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1.        INTRODUCTION 

 

The item convertibility is a need of hour in the market for inventory managers due to few major reasons, like 

preventive duration of item may be limited otherwise item may get destroyed, the demand of converted item 

may be higher than the original one and the profit earned from  last converted form may be the highest. This 

paper suggests an inventory model for items convertible in nature as per the need and demand. In the past, 

Harris [1] and many other researchers have suggested inventory models with variety of demand functions. There 

are many products that follow a logarithmic demand pattern and still there is a need to develop some new 

inventory models for such type of products. Also a business could be started with shortage like advance booking 

of LPG gas, electricity supply and pre public offer of equity shares before the proper functioning of a company. 

We incorporate two features: one is the logarithmic demand and other is start of business with shortage in the 
proposed model. Few items available in the market are of high demand for people like sugar, wheat, oil whose 

shortage can break the customer’s faith and arrival pattern. This motivates retailers to order for excess units of 

item for inventory in spite of being deteriorated. Moreover, deterioration is manageable for many items by 

virtue of modern advanced storage technologies. Inventory model presents a real life problem (situation) which 

helps to run the business smoothly. Our aim is to solve the problem of the business which start with shortage 

and in which the demand of the products follow the logarithmic demand.  
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Abstract:    An economic quantity and production plan is developed for sequentially convertible items for 

deteriorating items. The initial form of an item sequentially converts into another form and different nature 

of items. In this process conversion cost and times need to convert the item. We have considered that 

demand of an item is different for different converted items, also the deterioration rates are different. For 

example, milk is converted into curd, curd into butter and butter into ghee after different durations of time. 

Managerial insights are provided for convertible items. Conversion of items needs conversion cost and 
conversion time.  
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A constrained optimization model was suggested by Silver and Moon [8] which describes the problem of how 

best to allocate convertible units among the end items when there are a number of units available that can be 

converted into any one of the end items. The authors there assumed that each of these end items could be 

purchased at unit cost from the market which is higher than the unit conversion costs. Moon et al. [14] revisited 

the same problem with the application of inflation and time value of the money. Life-cycle inventory analysis of 

waste incineration in Switzerland is a useful contribution discussed by Hellweg et al. [6] concluding that the 

choice of landfill model has a significant influence on the results of life-cycle assessment of waste incineration.  

 

Teng and Chang [18] suggested an economic production quantity model for deteriorating  items when the 

demand rate depends not only on-display stock, but also  on the selling price per unit of item which may be 

influenced by economic policy, political scenario or agriculture productivity or both get affected. Qi et al. [19] 

analyzed the supply chain-coordination under demand disruption in deterministic scenario. The supply shortages 

for managerial purpose were investigated by Yang et al. [20] and they obtained the solution by greedy method. 

A number of structural properties of the inventory system were analytically presented by Samanta and Roy [21] 

by the determination of production cycle time and backlog for deteriorating item. Chandel and Khedlekar [22] 

solved the inventory problem by using two and three warehouses setups at different locations and compared 

them and suggested the central economical replenishment policy for different locations. Kumar and Sharma [23] 

formulated the replacement policy for perishable item by using queuing theory approach and presented an 
optimal policy. 

 

Shukla and Khedlekar [15] introduced a three-component demand rate for newly launched deteriorating items 

based on two different marketing policies with constant and time dependent demand. Chena et al. [11] suggested 

a replenishment policy allowing shortages for a product life-cycle.  Federgrum and Heching [5] analyzed the 

price in an incapacitated inventory system with stochastic demand for single item having time dependent 

parameters. Further useful contributions, in this stream of literature, are due to Matsuyama [7], Hsueh [16], 

Shukla et al. [3], Chu [9], Khedlekar and Agrawal [13] and You [10], Shukla and Khedlekar [2]. A thought from 

literature survey appears as rare research contributions exist in the area of modeling of convertible items, 

specially when the state-wise conversion is a focus. This has motivated us to consider the problem in the present 

mathematical structure. 
 

This paper suggests an inventory model for items convertible in nature as per need and demand of the market as 

shown in fig. 1. 

 

 
Figure 1: Conversion of items 

 

2. ASSUMPTIONS AND NOTATIONS 

 

Assume that the inventory of a convertible product which is  maintained which is in state I is avaialable. 

Suppose q  quantity of product in state I is available to sell for time 
1t . The demand of the initial product in state 

I is assumed  to be exponentially  decreasing and the product in this state cannot preserved a longer duration of 

time so, it needs to be converted into another state II with conversion cost. The inventory is depleted due to the 

demand and deterioration both and at the end of time T  the inventory reduces to zero. Suppose replenishment is 

instantaneous and the lead time is zero between conversions and inventory depletion as shown in fig. 2.    
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Figure 2: (Inventory depletion of convertible items) 

 

The proposed model is developed under the following assumptions:  

 q    the initial quantity of convertible product available in state I. 

t
e

µλ  the demand of the initial product in state I, where λ  is the initial demand and  

µ
 
is  parameter governing the decreasing trend of the product.  

a   the demand of product the in state II, where a  is positive and b  is any real value. 

d   the demand of product in state III, d is a positive value. 

