small and medium-sized firms. Factors such as labor productivity, wages per 
employee, and labor-staff ratio positively influenced efficiency, while investment in plant and machinery 
and outstanding loans had a negative impact. 
An application of the Error Component Model and the Technical Efficiency Effect (TEE) model can be seen in 
Rodr´ıguez and Elasraag (2015). In the TEE model, the inefficiency term 𝑈௜௧ is assumed to have 𝑁ା (𝑚௜௧, 𝜎ଶ)  
distribution. Where 𝑚௜௧ =  𝑧௜௧𝛿 with 𝑧௜௧ being the vector of variables that may have an effect on the 
technical efficieny of the firm and δ being a vector of parameters to be estimated. The paper assesses 
and decomposes the TFP in Egyptian cotton production using both the approaches. Based on the 
available data and estimations, this research makes a distinct contribution to the existing literature by 
providing a comprehensive and detailed estimation and decomposition of Total Factor Produc- tivity 
(TFP) in the Indian textile industry using panel data over an extended time period. While previous 
studies have predominantly focused on TFP estimation using aggregate data or cross-sectional 
approaches, this research employs a more advanced methodological framework by combining the 
Divisia Tornqvist index for TFP decomposition with the Error Component Model (ECM) for estimating 
the stochastic frontier. This allows for the dynamic analysis of firm-level efficiency over time, capturing 
both technical inefficiencies and the role of time-varying factors such as technological progress. 
Moreover, this study addresses the specific gaps in the literature regarding the interplay between 
allocative efficiency, scale efficiency, and technical efficiency within the Indian textile sector—areas 
that have been relatively under explored in previous research. By focusing on firm-level data, this 
research provides granular insights into how productivity drivers differ across firms and over time, 
highlighting the impact of technological adoption, policy reforms, and structural shifts in the sector. 
Ultimately, this study fills the research gap in the dynamic decomposition of TFP within an industry 
that is crucial to India’s economic growth and international competitiveness, providing a more nuanced 
understanding of the factors affecting productivity growth at the micro level.  
 
3. Data 
Year by year raw date of the Annual Survey of Industries (ASI) was released in block (A to J) by the Data 
Informatics and Innovation Division (DIID) of the Ministry of Statistics and Programme Implementation 
(MoSPI), Government of India. The factory identifiers and all five-digit codes are contained in Block A of the 
raw data, whereas the other blocks contain information on the factor input and output variables. The factory 
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identifier was mapped to every block in Excel using the vlookup tool. Ultimately, a single sheet with all the 
pertinent block data was assembled. By eliminating manufacturers with insufficient year-by-year data, the final 
panel data was acquired. KNN imputation with K = 4 was used when needed to fill in the missing data. With 209–
214 textile companies and 87–91 apparel companies, the panel that was created as a result is quite uneven. The 
examination of the textile industry is carried out with data from 1998 to 2018, while the analysis of the clothing 
industry is restricted to data from 2007 to 2018 because of data accessibility issues. The research made use of 
output, capital, labour, energy, and material data, and it followed a standard procedure for data editing for the 
apparel and textile industries. The factor inputs and output have the following measurement values. The ex-factory 
value of output determines how output is measured. The total purchase price of electricity generated on-site, 
electricity purchased, fuels such as coal, diesel and petrol, and other fuels consumed is used to calculate energy. 
Salary and bonuses, as well as welfare costs for employees hired directly or under contract, are used to quantify 
the labour factor input. The closing value of working capital indicates the total domestic input, which comprises 
inventories of raw materials,  

Table 1: Summary Statistics (in Rupees lakhs) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: Distribution of Output and Factor Inputs 
 

 
spares, work-in-progress, and finished goods. This total is used to calculate the material input. The purchase value 
at delivery serves as the benchmark for imported material. Conversely, capital assets comprise plant, machinery, 
computers, and transportation machinery and are valued at closing, net of depreciation. With a variety of deflators, 

