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A Condition on the Masses of Composite Particles 

Simon Davis1,*

1. INTRODUCTION 

In one of the formulations of the standard model, the spinor space is modelled on � � �⨂�⨂�   for 

each generation [15].   There are 32 complex degrees of freedom in T  and 64 complex degrees of 

freedom in 
2T ,  which are sufficient for the inclusion of the fermions and the antifermions in four 

dimensions, since the two quarks with three colours would be described by 6 Dirac spinors, each 

having 4 components, and the lepton doublet has 8 components, when each of the leptons is 

described by a Dirac spinor.  In a theory with massless neutrinos, described by Weyl spinors, two 
components of the Dirac spinor would be set equal to zero.  Upon generation of mass at two loops, 

however, the massive neutrino can be represented by a Dirac spinor.  Since the mixing between three 
generations is determined by a unitary Cabibbo-Kobayashi-Maskawa matrix, the states may be 

defined such that the spinor space  ⊕���
� ��

�   is a direct sum ⊕���
� ��⨂�⨂���   [11].  

Given the identification of the division algebras with the modules in the spinor space of the standard 

model, the squared absolute value of a wavefunction representing a linear combination of basis 
elements in each module shall be represented as the sum of n squares for n=1, 2, 4 or 8, thereby 

implying positive-definiteness. 
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Abstract 

Based on the recent formulation of the standard model with the spinor space given by a direct 

sum of tensor products of modules isomorphic to division algebras, these algebras are used to 
derive an expression for masses of elementary particles.  It is shown that the formula derived for 

the tensor product of states is consistent with the Lagrangian model of composite particles. 
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It will be demonstrated that the mass formula is consistent with the description of the particles 

provided that an equality holds.  The validity of this equality follows from a theorem on sums of 

squares.  Consequently, a Lagrangian for bound states of more than one particle exists in this 
formulation. The properties of the bound state have been formulated in terms of Green functions 

which satisfy the Bethe-Salpeter equation.  For sufficiently large separations and weak coupling, the 

composite state is given by a tensor product of the fundamental states.  If there is a strong coupling 
between the particles, the description of the composite state must be modified. 

An example of a generalized relation which would be based on a direct sum of states in the spinor 

space, with the scalar state in a theory with broken supersymmetry having an expectation value 

proportional to the square root of the mass, is the Koide relation for the masses of the charged 
leptons.  A theoretical basis is suggested in the last section. 

2. DIVISION ALGEBRAS AND THE FERMIONS IN THE STANDARD MODEL 

The number of pairwise orthogonal matrices : n n
iU   such that ��

� � ��   and i j j iU U U U

is known to be less than 2 8
c n

n d n  by the Hurwitz-Radon-Eckmann theorem [18, 27, 28, 

40], where 2 1 2b nn n , with 0n  and  4 ,b n c n d n 0 3.c n  It may 

be verified that n n  since the inequality 

4 3 1
2 2 1 .2

8

c n d n
d n n  (2.1) 

or 

0 0
4

n
d n

1
2 2 2 1 1

8

c n n d n  (2.2) 

3 1 1
2 2 1 .2 .2 2.

8

d nc n d n
d n n d n

 The equality n n ,  or equivalently, 

42 8 2 1 .2c n c n d nd n n  (2.3) 

is valid only when 0d n  and 0n  such that 2c nn ,  with the values 1,2, 4,8n

representing division algebras over � . 

The maximal number of nonvanishing smooth vector fields on 
1 3,S S and 

7S  is known to be related 

to the existence normed real division algebras [26] only in the dimensions 1, 2, 4 and 8 [1,2,7,8, 32]. 
Together with the unit radial vector, the tangent vectors form an orthonormal set. 

