Available online at www.bpasjournals.com

Bulletin of Pure and Applied Sciences.

Vol. 38E (Math & Stat.), No.1, 2019. P.17-24 Print version ISSN 0970 6577 Online version ISSN 2320 3226

DOI: 10.5958/2320-3226.2019.00002.X

ON PRIME AND SEMIPRIME INTUITIONISTIC FUZZY k-IDEALS OF HEMIRINGS

Workneh Agamar*

Author Affiliation:

Department of Mathematics, Dire Dawa University, Dire Dawa, Ethiopia

*Corresponding Author:

Workneh Agamar, Department of Mathematics, Dire Dawa University, Dire Dawa, Ethiopia

E-mail: worknehagamar@yahoo.com

Received on 08.08.2018, Revised on 22.11.2018, Accepted on 24.12.2018

Abstract: Hemirings are one of the Universal algebras generalizing an associative ring sharing the same properties as a ring except that the second binary operation is assumed to be a semigroup rather than a group. Many researchers made a detailed study on different aspects of hemirings. This paper introduces the notions of prime and semiprime intuitionistic fuzzy left k-ideals of hemirings. We also investigate some of their properties.

Keywords: Hemirings, Fuzzy left k-ideals, Intuitionistic fuzzy left k-ideals, prime intuitionistic fuzzy left k-ideals, semiprime intuitionistic fuzzy left k-ideals, Regular hemiring.

2010 AMS Mathematics Subject Classification: 16Y60, 16Z99, 03E72, 20N25

1. INTRODUCTION

After the introduction of fuzzy sets by Zadeh (1965) in his classic paper [1], its generalization called intuitionistic fuzzy set has been provided by Atanassov [2-3]. The concept of extensions of interval-valued intuitionistic fuzzy ideals in semirings was studied and some of the properties were discussed by Balasubramanian and Raja [4], and Thirumagaland and Murugadas [5] presented the three different types of intuitionistic fuzzy prime ideals of semirings. Abdullah et al. [6] developed the concept of (α, β) –intuitionistic fuzzy subhemiring and ideals of hemirings and they investigated some related properties. The notions of intuitionistic fuzzy left k-ideals of semirings and intuitionistic fuzzy left h-ideals of hemirings was introduced by Akram and Dudek [7] and by Dudek in [8] respectively. They described the characteristic, normal and completely normal intuitionistic fuzzy left k-ideals of semirings and intuitionistic fuzzy left h-ideals of hemirings respectively. Dheena and Mohanraaj in [9] introduced intuitionistic fuzzy right k-ideals of semirings. Balasubramanian and Raja [10] introduced the concept of the product of intuitionistic fuzzy k-ideals of semirings and proved some important properties. In this paper, we try to answer one of the question posed in the conclusion of Kumbhojkar [11]. In [11] the author concludes his paper by the comment, "In our opinion the future study of intuitionistic fuzzy ideals of semirings and hemirings can be connected with: (1) investigating semiprime and prime intuitionistics fuzzy k-ideals ...". Kumbhojkar [11] redefined prime and semiprime fuzzy h-ideals of hemirings just to resolve the drawbacks of the definition of prime fuzzy h-ideals of hemirings given by Zhan and Dudek [12]. For further information about this we refer the reader to see the papers [11-12]. In this paper, prime and semiprime intuitionistic fuzzy k-ideals of hemirings are defined and some of their properties are proved in similar lines as done by the author of [11] with some modifications that the paper concerned with intuitionistic fuzzy left k-ideals. This paper also assumes L to be a complete Heyting algebra.

2. PRELIMINARIES

Definition 2.1: A system $(R, +\cdot)$ where R is a non empty set and + and \cdot are binary operations on R is called a hemiring if:

- (i). (R, +) is commutative semigroup with zero element 0.
- (ii). (R, ·) is a semigoup.
- (iii). a(b+c) = ab + ac and (a+b)c = ac + bc and $0 \cdot x = x \cdot 0$ for all a,b,c, and $x \in \mathbb{R}$.