Statistic Capital Labor Material Energy Output 

Min 0.48 14.96 0.17 4.25 8.47 
1st Qu. 379.7 297.7 552.3 354.7 2912.0 
Median 1163.0 621.8 1524.0 716.2 6339.0 
Mean 4461.0 1191.0 3983.0 1307.0 13970.0 
3rd Qu. 3759.0 1476.0 3629.0 1426.0 13440.0 
Max 599100.0 20750.0 83710.0 47690.0 231000.0 
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the data was inflated from nominal to real values. These deflators included the consumer price index-industrial 
workers (CPI-IW), for labour wages; the wholesale price index (WPI) for manufacturing of textile and apparel 
group; output; the WPI for manufacturing of machinery for textile apparel and leather products; capital assets; the 
WPI for fuel and power; the energy consumption; the WPI for non-food articles (fibre group); and the WPI for 
material. 2011–2012 served as the base year for the deflation of  
all data used in the research of the textile and apparel industries, with the exception of labour salaries. Using 2016 
as the base year, labour pay values are deflated. The investigation is carried out over a period of time that includes 
several WPI and CPI pricing series in addition to multiple NIC classification schemes. One pricing series was 
linked to another using the appropriate linking factors, and care was taken to make sure the correct NIC codes 
were used when mapping the firms. 
The scatter plot of energy uses versus output, with both variables represented on a logarithmic scale, reveals a 
positive relationship between the two. As energy use increases, output tends to rise as well, indicating that higher 
energy consumption is generally associated with greater production levels. However, the scatter of points also 
suggests that this relationship is not perfectly linear, and the degree to which energy contributes to output appears 
to vary among firms. 
The positive association implies that energy is an important input in the production process. Firms that consume 
more energy tend to have higher output, potentially reflecting the energy-intensive nature of the sector. However, 
the dispersion of the points also indicates that factors other than energy, such as technology, labor, or capital 
efficiency, likely play significant roles in determining output. While energy is a key driver of output, the variability 
in the relationship suggests that firms may benefit from optimizing energy use in conjunction with other inputs to 
maximize their productivity. Further analysis could investigate the efficiency of energy use across firms, as well 
as how technological factors or scale efficiencies contribute to the differences observed in the energy-output 
relationship. 
The below table presents a summary statistics of all input variables and output. 
The presence of outliers in all input and output variables is clear from the descriptive statistics as well as the 
histograms. These outliers were removed before performing regression. 1.5 times the interquartile range below 
the quartile one data point was taken as the lower bound while 1.5 times the interquartile range above the quartile 
three data point was taken as the upper bound. 
 

4. Methodology 
The input output relationship for firms can be modelled by the production function. 𝑸𝒊𝒕 = 𝒇(𝑿𝒊𝒕, 𝒕;  𝜷), where 
𝒇(𝑿𝒊𝒕, 𝒕;  𝜷) is the deterministic kernal of the production function which represents the production frontier, that 
is, the maximum achievable output from the given input under the given technology. This function can take several 
forms such unit elasticity of substitution, constant elasticity of substitution, translog production function etc. 𝑸𝒊𝒕 
represents the output of firm 𝒊 at time 𝒕 and 𝑿𝒊𝒕 represents the input vector for firm 𝒊 at time 𝒕, 𝜷 is the vector of 
parameters to be estimated and 𝒕 is the variable representing time. This is an example of a deterministic frontier. 
In reality, the actual output of firms may differ from the one estimated by the frontier due to a) the idiosyncratic 
error, also known as random fluctuations or random noise in the data and b) the presence of technical inefficiency 
in the firms. The two phenomenon can be included in the model as  
 

𝑸𝒊𝒕 = 𝒇(𝑿𝒊𝒕, 𝒕; 𝜷)𝒆𝒗𝒊𝒕𝒆ି𝒖𝒊𝒕   (1) 
 

 Where 𝒗𝒊𝒕 is the idiosyncratic error term and – 𝒖𝒊𝒕, with 𝒖𝒊𝒕 ≥ 𝟎, is the inefficiency term for the firm 𝒊 at time 𝒕.   
The negative sign on the inefficiency terms indicates that its effect is to pull the firm down from the frontier. 
Inclusion of these terms in the exponential form helps in log linearisation of the model as 

Ln(Qit) = Ln (f (Xit, t; β)) + ϵit 

where 𝜖௜௧ =  𝑣௜௧ – 𝑢௜௧  is called the composite error term. The estimation of β parameters and firm specific 
inefficiencies require making distributional assumptions on the idiosyncratic error term and the inefficiency 
term. Although there are many options for distributional assumption on the two terms, the most commonly 

used for empirical analysis are, 𝑣௜௧  
𝑖𝑖𝑑
∼

𝑁(0, 𝜎௩) and 𝑢௜௧
𝑖𝑖𝑑
∼

 𝑁ା(𝜇, 𝜎௨) that is, the idiosyncratic error has a 

normal distribution and the inefficiency term has a half normal distribution (normal distribution truncated 
above at the mean). With this model, the technical efficiency of a firm can be estimated 𝑎𝑠 

