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1. INTRODUCTION  
 
Let G = (V; E) be a finite simple graph, that is, G has finitely many nodes and G does not have any 
loop or double edge. A subgraph D is a clique in G if each two distinct nodes of D are connected in G. 
If the clique D has k nodes, then we say that D is a k-clique in G. The number of nodes of a clique is 
sometimes referred to as the size of the clique. A k-clique in G is a maximum clique if G does not have 
any (k + 1)-clique. The graph G may have several maximum cliques but their common size is a well 
defined number. This number is called the clique number of the graph G and it is denoted by (G). 
The problem of determining the clique number of a given graph is an important problem in many 
areas of applied discrete mathematics [1]. It is known that the problem is NP-complete [5]]. The most 
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Abstract 
 
The main result of the paper is that in practically interesting situations determining the optimal 
number of colors in the proposed coloring is an NP-hard problem. A possible conclusion to draw 
from this result is that for practical transitive tournament search algorithms we have to develop 
approximate greedy coloring algorithms. It is an empirical fact that coloring the nodes of a graph 
can be used to speed up clique search algorithms. In directed graphs transitive sub tournaments 
can play the role of cliques. In order to speed up algorithms to locate large transitive tournaments 
we propose a scheme for coloring the nodes of a directed graph. 
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commonly used clique search algorithms employ coloring of the nodes of a graph to speed up the 
computations [2, 8, 9]. The coloring of the nodes of the graph G with k colors assigns exactly one color 
to each node of the graph such that adjacent nodes never receive the same color [3]. This type of 
coloring of the nodes is sometimes referred to as legal or well coloring of the nodes. The minimum 
number of colors with which the nodes of G can be legally colored is a well defined number. It is 
called the chromatic number of G and it is denoted by (G). Determining the chromatic number of a 
given graph is another important problem in the applied discrete mathematics with many 
applications [6]. It is known that the problem of deciding if a given graph can be colored with k color 
is NP-complete for any fixed k, where k  4. 
 
Colorings are employed in at least two ways in clique search algorithms [7]. One can color the nodes 
of a graph G before the clique search starts. In these cases the coloring is used as a possible 
preprocessing or preconditioning tool. On the other hand if in the course of the clique search 
algorithm [4] one recolors the nodes of the subgraphs of G under consideration, then we call it an on-
line coloring [10], for example, the optimization problem of finding the least cost cyclic route through 
all the nodes of a weighted graph. 
 
2. COLORING THE NODES  
 
Let T be a tournament whose nodes are a1; . . . . , ak, where k  2. 
Lemma 1 : If T is a transitive tournament, then there is a permutation b1, . . . , bk of a1, . . . . , ak such 
that 
(1) (bi, bi+1), … , (bi, bk) are edges of T for each i, 1  i < k.  
(2) The listed n(n - 1)/2 edges are all the edges of T.  
(3) Each subgraph of T is a transitive tournament.  
 
Proof : Statement (1) clearly holds for k = 2. We assume that k =3 and start an induction on k. If T has 
a vertex, say a1, such that each edge incident to a1 goes out of a1, then a1 can be identified with b1 and 
the inductive assumption is applicable to the graph whose nodes are a2, . . . , ak. 
If T has a vertex, say ak such that each edge incident to ak goes into ak, then ak can be identified with bk 
and the inductive assumption is applicable to the graph whose nodes are a1, . . . , ak-1. 
We may assume that each vertex of T has an incident edge going in and has an incident edge going 
out. In this case T contains a directed cycle. On the other hand a transitive tournament cannot contain 
a directed cycle. 
 
The reason why statement (2) holds is that a transitive tournament has n(n - 1)/2 directed edges and 
we list  all of them in statement (1). 
 
Statement (3) follows from the definition of the transitive tournament and statement (1), as any subset 
of the nodes can be ordered the same way. 
 
3. TWO AUXILIARY GRAPHS  
 
We describe two finite simple directed graphs. They will play the roles of building blocks or 
switching devices in further constructions. Let r, s be fixed integers such that r  4, s  4. Set 
 
h = (s – 1)(r – 1) + (s – 2)(r – 2) + (s – 3) + 3 
 
Let us consider the directed simple graph H = (V, E), where V = {1, … , h}. Set  W = {2, . . . ,  h – 1}. We 
draw directed edges between the nodes in W such that the subgraph of H whose set of nodes is W 
forms a transitive tournament. From the node 1 we direct edges towards each node of W. Similarly, 
from the node h we direct edges towards each node of W. 
 
We worked out the special case r = 4, s = 4 in detail. The adjacency matrix of H is shown in Table  1. A 
geometric representation of H is depicted in Figure 1. 
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 1 2 3 4 5 6 7 8 9 

1          

2          

3          

4          

5          

6          

7          

8          

9          

 
Table 1: The adjacency matrix of the graph H in the special case r = s = 4 

 

2(1)

1(4)

9(4)

3(1) 4(2) 5(2) 6(3) 7(3) 8(4)

 
Figure 1: The auxiliary graph H in the special case r = s = 4. The numbers in parentheses are the 

colors of the nodes. 
 