A hemiring $(R, +\cdot)$ is said to be commutative if $a \cdot b = b \cdot a \ \forall a, b \in R$. The identity element of

 $(R,+\cdot)$ is denoted by 1 and throughout this paper R denotes the hemiring $(R,+\cdot)$.

Definition 2.2: A non - empty subset I of R, closed under addition of R and is such that for all $x \in R$ and $a \in I$ we have $xa \in I$, then I is called left ideal of R.

Definition 2.3: A left ideal I of R satisfying the property : if $y, z \in I$ and $x \in R$, x + y = z implies $x \in I$ is called a left k- ideal.

Analogous definitions can be given for the right cases.

Definition 2.4: An L-fuzzy set μ of non – empty set X is a mapping $\mu : X \to L$. For any fuzzy set μ of X and t $\in (0,1]$, the upper and lower t-level cuts of μ can be defined as follows respectively.

 $U(\mu:t)=\{x\in X:\mu(x)\geq t\}$ and $L(\mu:t)=\{x\in X:\mu(x)\leq t\}$. $\bar{\mu}=1-\mu(x)$ is called the complement of μ .

The intersection and union of two fuzzy sets can be defined as follows:

- (i) $\mu \cap v(x) = \min \{ \mu(x), v(x) \}.$
- (ii) $\mu \cup v(x) = \max \{\mu(x), v(x)\}\$

Definition 2.5: A fuzzy set $\mu: X \rightarrow L$ satisfying the conditions:

- (i) $\mu(x+y) \ge \mu(x) \land \mu(y)$
- (ii) $\mu(xy) > \mu(y)$ for x and y in R is called a fuzzy left ideal.

Definition 2.6: A fuzzy left ideal μ satisfying the condition: if for all x, y and z are in R, $x + y = z \Rightarrow \mu(x) \ge \min \{\mu(y), \mu(z)\}$ is called a fuzzy left k-ideal.

Similarly, the right cases can be defined.

A fuzzy k-ideal is one which is both a fuzzy right and left k-ideal.

Definition: 2.7: (see, [8]) A left k-ideal P of a hemiring R is called prime, if $P \neq R$ and for any left k-ideals I and J of R , we have $IJ \subseteq P$ implies $I \subseteq P$ J $\subseteq P$.

Definition 2.8: A left k-ideal I of a hemiring R is called semiprime, if $I \neq R$, and for any left k-ideal J of R, we have $JJ \subseteq I$ implies $J \subseteq I$.

Proposition 2.9: (see,[11]) A proper left k-ideal P of a hemiring R is prime iff for all $x, y \in R, xRy \subseteq P \Rightarrow x \in P$ or $y \in P$.

Proposition 2.10: (see,[11]) If R is a commutative hemiring with unity, then a proper k-ideal P of a hemiring R is prime iff for all $x, y \in R, xy \in R \implies x \in R \text{ or } y \in R$.

Definition 2.11: (see,[11]) A fuzzy left k-ideal $P: R \to L$ is called prime if it is non-constant and, for all $x, y \in L$ R and $\alpha \in L$, the following condition is satisfied:

$$P(xry) \ge \alpha \Rightarrow P(x) \ge \alpha \text{ or } P(y) \ge \alpha \ \forall \ r \in R.$$

Definition 2.12: (see,[11]) A fuzzy left k-ideal $J: R \to L$ is called semiprime if J is non-constant and $\forall x \in R \text{ and } \alpha \in L$, the following condition is satisfied:

$$J(xrx) \ge \alpha \implies J(x) \ge \alpha \ \forall \ r \in R.$$

Definition 2.13: An object of the form $\left\{ \left(x, \mu_A(x), \lambda_A(x) \right) : x \in R \right\}$ where, $\mu_A : X \to L$ and $\lambda_A : X \to L$ define the degree of membership and non-membership of the element x of R, respectively and for each $x \in R$, satisfying $0 \le \mu_A(x) + \lambda_A(x) \le 1$ is called an intuitionistic fuzzy set (IFS) A in R.