𝑒ି௨೔೟  =  
𝑄௜௧

𝑓(𝑋𝑖𝑡, 𝑡;  𝛽)
  

 
for the firm i at time t. 
The model proposed by Battese and Coelli (1992), also known as the Error Component Model (ECM) is the most 
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widely used model for estimation of total factor productivity and its components. This paper used ECM for the 
estimation of the stochastic frontier. The essential features of the model are presented here for a ready reference 
to the reader. In the ECM model, the error term, 𝒖𝒊𝒕 is defined as 𝒖𝒊𝒕 = 𝒖𝒊 𝐞𝐱𝐩[−𝜼 (𝒕 − 𝑻)], where the distribution 

of 𝒖𝒊 is taken to be 𝒖𝒊 
𝒊𝒊𝒅
∼

 𝑵ା(𝝁, 𝝈𝒖
𝟐) that is, it has a firm specific part 𝒖 with the half normal distribution 

(truncation at zero of the normal distribution with mean 𝝁 and variance 𝝈𝒖
𝟐) and a time specific part 𝐞𝐱𝐩 [−𝜼(𝒕 −

𝑻)]. Here 𝜼 is a parameter representing proportional rate of change in technical efficiency. if 𝜼 is positive then 
there is improvement in technical efficiency overtime while a negative 𝜼 represents deteriorating technical 
efficiency trend. This can be easliy seen if one considers how 𝑸𝒊𝒕,  the output will be impacted with positive and 
negative sing of 𝜼.  
The derivative of the deterministic frontier, 𝒇 (𝑿𝒊𝒕, 𝒕;  𝜷), with respect to time is called the technological progress 
(TP) and it graphically represents shift in the frontier with time. 
 
𝒅 𝐥𝐧 𝒇(𝑿𝒊𝒕,𝒕;𝜷)

𝒅𝒕
=  

𝝏 𝐥𝐧 𝒇(𝑿𝒊𝒕,𝒕;𝜷)

𝝏𝒕
+                             

𝝏 𝐥𝐧 𝒇(𝑿𝒊𝒕,𝒕;𝜷)

𝝏 𝐥𝐧 𝑿

𝒅 𝒍𝒏 𝑿

𝒅𝑿

𝒅𝑿

𝒅𝒕
  

  
 

Here the term, 
𝝏 𝐥𝐧 𝒇(𝑿𝒊𝒕,𝒕;𝜷)

𝝏 𝐥𝐧 𝑿
 is the elasticity of the 𝒊𝒕𝒉  input and the term 

𝒅 𝒍𝒏 𝑿

𝒅𝑿

𝒅𝑿

𝒅𝒕
 , being the derivative of the 

natural log of a variable,  is it proportionate rate of change. Hence, 
     
𝒅 𝐥𝐧 𝒇(𝑿𝒊𝒕,𝒕;𝜷)

𝒅𝒕
=  𝑻𝑷 + ∑ 𝑬𝒊 𝒙𝒊̇𝒊   (2) 

 
Where 𝑬𝒊 represents the elasticity of the 𝒊𝒕𝒉 input. The summation is due to there being more than input and the 
chain rule of differentiation. Also the time derivative of output in log form represents its proportionate rate of 
change and, by combining equation (1) and (2), can be represented as,  
 

𝑸ଙ𝒕 = 𝑻𝑷 + ̇ ∑ 𝑬𝒊 𝒙ଙ̇𝒊 −  
𝒅𝒖𝒊𝒕

𝒅𝒕
  (3) 

 
The dot above 𝑸𝒊𝒕 represents the proportionate rate of change in the outut. The derivative of the ran- dom noise 
with respect to time is zero because of it random nature. This represents the decomposition of the change in output 
into components of technical progress, weighted sum of change in input with elasticities being the weight and 

change in technical efficiency which is represented by 
𝒅𝒖𝒊𝒕

𝒅𝒕
 , for each firm in each year.  