A basis of tangent vector fields on 
3S would be given by  

1 1 0 3 2

0 1 2 3

T X X X X
X X X X

2 2 3 0 1

0 1 2 3

T X X X X
X X X X

 (2.4) 

3 3 2 1 0

0 1 0 1

T X X X X
X X X X

such that 
2 2 2

1 2 3 1T T T . 
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The coefficients of the triad can be nonlinear since the transformation induced by 
2

0 1 2 3X X X i X j X k X  yields 

2 2 2 2
0 1 2 3 0 1 2 3 0 1 0 2 0 3, , , ,2 , 2 ,2X X X X X X X X X X X X X X  (2.5) 

and generates a new set of tangent vector fields 

' 2 2 2 2
1 0 1 0 1 2 3 0 3 0 1

0 1 2 3

2 2 2T X X X X X X X X X X
X X X X

' 2 2 2 2
2 0 2 0 3 0 1 2 3 0 1

0 1 2 3

2 2 2T X X X X X X X X X X
X X X X

 (2.6) 

' 2 2 2 2
3 0 3 0 2 0 1 0 1 2 3

0 1 2 1

2 2 2T X X X X X X X X X X
X X X X

that have unit norms, 
2 2 2' ' '

1 2 3 1T T T , and each pair is orthogonal, 

' ' ' ' ' '
1 2 1 3 2 3 0T T T T T T . 

The existence of orthonormal matrices preserving the norm of the orthonormal basis of linear vector 

fields, such as those given in Eq.(2.4), is generally not relevant for fields with nonlinear coefficients 

unless these are induced by multiplication in a division algebra. For the sphere 2S , it may be noted 

that a highly nonlinear function of the coordinates in the stereographically projected plane would 

yield a divergence in the inverse image at the point , , 0,0,1X Y Z . The coordinates in the chart 

of the northern hemisphere under the stereographic projection are  

, ,
1 1

X Y
x y

Z Z
 (2.7) 

It follows that 

2 2

2 2

2

2

1

1 1

1

1 1

| |

| |

TS TS

TS TS

X

x Z X ZZ

Y

y Z Y ZZ

 (2.8) 

Since, 2 1 0|
TS
Z

Z
, 

21 2

1 2

, , , , , , , , , ,

, , , , , , , , , ,
1

1 1

|
TS

g x X Y Z y X Y Z g x X Y Z y X Y Z
x y

g x X Y Z y X Y Z g x X Y Z y X Y Z
Z

Z X Z Y

 (2.9) 

Finiteness requires 1 2, , , , , , , , , , , 1g x X Y Z y X Y Z g x X Y Z y X Y Z Z  as ,x y . 

At other points on the sphere, the radial vector is 1|r X Y Z
r X Y Z

 and two 

perpendicular vectors would be  

1

2

v Y X
X Y

v Z Y
Y Z

 (2.10) 

The projection of a vector w  onto the hyperplane spanned by 1v  and 2v  would be 
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2 2

1 2 2 1 2 1 2 1 1 1 2 2

. 22 2

1 2 1 2

proj

w v v w v v v v w v v w v v v v

w
v v v v

 (2.11) 

If 

1 22

1 1
, , , , , , , , , ,

1 11

X
w g x X Y Z y X Y Z g x X Y Z y X Y Z

Z X Z Z YZ

2
1

Y

ZZ
, 

2

1 1
. 2

2

2

, , , , , , , , , ,

1 1

, , , , ,
.

1

proj

g x X Y Z y X Y Z g x X Y Z y X Y Z X
w

Y Z Y Z

g x X Y Z y X Y Z X
Y X
X YZ

1 2, , , , , , , , , ,

1

g x X Y Z y X Y Z X g x X Y Z y X Y Z Y
Z Y

Y Z Y Z
(2.12) 

Consider the form of 1 , , , , ,g x X Y Z y X Y Z  and 2 , , , , ,g x X Y Z y X Y Z  required for a 

non-zero mass. Let   
2

1

2

2

1
, , , , ,

1
, , , , ,

Z
g x X Y Z y X Y Z

X

Z
g x X Y Z y X Y Z

Y

 (2.13) 

The coefficient of 
X

 is 

2

1 , , , , , 1 1 1

1 1

g x X Y Z y X Y Z Z Z

Z X Z X
 (2.14) 

The coefficient of 
Y

 would be 

1 , , , , ,

1

g x X Y Z y X Y Z X

Y Z

1 2

2

, , , , , , , , , ,

1

1

g x X Y Z y X Y Z X g x X Y Z y X Y Z Y
Z

Y Z

Z
O

Y

 (2.15) 

while it equals 

1 2, , , , , , , , , ,
1

1

g x X Y Z y X Y Z X g x X Y Z y X Y Z Y
Z

Z
 (2.16) 

for 
Z

, and vanishes in the limit 1Z . 