For the sake of simplicity, the symbol A =(μ_A , λ_A) is used to denote the IFS A in R . Clearly, for every fuzzy set μ , we can have an IFS: $A = \{(x, \mu(x), 1 - \mu(x)) : x \in X\}$. For two intuitionistic fuzzy sets, A = (μ_A, λ_A) and B = (μ_B, λ_B) we have the following definitions:

- (a) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \ge \lambda_B(x) \ \forall \in X$.
- (b) $A = B \iff A \subset B \text{ and } B \subset A$.
- (c) $A \cap B = (\mu_A \cap \mu_B, \lambda_A \cap \lambda_B)$
- (d) $A \cup B = (\mu_A \cup \mu_B, \lambda_A \cup \lambda_B)$

3. INTUTIONISTIC FUZZY IDEALS OF HEMIRINGS

Definition 3.1: (see, [7-9,13]) An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ is said to be an intuitionistic fuzzy left ideal of R if:

- $\mu_A(x + y) \ge \mu_A(x) \wedge \mu_A(y)$ (i)
- $\begin{array}{ll} \text{(ii)} & \lambda_{_A}(x+y) \leq \lambda_{_A}(x) \vee \ \lambda_{_A}(y) \\ \text{(iii)} & \mu_{_A}(x\,y) \geq \mu_{_A}(y) \end{array}$
- (iv) $\lambda_{A}(xy) \leq \lambda_{A}(y) \ \forall \ x, y \in R$.

Similar definitions can be given for the right cases.

An intuitionistic fuzzy ideal of R is one which is both intuitionistic fuzzy right and left ideal.

Definition 3.2: An intuitionistic fuzzy left ideal $A = (\mu_A, \lambda_A)$ is said to be an intuitionistic fuzzy left k-ideal if it satisfies:

- (i) $x + y = z \Longrightarrow \mu_A(x) \ge \mu_A(y) \land \mu_A(z)$
- (ii) $x + y = z \Rightarrow \lambda_A(x) \le \lambda_A(y) \lor \lambda_A(z), \forall x, y, z \in R$. Analogous definitions can be given for the right cases.

Definition 3.3: (see, [7-9]) Let $A = (\mu_A, \lambda_A)$ be an IFS of a set R and let $s, t \in [0,1]$. Then the set

$$R_A^{(s,t)} = \{ x \in R: \mu_A(x) \ge s , \lambda_A(x) \le t \}$$

is called an (s, t) – level subset of A = (μ_A, λ_A) .

The set $(s,t) \in Im \ \mu_A \times Im \ \lambda_A : s+t \le 1$ is called the image of $A = (\mu_A, \lambda_A)$.

Observation:

$$R_A^{(s,t)} = \left\{ x \in R : \mu_A(x) \ge s , \lambda_A(x) \le t \right\} = \left\{ x \in R : \mu_A(x) \ge s \right\} \cap \left\{ x \in R : \lambda_A(x) \le t \right\} = \cup \left(\mu_A; s\right) \cap \left(\lambda_A; t\right).$$

4. BASIC RESULTS ON INTUTIONISTIC FUZZY IDEALS (k-IDEALS)

Proposition 4.1: (see, [7]) Every intuitionistic fuzzy left k-ideal is an intuitionistic fuzzy left ideal.

Theorem 4.2: (see, [7,9]) An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in R is an intuitionistic fuzzy right (left) ideal in R iff \cup (μ_A ; t) is a right (left) ideal in a hemiring R and $L(\lambda_A;t)$ is a right (left) ideal in a hemiring R for all $t \in [0, 1]$, whenever nonempty.