The total factor productivity is defined as the portion of output growth that cannot be explained by growth in 
factor input. Total Factor Productivity (TFP) is a measure of the efficiency with which a firm or an economy 
transforms multiple inputs—such as labor, capital, energy, and materials—into output. It captures the portion of 
output growth that cannot be explained by the growth in input usage. Instead, TFP reflects improvements in the 
production process, such as advancements in technology, better management practices in terms of allocation of 
inputs, innovation, and improvements in worker skills, scale efficiency among other factors.  
In the present context, the Total Factor Productivity Growth (TFPG) can be expressed as,  
 
𝑻𝑭𝑷̇ =  𝑸̇ − ∑ 𝑪𝒊 𝑿ଙ

̇
𝒊    (4) 

 
This is the discrete time approximation of the Divisia Index and is know as Tornquvist Index of Total Factor 
Productivity.  
Substituting equation (1) in equation (2) gives, 
 

𝑻𝑭𝑷̇ = 𝑻𝑷 +  ∑ 𝑬𝒊𝑿ଙ
̇  −𝒊  ∑ 𝑪𝒊𝑿ଙ

̇
𝒊 −  

𝒅𝒖𝒊𝒕

𝒅𝒕
  (5) 

 
This equation implies that TFPG is a residual and provides a non-parametric way of measuring it. This non-
parametric measure does not assume any functional form for the production technology. It also does not make any 
assumption related to the return to scale. Equation (3) can be rewritten as, 
 

𝑻𝑭𝑷𝑮 = 𝑻𝑷 − 
𝒅𝒖𝒊𝒕

𝒅𝒕
+ (𝑹𝑻𝑺 − 𝟏 ) ∑ 𝝐𝒋  𝑿ଚ

̇
𝒋 +  ∑ (𝝐𝒋 − 𝑪𝒋) 𝑿ଚ

̇
𝒋      (6) 

 

where, 𝑻𝑭𝑷𝑮 is the rate of Total Factor Productivity Growth, 𝑻𝑷 is Technical Progress, 
𝒅𝒖𝒊𝒕

𝒅𝒕
 represents the change 

in technical inefficiency over time, 𝑹𝑻𝑺 is Returns to Scale which equals the sum of elasticities of all the factor 
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inputs, 𝝐𝒋 is the elasticity share of the 𝒋𝒕𝒉 input, 𝑪𝒋 is the cost share of the 𝒋𝒕𝒉 input, 𝑿ଚ
̇   is the growth rate of the 

𝒋𝒕𝒉 input. Equation (6) decomposes TFPG into different components. 
 
 The translog production technology used in the present study is as follows. 
 
𝑳𝒏(𝒐𝒖𝒕𝒑𝒖𝒕𝒊𝒕) =  𝜷𝟎 +  𝜷𝑲𝑳𝒏(𝒄𝒂𝒑𝒊𝒕𝒂𝒍𝒊𝒕) +  𝜷𝑳𝑳𝒏(𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕) +  𝜷𝑴𝑳𝒏(𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕) +

 𝜷𝑬𝑳𝒏(𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕) +  
𝟏

𝟐
𝜷𝑲𝑲  𝐋𝐧൫𝐜𝐚𝐩𝐢𝐭𝐚𝐥𝐢𝐭

𝟐 ൯ + 
𝟏

𝟐
𝜷𝑳𝑳𝑳𝒏൫𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕

𝟐 ൯ +  
𝟏

𝟐
𝜷𝑴𝑴𝑳𝒏൫𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕

𝟐 ൯ +
𝟏

𝟐
 𝜷𝑬𝑬𝑳𝒏൫𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕

𝟐 ൯ +  𝜷𝑲𝑳𝑳𝒏(𝒄𝒂𝒑𝒊𝒕𝒂𝒍𝒊𝒕)𝑳𝒏(𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕) +  𝜷𝑲𝑴𝑳𝒏(𝒄𝒂𝒑𝒊𝒕𝒂𝒍𝒊𝒕) 𝑳𝒏(𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕) +

 𝜷𝑲𝑬𝑳𝒏(𝒄𝒂𝒑𝒊𝒕𝒂𝒍𝒊𝒕)𝑳𝒏(𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕) +  𝜷𝑳𝑴𝑳𝒏(𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕) 𝐋𝐧(𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕) +

𝜷𝑳𝑬 𝑳𝒏(𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕)𝑳𝒏(𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕) +  𝜷𝑴𝑬𝑳𝒏(𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕)𝑳𝒏(𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕) +  𝜷𝒕𝒕 +
𝟏