0C  unit purchasing cost of product in state I. 

1t   time period when the product converts from state I to state II,  

1q   the unsold quantity of the product in state I  ( )1
q q<  at time 

1t . 

2q  the quantity of product in state II (after first conversion) at time 
1 1t δ+ . 

3q  the sold quantity product in state II ( )23
q q< . 

 
1δ  the time required for conversion of product from state I to state II 

1C  the conversion cost to convert from state I to state II,  

1α  the conversion ratio from state I to state II. 

 

3.    PROPOSED MODEL 

 

Suppose a quantity q  of convertible product in state I is purchased at rate 
0C  by an inventory management as 

initial stock and it is resold till time 
1t . A quantity 

1q  rremains after sale  till time  t1, and there after at time t2, 

inventory holder converts it into another product in state II with conversion cost C1 and conversion ratio 1α that 

is amount of converted product in state II is q2 = 1α q1 . Differential equations for products in state I and state II 

and the amount of on hand inventories I1(t) and I2(t) are shown below in equations (1) and (2) respectively. 

Rate of decay of inventory in state I is 1 ( )
d

I t
dt

 
− 
 

which is the rate of demand { }te µλ −
, so the differential 

equation follows equation (1). As per fig. 2, the boundary conditions are on hand inventory initially (0)I is q 

and at time t1 is 1( )I t equals to q1. 

1 1( ) , 0td
I t e t t

dt

µλ −= − ≤ ≤  with boundary condition qI =)0(1 , 1 1 1( )I t q=  and 1 1 2q qα =                     (1) 

1 1( ) ( ) ,
d

I t I t a bt
dt

ϑ+ = +
      

Ttt ≤≤+ 11 δ
                                                                                                

(2) 

with the boundary condition 2112 )( qtI =+δ , 322 )( qtI =  and 423 qq =α                                             

On solving equation (1), we get 
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                              ( )12

1

1
tq

q e
µλ

α µ

−
= + − and  ( )12

1

1

( )
ttq

I t e e
µµλ

α µ
−−= + −                                         (3) 

Holding cost H1 for product in state I over time interval [0, t1] is  

                             
1

1 1 1
0

( ) ( )
t

H t I t dt= ∫ ,     

                                        ( )1 11 1 2 1

12

1

1
t th t q h

e t e
µ µλ

µ
α µ

− −= − + −                                                               (4) 

where 2q  remains constant after integration. 

 

Solving equation (2), we get  

1 1
2
( ) ( )

t
t t

t
I t e a bt e dt Eθ θ

δ+
= − + +∫    with conditions 2 1 1 2( )I t qδ+ = , 2 2( )

3
I t q= , 23 4

q qα =                        (5)   

2
2

1 1
3 ( )

t
t t

t
E q e e a bt dt

θ θ

δ+
= + +∫     and 1 1( )

2

t
E q e

θ δ+=  

( )( ) ( ) ( )
2

4 2 2 2 2 3 3

2 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1

2

1
(1 ) ( )(1 ) ( ) ( ) ( ) ( )

2 2 3

q b b
q t t a t t t a b t t t t t t t

θ θ
θ θ θδ δ θ θδ θ δ δ δ δ

α
= + − − + − − − − + + − + − + − + + − +

  

Holding cost for product in state II over time interval [ ]1 1 2,t tδ+ is 

2

1 1
2 2 2( ) ( )

t

t
H t h I t d t

δ+
= ∫  

( )( ) ( ) ( ) ( )( )
22 2 2 22 4 2

2 2 2 1 1 2 1 1 2 2 1 1 2 1 1 2 1 1

2

1
( ) 1 ( ) ( ) ( )

2 2

h q h
H t t t t t t ah t t a b t t t tθ δ δ δ θ δ δ

α

 
= + − − − − + + − − + + − + − − 

 
         

        ( ) ( )( ) ( ) ( )
2

2 2 3 3 2 22 2 2

2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
( ) ( ) ( )

4 3 2

b h b h a h
t t t t t t t t t t

θ θ θ
δ δ δ δ δ− − + + − + − − − − + − −                           (6)                               

2 2 2 2 2 2 1 1

2

( )(1 )
d

q T t t t tδ θ φ φ δ θ θδ
α

= − − + − − − − ( )2 2

2 2

2

( )
2

d
T t

φ
δ

α
+ − + ( )3 3

2 1 1
( )

3

b
t t

θ
δ+ − +

                 
(7) 

 

Total cost (TC) in inventory system over [0, T] is the sum of the purchasing cost ( )0qC , conversion costs from 

state I to state II ( )1 1q C , conversion cost from state II to state III ( )3 2q C , holding costs in different states 

( )1 2 3H H H+ + and setup cost 3C . 