Theorem 4.3: (see, [7,9]) An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in R is an intuitionistic fuzzy right (left) ideal in R iff $R_A^{(s,t)}$ is a right (left) ideal for all s, t \in [0, 1] whenever nonempty.

Theorem 4.4: (see, [7,9]) An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy right (left) k-ideal in R iff \cup $(\mu_A; t)$ is a right (left) k-ideal in a hemiring R and $(\lambda_A; t)$ is a right (left) k-ideal in a hemiring R for all $t \in R$ whenever nonempty.

Theorem 4.5: (see, [7,9]) An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ is an intuitioistic fuzzy right(left) k-ideal in R iff $R_A^{(s,t)}$ is a right (left) k-ideal for all s and t \in [0, 1] whenever nonempty.

4.1. Prime intuitionistic fuzzy k-ideals of hemirings.

Definition 4.1.1: An intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ is called prime if the following conditions are satisfied: $\forall x, y \in R \text{ and } \alpha \in L$,

- $\mu_A(xry) \ge \alpha \Longrightarrow \mu_A(x) \ge \alpha \text{ or } \mu_A(y) \ge \alpha \ \forall \ r \in R$
- $\lambda_{A}(xry) \le \alpha \Rightarrow \lambda_{A}(x) \le \alpha \text{ or } \lambda_{A}(y) \le \alpha \ \forall r \in R$

Proposition 4.1.2: An intuitionistic fuzzy left k-ideal A = (μ_A, λ_A) is prime iff $\cup (\mu_A; t)$ and $L(\lambda_A; t)$ are prime ideals of R.

Proof: Let an intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ be prime. Clearly by the theorem IV.2 of [9] and corollary 3.12 of [7],

 \cup $(\mu_A; t)$ and $L(\lambda_A; t)$ are left k-ideals of R. Let $R \neq \cup (\mu_A; t) \neq \emptyset$ and $xRy \subseteq \cup (\mu_A; t)$

$$\Rightarrow \mu_A(xry) \ge t \ \forall \ r \in R$$

$$\Rightarrow \mu_A(x) \ge t \text{ or } \mu_A(y) \ge t \text{ (since, A = } (\mu_{A_A} \lambda_A) \text{ is prime)}$$

$$\Rightarrow x \in \cup (\mu_A; t) \ or, y \in (\mu_A; t).$$

Thus $\cup (\mu_A; t)$ is a prime ideal of R.

Similarly, let $xRy \subseteq L(\lambda_{\Delta}; t)$

$$\Rightarrow \lambda_{A}(xry) \le t \ \forall \ r \in R$$

$$\Rightarrow \lambda_{A}(x) \le t \text{ or, } \lambda_{A}(y) \le t \text{ (since, A} = (\mu_{A}, \lambda_{A}) \text{ is prime)}$$

$$\Rightarrow x \in L(\lambda_A; t) \text{ or, } y \in L(\lambda_A; t)$$

Hence $L(\lambda_i;t)$ is prime ideal of R. The converse will be proved by contradiction.

Let $\cup (\mu_A; t)$ and $L(\lambda_A; t)$ be prime ideals of R for $t \in L$.

Suppose A = (μ_A, λ_A) be an intuitionistic fuzzy ideal which is not prime.

 $\Rightarrow \exists \alpha \in L \text{ and } x, y \in R \text{ such that}$

 $\mu_A(xry) \ge \alpha \ \ \forall \ r \in R$, but $\alpha > \mu_A(x)$, and $\alpha > \mu_A(y)$. Further,

 $\lambda_A(xry) \leq \alpha \ \forall \ r \in R, \ \text{but} \ \alpha < \lambda_A(x) \ \text{and} \ \alpha < \lambda_A(y)$ $\Rightarrow xRy \subseteq \cup (\mu_A; \alpha) \ \text{but} \ x \notin \cup (\mu_A; \alpha), y \notin \cup (\mu_A; \alpha) \ \text{and} \ xRy \subseteq L\left(\lambda_A; \alpha\right) \ \text{but} \ x \notin L\left(\lambda_A; \alpha\right) \ \text{and} \ y \notin L\left(\lambda_A; \alpha\right) \Rightarrow \cup (\mu_A; \alpha) \ \text{and} \ L\left(\lambda_A; \alpha\right) \ \text{are not prime ideals of } R.$ This is a contradiction to the hypothesis.