𝟐
𝜷𝒕𝒕𝒕𝟐 +

 𝜷𝑲𝒕𝑳𝒏(𝒄𝒂𝒑𝒊𝒕𝒂𝒍𝒊𝒕)𝒕 +  𝜷𝑳𝒕𝑳𝒏(𝒍𝒂𝒃𝒐𝒖𝒓𝒊𝒕)𝒕 +  𝜷𝑴𝒕𝑳𝒏(𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍𝒊𝒕)𝒕 +  𝜷𝑬𝒕𝑳𝒏(𝒆𝒏𝒆𝒓𝒈𝒚𝒊𝒕)𝒕     
 (7) 
   Results and Discussions  
Below is the table 2 of stochastic frontier regression output. The regression summary from the stochastic frontier 
analysis model provides several key insights into the production process and efficiency dynamics. Firstly, it is 
observed that the energy input has a highly significant and positive coefficient, indicating that energy plays a 
crucial role in enhancing output. However, the interaction between material and energy inputs is negative and 
significant, suggesting a complex relationship where increasing energy use may reduce the marginal productivity 
of materials. 
The negative coefficients for all interaction terms involving energy in the stochastic frontier regression, except 
for the squared term of energy, suggest that there is a diminishing marginal effect of energy when combined with 
other inputs like labor, capital, and materials. This implies that as energy is used in conjunction with these other 
inputs, the overall productivity gains from energy decreases. In economic terms, this could indicate that energy is 
acting as a substitute rather than a complement to these inputs, reducing their marginal productivity. This could 
happen in situations where excessive energy use might not be effectively enhancing production due to 
inefficiencies or where an optimal balance between energy and other inputs has not been achieved. 
Additionally, significant positive interaction terms, such as those between labor and materials and between capital 
and materials, indicate complementarity between these inputs.  
Interestingly, the coefficients for the time trend and its square are both negative and significant. This suggests that 
while there has been technical progress over time, this progress may be slowing down. This deceleration in 
technical progress could be due to technological saturation or a reduction in innovation within the sector. The 
model also sheds light on the returns to scale for different inputs. Positive coefficients for squared terms like the 
energy term suggest increasing returns to the energy input, while negative coefficients such as for material indicate 
diminishing returns to material input.  
The analysis further reveals complementarity and substitution effects among the inputs. Positive interaction terms 
between labor and materials and between capital and materials suggest that these inputs are complements, where 
an increase in one input enhances the productivity of the other. Conversely, negative interaction terms, such as 
those between labor and energy and between material and energy, imply substitution effects or diminishing 
marginal returns when these inputs are used together. 
The coefficient gamma, which is highly significant, indicates that a large portion of the total variance in output is 
due to inefficiency rather than random noise. This finding suggests that there is considerable room for 
improvement in the technical efficiency of firms. The log-likelihood value of -1617.013 provides a measure of 
model fit, and while this value alone does not indicate goodness-of-fit, it can be useful for comparing this model 
to others, such as the Cobb-Douglas specification. 
The estimated value of 𝜼 is -0.0047, indicating a slight but consistent decline in technical efficiency over time for 
the firms in the sample.  
The analysis is conducted on a panel data set with 213 cross-sections (firms) over 21 time periods, indicating a 
robust longitudinal dataset. However, the data on 35 firms are missing in the original dataset, which should be 
considered when interpreting the results. 
These findings have several implications. The significant impact of energy on output suggests that energy 
efficiency measures could enhance productivity. However, the negative interaction with materials indicates that 
careful management is required to optimize the use of these inputs together. The slowing technical progress 
suggested by the negative time coefficients may imply a need for innovation  
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Table 2: Summary of Stochastic Frontier Analysis Model 

   

Variable Estimate Std. Error z-value Pr(> |z|) 

Intercept 8.2274 2.1813 3.772 0.00016 *** 
log(labor) -0.1510 0.2787 -0.542 0.58795 
log(capital) -0.1071 0.1040 -1.030 0.30313 
log(material) -0.3279 0.1457 -2.251 0.02438 * 
log(energy) 1.0268 0.2311 4.444 8.84 × 10−6 *** 
log(labor)2 0.0256 0.0222 1.152 0.24948 
log(capital)2 0.0064 0.0050 1.294 0.19561 
log(material)2 -0.0305 0.0117 -2.602 0.00928 ** 
log(energy)2 0.0825 0.0202 4.076 4.58 × 10−5 *** 
log(labor) · log(capital) -0.0322 0.0149 -2.166 0.03029 * 
log(labor) · log(material) 0.1335 0.0231 5.779 7.51 × 10−9 *** 
log(labor) · log(energy) -0.1168 0.0323 -3.613 0.00030 *** 
log(capital) · log(material) 0.0863 0.0122 7.081 1.43 × 10−12 *** 
log(capital) · log(energy) -0.0401 0.0161 -2.486 0.01293 * 
log(material) · log(energy) -0.0895 0.0250 -3.583 0.00034 *** 
time -0.0659 0.0218 -3.018 0.00254 ** 
time2 -0.0018 0.0003 -5.488 4.06 × 10−8 *** 
time · log(labor) 0.0018 0.0014 1.294 0.19561 
time · log(capital) -0.0092 0.0009 -10.307 < 2.2 × 10−16 *** 
time · log(material) -0.0021 0.0012 -1.793 0.07295 . 
time · log(energy) 0.0151 0.0017 8.694 < 2.2 × 10−16 *** 
sigmaSq 0.5408 0.0667 8.110 5.08 × 10−16 *** 
gamma 0.8066 0.0248 32.533 < 2.2 × 10−16 *** 
η -.0047 .0031 -1.4782 .1393 