Lemma 3.1.  
(1) The nodes of the graph K admit an s-free coloring with r colors. 
(2) In each s-free coloring of the nodes of the graph K with r colors the nodes 1 and k cannot 
receive the same colors.  
(3) Each partial coloring of the nodes of K, where the nodes 1 and k are colored with distinct 
colors (and the other nodes of K are left uncolored) can be extended to an s-free coloring of the nodes 
of K using r colors.  
 
Proof : The nodes of the graph H admit an s-free coloring with r colors. Consequently, the nodes of 
each of the graphs H1, . . . , Hs-1 admit an s-free coloring with r colors. These colorings provide the 
same fixed color for s - 1 nodes of the tournament T. The uncolored node v of T can be colored with 
any of the remaining r - 1 colors.   
 
By a Lemma, the node V cannot receive the same color as node u.  
 
Further by another Lemma, each partial coloring of the nodes of H can be extended to an s-free 
coloring of the nodes of H using r colors. It follows that each partial coloring of the nodes of Hi can be 
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extended to an s-free coloring of the nodes of Hi using r colors for each i, 1  i  s-1. This provides a 
partial coloring of the nodes of the tournament T. In this partial coloring of the nodes of T each node 
except node v receives the same color. Namely the color of node u. The last uncolored node v clearly 
can be colored with any of the remaining r - 1 colors.  
 
4. THE MAIN RESULT  
 
Theorem  4.1 
A finite simple directed graph G = (V, E). Further given integers r, s such that r  4, s  3. Decide if G 
has an s-free coloring with r colors. When we deal with coloring the nodes of a graph G we inevitably 
have to deal with incomplete or partial colorings, where each of the nodes of G receives at most one of 
the colors 1, . . . , r but some of the nodes of G are left uncolored. Allocating color 0 for the uncolored 
nodes we can incorporate the incomplete colorings into the family of complete colorings. 
 
First Proof : Let r, s  4 be fixed integers. Let G = (V; E) be a finite simple graph with undirected 
edges. Using G and the auxiliary graphs H, K described in the previous section we construct a finite 
simple directed graph G0 = (V0; E0) such that the following conditions hold. 
 
(1) If the nodes of G have an s-free coloring with r colors, then the nodes of G have a legal 
coloring with r colors.  
(2) If the nodes of G have a legal coloring with r colors, then the nodes of G have an s-free 
coloring with r colors.  
(3) The number of nodes G can be upper bounded by a polynomial of the number of the nodes 
of G.  
 
Thus for each legal (edge free) coloring problem we can construct a directed s-free coloring problem. 
If the second can be solved in polynomial time, it means that the first one can be solved in polynomial 
time as well. 
 
Let v1, . . . , vn be the edges of G. In other words let V = {v1, . . . , vn}. We consider an isomorphic copy 
Ki,j = (Wi,j, Fi,j) of the auxiliary graph K = (W, F) for each i, j, 1  i < j  n. We recall that the nodes of K 
are labeled by the numbers   1, . . . , k. The nodes of Ki,j will be labeled by the ordered triples (i, j, 1), . . 
. , (i, j, k). Here the correspondence  
   1  {i, j, 1), . . . , l  (i, j, k) 
defines the isomorphism between K and Ki,j. 
 
With each of the nodes v1, . . . , vn we associate a node 1 nv ,  . . . , v   of the graph G. At this moment 

our only concern is that 1 nv ,  . . . , v   are pair-wise distinct points and they are nodes of G. But G 
may have further nodes. 
If the unordered pair {vi, vj} is an edge of G, then we add additional k - 2 nodes to G. We identify the 

nodes (i, j, k), (i, j, k) of Ki,j with the nodes iv ,  jv  of G, respectively. Next, we add the remaining k - 

2 nodes of Ki,j to the nodes of G. Finally, we add all the edges of Ki,j to the edges of G. 
 
If the unordered pair {vi, vj} is not an edge of G, then we do not add any nodes and we do not add any 
edges to G. Clearly, G has directed edges and it has |V| + |E| (k – 2) nodes. Since r, s are fixed 
numbers, it follows that k - 2 = c is a constant and so |V| can be upper bounded by n + cn(n - 1)/2 
which is a second degree polynomial in terms of n. This observation shows that condition (3) is 
satisfied. 
 
In order to show that condition (1) is satisfied let us assume that f : V  {1, . . . , r} is a legal free 
coloring of the nodes of G. Using f we define a coloring f : V  {1, . . . , r} of the nodes of G. We set 
f(vi) to be equal to f( iv ). 
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We claim that f(vi) = f(vj) implies that the unordered pair {vi, vj} is not an edge of G. 
 