Theorem 4.1.3: If R is a commutative hemiring with unity, and L is totally ordered then the intuitionistic fuzzy k-ideal $A = (\mu_A, \lambda_A)$ is prime iff $\mu_A(xy) = \max \{\mu_A(x), \mu_A(y)\}$ and

$$\lambda_A(xy) = \min \{\lambda_A(x), \lambda_A(y)\}$$

Proof: Suppose that an intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ is prime.

Let
$$\mu_A(xy) = \alpha$$
, $\alpha \in L$

$$\Rightarrow \mu_A(xry) = \mu_A(rxy) \ge \mu_A(r) \lor \mu_A(xy) \ge \alpha \ \forall \ r \in R \Rightarrow \mu_A(rxy) \ge \alpha$$

$$\Rightarrow \mu_A(x) \ge \alpha \vee \mu_A(y) \ge \alpha \text{ (as A} = (\mu_A, \lambda_A) \text{ is prime)}.$$

If
$$\mu_A(x) \ge \alpha$$
, then $\mu_A(xy) \ge \mu_A(x) \ge \alpha = \mu_A(xy) \Longrightarrow \mu_A(xy) = \mu_A(x)$

If
$$\mu_A(y) \ge \alpha$$
, then $\mu_A(xy) \ge \mu_A(y) \ge \alpha = \mu_A(xy) \Rightarrow \mu_A(xy) = \mu_A(y)$

Thus, both the cases give that : $\mu_A(xy) = \max{\{\mu_A(x), \mu_A(y)\}}$.

Similarly, let $\lambda_{\alpha}(xy) = \alpha$, $\alpha \in L$

$$\Rightarrow \lambda_{_{A}}(xry) = \lambda_{_{A}}(rxy) \le \lambda_{_{A}}(r) \lor \lambda_{_{A}}(xy) \le \alpha$$
$$\Rightarrow \lambda_{_{A}}(xry) \le \alpha$$

$$\Rightarrow \lambda_{_{A}}(x) \leq \alpha \ \ \text{or} \ \lambda_{_{A}}(y) \leq \alpha \ \ (\text{as A} = (\mu_{_{A}}, \lambda_{_{A}}) \ \text{is prime}).$$

Now, if
$$\lambda_A(x) \le \alpha$$
, then $\lambda_A(xy) \le \lambda_A(x) \le \alpha = \lambda_A(xy)$

$$\Rightarrow \lambda_{A}(xy) = \lambda_{A}(x)$$

$$\text{if } \lambda_{_{A}}(y) \ \leq \alpha \ , \text{then } \lambda_{_{A}}(xy) \leq \ \lambda_{_{A}}(y) \ \leq \alpha = \ \lambda_{_{A}}(xy)$$

Thus, both the cases yield that:
$$\lambda_{_A}(xy) = \lambda_{_A}(x) \vee \lambda_{_A}(y)$$
.

To prove the converse, suppose that $\mu_A(xy) = \max\{\mu_A(x), \mu_A(y)\}\$ and

$$\lambda_A(xy) = \min \{\lambda_A(x), \lambda_A(y)\}$$

Let $\mu_A(xry) \ge \alpha \ \forall \ r \ \in R \ \& \ \lambda_{_A}(xry) \le \alpha \ \forall r \ \in R \ .$

Now, putting r=1, which gives that $\mu_A(xy) \ge \alpha \& \lambda_{_A}(xy) \le \alpha$

$$\Rightarrow \max\{\mu_A(x), \mu_A(y)\} \ge \alpha$$

and min $\left\{\lambda_{_{A}}(x), \lambda_{_{A}}(y)\right\} \le \alpha$, (by the hypothesis)

$$\Rightarrow \mu_A(x) \geq \alpha \ or \ \mu_A(y) \geq \alpha \ \& \ \lambda_{_A}(x) \leq \alpha \ or \ \lambda_{_A}(y) \leq \alpha$$

Hence $A = (\mu_A, \lambda_A)$ is a prime intuitionistic fuzzy k-ideal.