Model Statistics     

Log-Likelihood -1617.013    

 
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Panel Data Information: 
Number of cross-sections = 213 Number of time periods = 21 
Total number of observations = 4438 (35 observations not included in the panel) 

 
 
policies or investments in new technologies within the industry. 
This regression analysis offers valuable insights into the production structure and efficiency dynamics of the firms. 
It highlights the importance of managing input interactions, especially between energy and materials, and suggests 
that there may be opportunities to enhance technical efficiency. Further exploration of technical progress and 
efficiency changes over time could provide a deeper understanding of productivity dynamics in this sector. The 
analysis of Total Factor Productivity Growth (TFPG), its components—allocative efficiency, scale efficiency and 
the firm-wise distribution of technical progress provides a comprehensive picture of the dynamics affecting 
productivity in the sector (Table 3). Each of these factors plays a critical role in determining overall firm 
performance, and the implications of their behavior over time reveal both the challenges and opportunities present 
within the industry.  
The periods of negative TFPG are particularly concerning, as they indicate that some firms are failing to maintain 
productivity levels, which could have long-term consequences for competitiveness in the sector. The general 
variability points to an underlying structural issue where firms may not be fully exploiting their resources or 
responding adequately to changing market dynamics. The allocative efficiency component, which measures how 
well firms allocate their inputs to maximize output, shows a more stable yet slightly negative trend. This consis- 
tent underperformance in allocative efficiency suggests that many firms are not optimizing their input use. This 
could be due to a variety of factors, such as mismanagement of resources, failure to adapt to changing input prices, 
or rigidities in production processes.  A persistently negative allocative efficiency trend implies that even though 
firms may be investing in inputs, they are not doing so in a way that maximizes output, thereby undermining 
potential productivity gains. This inefficiency is a key area of concern and suggests that improving resource 
allocation strategies could yield significant improvements in productivity growth. Scale efficiency, which reflects 
the gains or losses from changes in the scale of production, also fluctuates over time but generally exhibits positive 
values.   This indicates that, on average, firms are benefiting from increasing returns to scale, meaning that 
expanding production leads to higher productivity. However, the fluctuations in scale efficiency suggest that these 
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gains are not consistent across all firms or over time. Some firms may be expanding too rapidly or too slowly 
relative to their optimal scale, while others may not be able to exploit economies of scale due to structural or 
operational limitations. The positive but variable scale efficiency indicates that while many firms are benefiting 
from increased scale, there is still room for improvement in how firms manage production expansion. When 
integrating the implications of TFPG, allocative efficiency, scale efficiency, and technical progress, a clear picture 
emerges of a sector that is experiencing uneven growth and faces significant challenges in realizing its full 
productivity potential.  The fluctuating and often negative TFPG is a reflection of inefficiencies in both resource 
allocation and the adoption of new technologies. Despite some firms benefiting from economies of scale, the 
overall sector appears to struggle with consistent productivity improvements. The persistent underperformance in 
allocative efficiency suggests that firms are not making the most of the resources they have, whether due to 
misallocation, mismanagement, or external constraints. This inefficiency, combined with the slow rate of technical 
progress for most firms, creates a situation where firms are not able to leverage technological advancements to 
improve their productivity. The histogram of technical progress further reinforces this point, as only a few firms 
are making meaningful strides in improving their technology, while many are either stagnant or regressing. For 
firms in the sector to improve their productivity, efforts need to be focused on several key areas.  First, firms must 
improve how they allocate resources to maximize output, which may require better management practices, 
investment in training, or more flexible production processes. Second, firms need to actively pursue technological 
advancements, whether through internal innovation or the adoption of external technologies. This will be crucial 
in driving long-term productivity growth and ensuring that firms remain competitive in an increasingly globalized 
market. Lastly, firms should carefully manage their scale of production, ensuring that they can reap the benefits 
of increasing returns to scale without overextending their resources or facing diminishing returns. In conclusion, 
the analysis suggests that the sector is characterized by uneven growth, with some firms benefiting from scale 
efficiencies and technological advancements, while others lag behind due to poor resource allocation and 
stagnating technical progress. For the sector to achieve sustained and broad-based productivity growth, significant 
improvements in allocative efficiency and technological innovation will be essential. Addressing these 
inefficiencies will enable firms to fully capitalize on their scale advantages and drive more consistent TFPG over 
time.  
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5. Conclusion and Policy Implications 
The results reveal significant variability in TFPG, with periods of both positive and negative growth. This 
inconsistency suggests that firms within the sector have faced challenges in maintaining stable productivity 
growth, potentially due to market fluctuations, technological limitations, or inefficiencies in resource utilization. 
The overall fluctuating trend in TFPG indicates that firms have struggled to continuously improve their output per 
unit of resources deployed, which is crucial for long-term productivity gains and competitiveness in both domestic 
and inter- national markets. Technical progress, while generally positive, has been minimal over the years, with 
some periods even showing negative values. This slow rate of technological advancement indicates that many 
firms are not adopting new technologies at the pace required to remain competitive. Firms that do manage to adopt 
new technologies tend to experience more significant productivity gains, but these firms are the exception rather 