Similarly, if 
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1

2

, , , , , 1

, , , , , 1

g x X Y Z y X Y Z Z

g x X Y Z y X Y Z Z
 (2.17) 

The coefficient of 
X

 would be  

1 , , , , ,
1 ,

1

g x X Y Z y X Y Z
O

Z
 (2.18) 

and the coefficient of 
Y

 is 

1 , , , , ,
1

1 1

g x X Y Z y X Y Z X X X
Z

Z Y Z Y
 (2.19) 

For the coefficient of 
Z

 is  

1

2

, , , , , 1

1 1

, , , , , 1

1 1

g x X Y Z y X Y Z X Z
X X

Z Z

g x X Y Z y X Y Z Y Z
Y Y

Z Z

 (2.20) 

which again vanishes in the limit 1Z . 

Amongst the analytic functions of ,X Y  and Z , the dependence of the kind given in Eqs.(2.13) or 

(2.17) is selected for a nonvanishing vector field at 1Z .However, a singularity in the vector field 

will develop at another point on the sphere. When 0, 0X Y  and 0Z , there is a divergence in 

the first expression. Since the point ,0,X Z  can exist in the northern hemisphere, the vector field 

would not be regular everywhere in this region. Inclusion of an additional factor of Y in 

1 , , , , ,g x X Y Z y X Y Z  and 2 , , , , ,g x X Y Z y X Y Z  would render the vector field  

1 2, , , , , , , , , ,g x X Y Z y X Y Z g x X Y Z y X Y Z
X Y

to be vanishing in the limit 1Z . Alternatively, the denominators in Eqs.(2.14) and (2.15) can be 

perturbed to be XX  and YY  respectively. For the second choice of 

1 , , , , ,g x X Y Z y X Y Z  and 2 , , , , ,g x X Y Z y X Y Z , it would be sufficient to replace Y

by YY  in Eq.(2.19). 

This technique will be developed in the theorem for spheres in arbitrary dimensions. 

Theorem 1. Specific nonlinear functions of the coefficients of the stereographically projected vector 

field are allowed in a general dimension n . A divergence in the vector fields elsewhere in a chart of 

the sphere will require a perturbation in 1n  of the embedding coordinates. It can be shown that a 

singularity will arise generally because any multiplicative identity between sums of squares requires 

a number of terms less than n . The spheres 
1 3,S S  and  

7S  admit the maximal number of smooth, 

nonvanishing vector fields, and the coefficients of the coordinate derivatives can be nonlinear 

functions, such that there will be many vector fields on the stereographically projected plane that 
images of the orthonormal sets of tangent vectors. 

Proof. In n  dimensions, the radial vector is 1 0 1

0 1

|r n

n

X X
r X X

, while 
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the perpendicular vectors are  

0 1 0

0 1

1 2 1

1 2

2 1

1

n n n

n n

v X X
X X

v X X
X X

v X X
X X

 (2.21) 

The projection of the vector 

0 0 2 2 0 2

0 2

0
0 0 0 1 2 0 1 2

1 0 11

, , , ,

1
, , , , , ,

1 1

n n n

n

n n n

n nn

w g x x g x x
x x

X
g x X X x X X

X X XX

2
2 0 0 1 2 0 1 2

1 2 11

1
, , , , , ,

1

n
n n n n

n n nn

X
g x X X x X X

X X XX
(2.22) 

is 
2

0 0 1 0 2

2

0 2 1 2 2

. 02

0 0 2

2

0 2 2

2

0 0

0

det

det

det

n

n n n

proj

n

n n

w v v v v

w v v v v
w v

v v v

v v v

v w v

v 2 2

22

0 0 2

2

0 2 2

det

n n

n

n

n n

v w v

v
v v v

v v v  (2.23) 