4.2 Semiprime intuitionistic fuzzy k-ideals of hemirings

Definition 4.2.1: An intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ of R is called semiprime if, for all $x, y \in R$ and $\alpha \in L$, the following conditions are satisfied:

- (i) $\mu_A(xrx) \ge \alpha \implies \mu_A(x) \ge \alpha \ \forall \ r \in R$
- (ii) $\lambda_{A}(xrx) \leq \alpha \Rightarrow \lambda_{A}(x) \leq \alpha \quad \forall r \in \mathbb{R}.$

Proposition 4.2.2: An intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ of R is semiprime iff $\cup (\mu_A; t)$ and $L(\lambda_A; t)$ are semiprime ideals of R.

Proof: Let an intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ be semiprime. Clearly by the theorem IV.2 of [9] and corollary 3.12 of [7],

 $\cup (\mu_A; t)$ and $L(\lambda_A; t)$ are left k-ideals of R.

Let $R \neq \cup (\mu_A; t) \neq \emptyset$ and $xRx \subseteq \cup (\mu_A; t)$.

 $\Rightarrow \mu_A(xrx) \ge t \ \forall \ r \in R$

$$\Rightarrow \mu_A(x) \ge t$$
 (as A = (μ_A, λ_A) is semiprime)

 $\Rightarrow x \in \cup (\mu_A; t)$.

Thus \cup $(\mu_A; t)$ is a semiprime ideal of R.

Similarly, let $xRx \subseteq L(\lambda_{A}; t)$

$$\Rightarrow \lambda_{A}(xrx) \le t \ \forall \ r \in R$$

$$\Rightarrow \lambda_A(x) \le t \text{ (as A = } (\mu_A, \lambda_A) \text{ is semiprime)}$$

$$\Rightarrow x \in L(\lambda_A; t)$$

hence $L(\lambda_a;t)$ is a semiprime ideal of R. We prove the converse by contradiction.

Let $\cup (\mu_A; t)$ and $L(\lambda_A; t)$ be semiprime ideals of R for $t \in L$.

Suppose A = (μ_A, λ_A) be an intuitionistic fuzzy ideal which is not semiprime.

 $\Rightarrow \exists \alpha \in L \text{ and } \alpha \in R \text{ such that }$

 $\mu_A(xrx) \ge \alpha \ \forall \ r \in R$, but $\alpha > \mu_A(x)$ and

$$\lambda_{_{A}}(xrx) \le \alpha \ \forall \ r \in R \ , \ {\rm but} \ \ \alpha < \lambda_{_{A}}(x)$$

$$\Rightarrow$$
 xRx \subseteq \cup (μ_A ; α), but $x \notin \cup$ (μ_A ; α) and xRx \subseteq $L(\lambda_A; \alpha)$, but $y \notin L(\lambda_A; \alpha)$

$$\Rightarrow \cup (\mu_A; \alpha)$$
 and $L(\lambda_A; \alpha)$ are not prime ideals of R.

This is a contradiction to the hypothesis.

Corollary 4.2.3: The intersection of semiprime intuitionistic fuzzy left k-ideals of R is a semiprime intuitionistic fuzzy left k-ideal.

Proof : Let A = (μ_A, λ_A) , and B = (μ_B, λ_B) be two semiprime intuitionistic fuzzy left k-ideals of R.

Let $\mu_{A \cap B}(xrx) \ge \alpha$ and $\lambda_{A \cap B}(xrx) \le \alpha$.