Year Technical Progress Allocative Efficiency Scale Efficiency TFPG Technical Efficiency 

1998 0.0247 NA NA 0.0247 0.8040 

1999 0.0237 -0.0581 0.0578 0.0120 0.7926 

2000 0.0233 -0.2284 0.1671 -0.0500 0.7802 

2001 0.0216 -0.0928 0.0507 -0.0329 0.7671 

2002 0.0204 0.0654 0.1363 0.2090 0.7539 

2003 0.0187 0.0106 0.0684 0.0841 0.7414 

2004 0.0176 -0.0576 0.0628 0.0086 0.7276 

2005 0.0153 0.0005 0.1396 0.1407 0.7131 

2006 0.0121 -0.0164 0.0905 0.0709 0.6978 

2007 0.0105 -0.1375 0.0931 -0.0498 0.6813 

2008 0.0072 -0.4239 0.0388 -0.3950 0.6641 

2009 0.0066 -0.0654 0.3631 0.2871 0.6465 

2010 0.0061 -0.4105 0.2106 -0.2115 0.6255 

2011 0.0044 -0.6888 0.6009 -0.1015 0.6102 

2012 0.0064 -0.5535 0.2065 -0.3595 0.5933 

2013 0.0044 -0.1794 0.1995 0.0051 0.5743 

2014 0.0040 -0.5668 0.0869 -0.4952 0.5559 

2015 0.0017 -1.1062 0.3125 -0.8117 0.5351 

2016 -0.0016 0.0588 0.1003 0.1373 0.5139 

2017 -0.0026 -0.1703 0.0769 -0.1166 0.4947 

2018 -0.0045 -0.0296 0.0436 -0.0110 0.4764 
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than the rule. The small improvements in technical progress suggest that the sector may be falling behind in terms 
of innovation and technological upgrades, which could negatively impact the sector’s export competitiveness. As 
global competition increases, the sector must accelerate its technological progress to keep up with com- petitors 
who are investing in more advanced production techniques and technologies. Technical efficiency, another critical 
component, has shown a declining trend, indicating that firms are be- coming less capable of maximizing output 
with the given resources. This decline in technical efficiency means that more resources are being wasted or 
underutilized, which directly reduces productivity. For a sector like textiles, where margins are often thin, 
technical inefficiency can severely impact profitability and output per unit of resources deployed. This 
inefficiency not only hampers the firms’ ability to compete in export markets but also limits their ability to create 
new jobs, as more resources are being spent to achieve the same or even lower output levels. Allocative efficiency 
has also remained low and somewhat negative in certain periods, reflecting the sector’s difficulty in optimally 
allocating resources such as labor, capital, and energy. This misallocation of resources implies that firms are not 
making the best possible use of their inputs, further reducing productivity. Poor allocative efficiency leads to 
higher costs per unit of output, weakening firms’ competitive edge in global markets where cost efficiency is key. 
This inefficiency also affects employment generation negatively, as firms struggle to grow and expand due to their 
inability to fully optimize input allocation. On the other hand, scale efficiency has fluctuated over time but has 
generally remained positive, indicating that many firms have managed to benefit from economies of scale to some 
extent. Firms that are able to scale up production efficiently tend to experience cost savings and productivity gains, 
which are critical for boosting output per unit of resources deployed. However, the variability in scale efficiency 
across firms suggests that not all firms are operating at their optimal production scale, which further contributes 
to the inconsistent growth in Total Factor Productivity. For firms that are able to achieve greater scale efficiency, 
the potential for increasing output without proportional increases in input could lead to better export performance 
and higher employment opportunities. Still, the uneven distribution of these benefits across the sector highlights 
the need for targeted policies to help smaller firms grow and optimize their scale. To address the challenges 
identified in the analysis of TFPG and its components, several policy measures need to be considered. First, there 
is a clear need to accelerate technological adoption in the textile sector. Government incentives for research and 
development, along with subsidies or tax breaks for firms that invest in advanced production technologies, can 
help drive technical progress. Additionally, providing platforms for knowledge sharing and technology transfer 
between firms, particularly between large, technologically advanced firms and smaller enterprises, can help 