The order of the denominator in n  dimensions is 
2 1n

iO X . The divergence that occurs at 

1 1 10 1 1 1 1 10, , 0, 0, 0, , 0, 0, 0, , 0
l l li i i i i i nX X X X X X X X  that can be 

circumvented if 
1
, ,

li iX X  is replaced by 
1 1

, ,
l li i i iX X .  If 1,1i , there will be 

divergences in the coefficients of 

0 1

, ,
nX X

 at 
1 1

,
l li i i iX X . However, a singularity 

in the vector fields on the sphere does not arise if 1,1i . 
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  The multiplicative equivalent of the closure of the commutator algebra of tangent vector fields is the 

n -square identity 
2 2 '2 '2 ''2 ''2
0 1 0 1 0 1n n nX X X X X X  (2.24) 

When 2,4,8n , the identity is valid generally, and the values of 0 2, , n  can be chosen to be 

beyond the range 1,1 . This identity does not hold for 2,4,8n . 

For these values of n , the factors must have the form  

1 1

22
2 2

0 1l li i i i nX X X X  (2.25) 

The introduction of coordinates such that i  has a value producing a cancellation in the factor would 

be characteristic of dimensions other than 2,4  and 8 . Then, on the spheres 
1, 2,4,8nS n , there 

must be a value of 1,1i  generating divergences in the tangent vector fields. 

The multiplication in the complex, quaternion and octonion algebras yield the following 

transformations of the coefficents of the tangent vector fields 
2 2

0 1 0 1 0 1

2 2 2 2
0 1 2 3 0 1 2 3 0 1 0 2 0 3

, , 2

, , , ,2 ,2 ,2

X X X X X X

X X X X X X X X X X X X X X

2 2 2 2 2 2 2 2

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 0 2 0 3 0 4 0 5 0 6 0 7

, , , , , , , ,

2 ,2 ,2 ,2 ,2 ,2 , 2

X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X
(2.26) 

Iteration of these transformations yields an infinite number of orthonormal sets of tangent vector 

fields on the spheres 
1 3,S S  and 

7S . There will be an equal number of vector fields on the 

stereographically projected hyperplanes.      

                                                                                                                                                                    q.e.d.

 The division algebras are modules for Clifford algebras, and, in particular, the adjoint algebra of the 

spinor space is 0,9LT R , the equivalent of the Pauli algebra in three dimensions, where ,p qR  is 

defined by the relations 2 , 1, ,1, 1, , 1p qI diag . The Dirac algebra 

for LT  is a complexification of 1,9R , the Clifford algebra in ten dimensions, with the spinors having 32 

components. The matrices 
1

2
 generate the ten-dimensional Lorentz algebra. 

Embedded in this Lorentz group is 4SU , which upon intersection with 2G  yields 3SU  [11], 

the gauge group of quantum chromodynamics. Similarly, the 1,3R  subalgebra of 1,9R , which acts on  

�⨂�, corresponds to the 2 1SU U  subgroup of the standard model gauge group, representing 

the electroweak interactions. These symmetries are considered internal, however, because the Lorentz 

group may be viewed as independent of the gauge group as transformations of these modules, 
through right and left adjoint actions. It has been verified that both the fermion and boson content 

and the gauge groups of the standard model may be constructed after the appropriate identification 
of the quarks and leptons with the spinor space degrees of freedom. 

3. THE EXPRESSION FOR THE MASS

Given the identification of fermions with elements in the spinor space consisting of the division 

algebra modules, it follows that the wavefunctions generally should be linear combinations of the 
tensor products of bases of these algebras. 

       The operator 
0P H  is Hermitian with real eigenvalues and 
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0P M M  (3.1) 

This is not a Lorentz-invariant result, but it would hold in a ground state at rest. 

The Schrodinger equation is a linear equation in   with eigenvalue E

d
i E
dt

 (3.2) 

Therefore, a linear relation between the energy of a composite state and the energies of the 
component states can be maintained during time evolution of the nonrelativistic system. 