 $\Rightarrow \min\{\mu_A(xrx),\ \mu_B(xrx)\} \geq \alpha\ \&\max\ \{\ \lambda_{_A}(xrx),\ \lambda_{_B}(xrx)\} \leq \alpha.$

$$\Rightarrow \mu_A(xrx) \ge \alpha$$
 , $\mu_B(xrx) \ge \alpha$ and $\lambda_A(xrx) \le \alpha$, $\lambda_B(xrx) \le \alpha$

$$\Rightarrow \mu_A(x) \ge \alpha \& \mu_B(x) \ge \alpha$$
, and $\lambda_A(x) \le \alpha \& \lambda_B(y) \le \alpha$ (since A & B are semiprimes)

$$\Rightarrow \min\{\mu_A(x), \mu_B(x)\} \ge \alpha$$
, and $\max\{\lambda_A(x), \lambda_B(x)\} \le \alpha$.

 $\Rightarrow \mu_{A \cap B}(x) \ge \alpha \text{ and } \lambda_{A \cap B}(x) \le \alpha.$

Thus, $A \cap B = (\mu_A \cap \mu_{B_A} \lambda_A \cup \lambda_B)$ is semiprime.

Theorem 4.2.4: If R is a commutative hemiring with unity, and L is totally ordered, then the intuitionistic fuzzy left k-ideal A = (μ_A, λ_A) is semiprime iff $\mu_A(x^2) = \max\{\mu_A(x), \mu_A(x)\}$ and $\lambda_A(x^2) = \min\{\lambda_A(x), \lambda_A(x)\}$. **Proof:** By putting y = x in the proof of the Theorem 4.1.3, this result follows.

Theorem 4.2.5: An intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ of a commutative hemiring R with unity is semiprime iff $\mu_A(x^n) = \mu_A(x)$ and $\lambda_A(x^n) = \lambda_A(x) \ \forall x \ , \forall n \geq 1$.

Proof: The forward direction of this theorem will be proved by induction. The result holds for n=2 (by the Corollary 4.1.6 above). Let $k \ge 2$, and assume $\mu_A(x^n) = \mu_A(x)$ and $\lambda_A(x^n) = \lambda_A(x) \ \forall n, 1 \le n \le k$.

$$\begin{split} \mu_A(x^{k+1}) &= \mu_A(x) \text{ and } \lambda_A(x^{k+1}) = \lambda_A(x). \\ \text{(i) If k is odd, then k} &= 2m+1, \, m < k. \\ \text{This implies, } \quad \mu_A(x^{k+1}) &= \mu_A(x^{2m+2}) = \mu_A((x^{m+1})^2) = \mu_A(x) \\ \text{and } \quad \lambda_A(x^{k+1}) &= \lambda_A(x^{2m+2}) = \lambda_A(((x^{m+1})^2)) = \lambda_A(x) \\ &\Rightarrow \mu_A(x^{k+1}) = \mu_A(x) \text{ and } \lambda_A(x^{k+1}) = \lambda_A(x) \\ \text{(ii). If k is even, then k} &= 2m, \, m < k \\ &\Rightarrow \mu_A(x) \leq \mu_A(x^{k+1}) = \mu_A(x^{2m+1}) \leq \mu_A(x^{2m+2}) = \mu_A((x^{m+1})^2) = \mu_A(x^{m+1}) = \mu_A(x) \\ \text{and } \quad \lambda_A(x) \geq \lambda_A(x^{k+1}) = \lambda_A(x^{2m+1}) \geq \lambda_A(x^{2m+2}) = \lambda_A((x^{m+1})^2) = \lambda_A(x) \\ \Rightarrow \mu_A(x^{k+1}) = \mu_A(x) \text{ and } \quad \lambda_A(x^{k+1}) = \lambda_A(x) \\ \text{Hence, } \quad \mu_A(x^n) = \mu_A(x) \text{ and } \quad \lambda_A(x^n) = \lambda_A(x) \\ \text{The converse of the theorem follows from the Corollary 4.1.6 by putting n} = 2. \end{split}$$

Definition 4.2.6: (see, [7,9]) A hemiring R is said to be regular if for all $a \in R$, there exists $x \in R$ such that

a = axa.