disseminate best practices and innovations more widely across the sector. Second, the decline in technical 
efficiency suggests that firms may benefit from programs aimed at improving operational efficiency. This could 
include government-sponsored training programs focused on process optimization, lean manufacturing, and 
resource management. Encouraging firms to adopt modern management practices and providing them with the 
tools and knowledge to do so would be key in reversing the trend of declining technical efficiency. Such 
improvements in operational efficiency could lead to higher output per unit of input and create a more competitive 
export base for the textile sector. Allocative efficiency can be improved by implementing policies that promote 
more flexible and responsive resource allocation. This could involve reforms in labor and capital markets to reduce 
rigidities that prevent firms from reallocating resources efficiently. Additionally, introducing financial products 
or credit facilities tailored to the needs of the textile sector could help firms invest in the right mix of inputs, such 
as new machinery, skilled labor, or energy-saving technologies, which would ultimately improve allocative 
efficiency. In terms of scale efficiency, policies that promote the growth and expansion of smaller firms, such as 
access to affordable financing, business development services, and market access programs, could help firms 
achieve the scale necessary to optimize production costs. By helping smaller firms grow, the sector could benefit 
from the increased productivity that comes with scaling production, which would improve competitiveness in 
both domestic and international markets. Moreover, the resulting increase in production capacity could lead to 
more employment opportunities within the sector. Finally, a focus on enhancing export competitiveness is crucial. 
The findings suggest that inconsistent productivity growth is limiting the sector’s ability to compete 
internationally. By improving overall productivity through better technology, resource allocation, and scaling, the 
textile sector could better position itself in global markets. Policymakers could focus on reducing trade barriers, 
negotiating better trade agreements, and supporting export marketing initiatives to help firms penetrate new 
markets and sustain long-term growth. In conclusion, the findings from the TFPG analysis reveal critical 
weaknesses in the textile sector’s productivity dynamics, driven by inefficiencies in technical progress, allocative 
efficiency, and technical efficiency. Addressing these inefficiencies through targeted policies will be crucial in 
improving output per unit of resources deployed, strengthening export competitiveness, and generating 
employment in the sector. By focusing on technology adoption, improving operational and allocative efficiency, 
and helping firms optimize their scale of production, the sector can achieve more consistent and sustainable 
productivity growth. 
 
 
 



Kislay Kashyap, Nalin Bharti 
 

Library Progress International| Vol.44 No.3 |Jul-Dec 2024                                                 18675 

 
6. References 

[1] Battese, G. E. and Coelli, T. J. (1992), ‘Frontier production  functions, technical efficiency and 
panel data: with application to paddy farmers in India’, Journal of productivity analysis 3, 
153–169. 

[2] Caves, D. W., Christensen, L. R. and Diewert, W. E. (1982), ‘The economic theory of index 
numbers and the measurement of input, output, and productivity’, Econometrica: journal of 
the Econometric Society 
pp. 1393–1414. 

[3] Coelli, T. J., Rao, D. P., O’Donnell, C. J. and Battese, G. E. (1998), ‘An introduction to 
productivity and efficiency analysis’, Boston, Estados Unidos: Kluwer academic publishers.  

[4] Dhiman, R. (2021), ‘Cointegration and causality testing for capital productivity, labour cost and 
export competitiveness of Indian textile industry’, International Journal of Business and 
Globalisation 29(4), 486– 505. 

[5] Dhiman, R., Kumar, V. and Rana, S. (2020), ‘Why export competitiveness differs within Indian 
textile industry? determinants and empirical evidence’, Review of International Business and 
Strategy 30(3), 375– 397. 

[6] Diewert, W. E. (1976), ‘Exact and superlative index numbers’, Journal of econometrics 4(2), 115–
145. 
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