For relativistic fields, the Klein-Gordon equation 
2 0m  (3.3) 

and its generalizations are used. The spin 
1

2
 and spin 1  fields satisfy the equations  

2

0

0

i m

m V
 (3.4) 

which are linear and quadratic in m  respectively.  Expectation values can be computed through 

integrals of the type 
3 *P P d x P P  (3.5) 

which would be the equivalent of the definition in terms of state vectors. The Dirac operator is the 
square root of the Klein-Gordon equation and the relation between the derivatives is clarified only 

when the equation is squared. The characteristics of the d’Alembertian operator are given by light 
cones. Along null directions, a linear relation between the squared masses of a composite state and 

the square masses of the component states would be preserved. For composite particles propagating 
near the speed of light, this linear relation should be approximately conserved along the null cones. 

Furthermore, if the field is studied as a configuration in a region of a spatial  hypersurface, the 

Cauchy development of this region would cover increasingly larger domains in hypersurfaces at later 
times. 

If  P p ,  

2

2 * 3

M P P

M d x P P
 (3.6) 

or equivalently 
1

2 .M P P  (3.7) 

When P  is defined in terms of basis elements in the spinor space of the standard model. 

Division algebras are known to preserve norms 

x y x y �, � ∈ �, �, �, �          (3.8) 

Given that ,x y  are n  component vectors, where 1,2, 4,8n , this relation [24] implies that the 

product of the sums of squares of the components also equals a sum of square in these dimensions 
2 2 2 2 2 2
1 1 1 1,2,4,8n n nx x y y z z n  (3.9) 

The 4-square identity was discovered by Euler [19] and Hamilton in connection with quaternions. The 

generalization to octonions led to the proof of the 8-square identity by Degen [13] and Cayley [9]. A 
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general theorem restricting the identity to 1,2, 4,8n  for fields of characteristic 0  with iz  as 

bilinear functions of ,i ix y  was proven by Hurwitz [27]. 

If the form of the variables iz  are modified to be rational functions of , , 1,2, ,i ix y i n was 

shown to allow 2m -square identities for 4m  [10, 38, 39]. The proof was based on the matrix 

equalities, where the presence of inverse matrices in the block form led to denominators in the 

equations. The 16-square identity was determined, and denominators in the expressions of the 

variables iz  were found [17, 41]. 

 The mass M of an ultrarelativistic composite particle can be equated in general with the square root 

of a sum of n  squares with 1,2, 4n  or 8 , after a restriction to each module. This equivalence is 

feasible essentially because any positive integer can be expressed as the sum of four squares [20] by 

Lagrange’s theorem [37] and also eight squares. The number of representations of a positive integer 

N  by the sum of four squares was demonstrated by Jacobi [30] to be equal to 

 odd

24  even

N N

N N
 (3.10) 

This conclusion can be drawn even for spinor which are restricted to the two-dimensional module . 
For these spinors, the squares of the masses approximately equal to an odd prime p relative to a basic 

scale would satisfy 1 mod4p  by Fermat’s 4 1n  theorem [14, 21]. The formula for the mass for 

a complex module is similar to that found for solitons in supersymmetric Yang-Mills theory with 

electric and magnetic charges [22]. The presence of a non-zero mass for every charged state would 

follow. 

4. COMPOSITE MASSES

Suppose that the composite state is regarded as the tensor product of n one-particle states 

1, , .n  (4.1) 

Selecting the largest division algebra module � in the spinor space T , an expansion of the state 

vector  with respect to the basis 
0 7

, ,ie ie   yields 

0 70 7i i ie i ie  (4.2) 

where 
jie

 are orthonormal states. Then 

0 7 0 7

0 0 7 7

* *
0 7 0 7

* *
0 0 7 7

2 2

0 7 .

ie i ie i i ie i ie

i i ie ie i i ie ie

i i

 (4.3) 

Since 
2i

i i i iP P m  (4.4) 

and 

2 2i
i i i i i i iP P m m  (4.5) 

while 

0 7 0 0 7 7

2 2

0 7 0 7
i

i i ie i ie i ie ie i ie ieP P m m  (4.6) 

and 