Theorem 4.2.7: If R is a commutative regular hemiring with unity, then every intuitionistic fuzzy left k-ideal A = (μ_A, λ_A) of R is semiprime.

Proof : Let $x \in \mathbb{R}$. Since \mathbb{R} is regular, there exits $a \in \mathbb{R}$ such that x = xax. If this result is applied repeatedly, it yields $x = x^n a^{n-1} \ \forall n \geq 2$. Now $\mu_A(x) = \mu_A(x^n a^{n-1}) \geq \mu_A(x^n) \geq \mu_A(x)$ and $\lambda_A(x) = \lambda_A(x^n a^{n-1}) \leq \lambda_A(x^n) \leq \lambda_A(x)$ $\Rightarrow \mu_A(x^n) = \mu_A(x)$ and $\lambda_A(x^n) = \lambda_A(x)$.

Hence, by the Theorem 4.2.4 above it follows that A = (μ_A, λ_A) is semiprime.

5. CONCLUSION

In this paper, we prove the necessary and sufficient conditions for an intuitionistic fuzzy left k-ideal $A = (\mu_A, \lambda_A)$ to be prime and semiprime and also discuss some related results. The author of this paper suggests that the future study of prime and semiprime intuitionistic fuzzy k-ideals of hemirings can be focused on constructing the spectrum of prime and semiprime intuitionistic fuzzy k-ideals of hemirings.

REFERENCES

- [1]. Zadeh, L.A. (1965). Fuzzy sets, *Information and Control*, 8, 338 353.
- [2]. Atanassov, K. T. (1983).Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.
- [3]. Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets, Fuzzy *Sets and Systems*, 61, 137 142.
- [4]. Balasubramanian, K.R. and Raja, V. (2018). Interval-valued intuitionistic fuzzy ideal extentions in semirings, *International Journal of Applied Engineering Research*, Vol.13 (11), 9674-9679.
- [5]. Thirumagaland, M.R. and Murugadas, P. (2018). Intuitionistic fuzzy 2-(0- or 1-) Prime Ideals in Semirings, *Int. J. Math. and Appl.*, 6(1-D), 825-834.
- [6]. Abdullah, Saleem, Davvaz, Bijan and Aslam, Muhammad (2011). (α, β) —intuitionistic fuzzy ideals of hemirings, *Comput. Math. Appl.*, 62, 3077-3090.
- [7]. Akram, Muhammad and Dudek, W. A. (2008). Intuitionistic fuzzy left k-Ideals of semirings, *Soft Computing*, 12, 881 890.
- [8]. Dudek, W.A. (2006). Intuitionistic fuzzy h-ideals of hemirings, WSEAS Trans. Math., 12, 1315 1331.
- [9]. Dheena, P. and Mohanraaj, G. (2011). On intuitionistic fuzzy k-ideals of semirings, *International Journal of Computational Cognition*, Vol.9(2) (45-50).
- [10]. Balasubramanian, K.R. and Raja, V. (2018). Results on Intuitionistic fuzzy k-ideals of semiring, Int. J. Math. and Appl., 6(1-B), 297-305.
- [11]. Kumbhojkar, H.V. (2010). Spectrum of prime L-fuzzy h-ideals of a hemiring, *Fuzzy Sets and Systems*, 161, 1740 –1749.

- Zhan, J. and Dudek, W.A. (2007). Fuzzy h-ideals of hemirings, Inform Sci., 177, 876 886.
- [12]. [13]. Arjunan, K. and Anitha, N. (2011). Notes on Intuitionistic Fuzzy Ideals of a hemiring, *Applied Mathematical Sciences*, 68, 3393-3402.