22110 cqcqqcTC ++=  

( ) ( ) ( )12 202 4 2

0 1 1 1 2 2 2 2 1 1 2 1 1 2 2 1 1

1 2

(1 )( ) ( ) 1 ( )
2

tCq q h
TC C C h t C h t t t t t e ah t t

µλθ
θ δ δ δ

α α µ
− 

= + + + + + − − − − + + − + − − 
 

 

         ( ) ( ) ( ) ( )1 1 2 21 2

1 2 1 1 2 1 12
1 ( )

2

t th h
t e e a b t t t t

µ µλ
µ θ δ δ

µ
− −− + − + + − + − − ( )2 22

2 1 1( )
4

b h
t t

θ
δ+ − +  

        ( ) ( ) ( )( ) ( )
2 2 2

2 2 3 32 2

2 1 1 1 1 1 1 1 1 3 2 2( ) ( ) 1
2 3 2

h a b h T
t t t t t t t t h dT T t

θ θ φ
δ δ δ δ δ

 
− − − − + + − + − − + + − − 

 
  

          ( )( ) ( )2 2 3 33 3

2 2 2 2 3
1 ( ) ( )

2 6

h d h d
T T t T t C

φ
φ δ δ− + − + + − + +                                                                        (8)                                                                  

 

To find the optimum condition for the values of t1, t2 and T subject to the condition that when cost function is 
minimum, we differentiate above equation w. r. t. t1, and T and equate to zero. 

0
21

=
∂

∂
=

∂

∂

t

TC

t

TC
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( ) ( )1 11 2 2 4 2 2
0 1 1 1 0 1 1 2 1 1 2 1 1 1 1

1 1 1 1 2

1
1 ( )( )

2

t th q q q h a hTC
C C h t C e h t e t t t t t

t t

µ µ θ
λ λ θ θ θδ δ δ

α α α
− −∂∂

= + + + + + − + − − + − − +
∂ ∂

 

2

2 22 4
2 2 2 2 1 1 1 1 2 1 1 2 12 1 2 1 1

2 1

1
(1 )( ) ( ( ) ) 2 ( ) ( )( )( )

2

h q
C h t t t t t ah t t h a b t t t

t

θ
θ δ δ δ θ δ δ

α

∂ 
+ + + − − − − + − − − − + + − − 

∂ 

( )
2

3 32

1 1( )
3

b h
t t

θ
δ− − +  

         ( )
2 2

2 2 2 2

2 1 1 1 1 3 1 1 1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( )( ) 0
2 2

a hb
h t t b t b h t t t t t t

θ
δ θ δ θ δ δ δ δ

 
+ − + + − − + − − + − − + = 

 
                       

( ) ( ) ( )
2

2 22 4 2 2 4

0 1 1 1 2 1 1 2 2 1 1 2 2 2 2 1 1 1

2 1 2 2 2 2

1 1
1 2 ( ) (1 )( ) ( )

2

q q h h qTC
C C h t t t ah t t C h t t t t t

t t t

θ
θ θ θδ δ θ δ δ

α α α

∂ ∂∂  
= + + + + − − + − − + + + − − − − + 

∂ ∂ ∂ 

 

        ( ) ( )
2 2 2

2 2 3 3 22

2 2 2 1 1 2 1 1 2 1 1 2 2 1 1 3

1
( ) ( ) ( ) ( ) ( ) 1

2 3 2

b h T
h a b t t t bh t t t t t b h t t t h dT

θ φ
θ δ δ θ δ θ δ

   
+ − − + − + − + − + + − − − +   

   
 

       2 2

3 2 2 2 2 1 1 2( ) 1 ( ) 0
2

t
h d t T a h t t t

φ φδ
δ φ θ δ

 + 
+ + + − − − − = 

  
                                                                      

Let the positive value of t1, and t2 obtained by solution the above equations be 
∗
1t , and 

∗
2t . To show that the total 

cost function TC minimum at 
∗
1t , and 

∗
2t  values we write the Hessian matrix   Hi as 

     H1 = 
2

2

1

TC

t

∂

∂
, 

     H2=

2 2

2

1 1 2

2 2

2

1 2 2

TC TC

t t t

TC TC

t t t

 ∂ ∂
 

∂ ∂ ∂ 
 ∂ ∂
 
∂ ∂ ∂  

,                                                                                

If H1, H2 are positive on substituting values of the second order derivatives in the above determinant then TC 

will be optimum. 

 

4. CONCLUSION  

 

An economic quantity model for sequentially convertible items is developed in this paper. The deterioration of 

converted items is incorporated and the total cost function calculated is shown to be an optimum solution. The 
conversion is in a sequential manner so that one item converts into other state-wise. It is found that the 

conversion model construction is possible and the relevant mathematical expressions are derivable. The 

suggested model performs realistic outputs for given input data set obtained through the real world. One can 

apply the optimization techniques on the convertible item inventory models. For model builders and researchers, 

an open problem is to develop better realistic models for sequentially convertible items.  
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