To verify the claim we assume on the contrary that f(vi) = f(vj) and {vi, vj} is an edge of G. The 
restriction of f to Wi,j is an s-free coloring of the nodes of the graph Ki,j. By Lemma 5, the nodes (i, j, 1) 

and (i, j, k) cannot receive the same color. Using iv= (i, j, 1), jv  = (i, j, k) we get  

f(vi) = f( iv )  f( jv ) = f(vj), 

a contradiction. 
 
To demonstrate that condition (2) is satisfied let us suppose that f : V  {1, . . . , r} be a legal coloring 
of the nodes of G. Using f we define a coloring f : V  {1, . . . , r} of the nodes of G. We set f( iv ) to 
be equal to f(vi). 
 

Let us consider two distinct nodes iv , jv  of G. If the unordered pair     { iv ,  jv } is an edge of G, 

then by the construction of G the nodes iv , jv  are identical with the nodes (i, j, 1), (i, j, k) of Ki,j, 

respectively. Thus iv  = (i, j, 1),  jv  = (i, j, k). Since f is a legal coloring of the nodes of G, it follows 

that   f(vi)  f(vj) and so by the definition of f, we get that f( iv )  f( jv ). 

 
For the sake of definiteness let us suppose that f( iv ) = 1 and f( jv ) = 2. We have a partial coloring of 

the nodes of Ki,j. Namely, the nodes (i, j, 1), (i, j, k) are colored with colors 1, 2, respectively. Other 
nodes of Ki,j are left uncolored. By Lemma  5, this partial coloring of Ki,j can be extended to an s-free 
coloring of Ki,j. Since this can be accomplished in connection with each adjacent nodes iv , jv  of G, it 

follows that the nodes of G have an s-free coloring with r colors. 
 
Second Proof:  We present an informal new proof where the graph H plays a more direct role. The 
node edge incidence matrix M of a finite simple graph G = (V, E) is a |V| by |E| matrix. The rows 
and the columns of M are labeled by the nodes and the edges of G, respectively. If e = {u, v} is an edge 
of G, then we place two bullets into M. We put one bullet into the cell at the intersection of row u and 
column e. Then we put a bullet into the cell at the intersection of row v and column e. 
 
 

v6

v5

e8

e7 v4

e6

v3e4v2e1v1

e3
e2 e5

 
 

Figure 2: The toy example  
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 e1 e2 e3 e4 e5 e6 e7  

v1         

v2         

v3         

v4         

v5         

v6         

 
Table 2: The node edge incidence matrix of the toy example  

 
 
 

  e1 e2 e3 e4 e5 e6 e7 

v1        

v2        

v3        

v4        

v5 
       

 
Figure 3: The graph   associated with the toy example  

 
For the sake of illustration we included a toy example. The graph can be seen in Figure  2. The node 
edge incidence matrix of is in Table 2. 
 
Suppose we are given a finite simple undirected graph G = (V, E). Using G we construct a graph G = 
(V, E ). The construction is guided by the node edge incidence matrix of G. Let V = {v1, . . . , vn}, E = 
{e1, . . . , em}. If et = {vi, vj}, then we add the ordered pairs           (i, t), (j, t) to the set of nodes of G. Thus 
V is a set whose elements are ordered pairs. Clearly | V | = 2|E| = 2m. 
 
We can form a mesh consisting of n horizontal and m vertical lines. The intersection of the horizontal 
and vertical lines form (n)(m) mesh points. The nodes of G can be identified with some of these mesh 
points. 
 
Two distinct nodes (i, t) and (j, t) of G on a vertical mesh line are connected with a vertical undirected 
edge in G. Two distinct nodes (i, x) and (i, z) of G on a horizontal line are connected with a horizontal 
undirected edge in G if there is no node in the form (i, y) such that x < y < z. Figure 3 depicts the 
graph associated with the toy example. The mesh lines are represented by thin lines. Bold lines 
represent the edges of *. 
 
We replace each horizontal edge of G by an isomorphic copy of the auxiliary graph H. Next we 
replace each vertical edge of G by an isomorphic copy of the auxiliary graph K. After all possible 
replacements we get a finite simple directed graph G. 
 
Suppose that the nodes of G have an s-free coloring with r colors. The isomorphic copies of the 
auxiliary graph H guarantee that the nodes of G on a fixed horizontal line all receive the same color. 
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The isomorphic copies of the auxiliary graph K make sure that the two nodes of G on a fixed vertical 
line receive distinct colors. In this way we get a legal coloring of the nodes of G with r colors. 
 
5. CONCLUSION 
 
Hence we suppose that the nodes of G have a legal coloring with r colors. This coloring will provide 
partial colorings of the nodes of the isomorphic copies of the graphs H and K. One can extend these 
partial colorings to a complete s-free coloring of the nodes of G with r colors. 
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