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1. INTRODUCTION 

  

A lot of research work on reliability modeling of maintained systems has been carried out by several researchers in 

the field of reliability theory by considering static environmental condition. Gupta and Bhardwaj [6] analyzed the 

performance measures of a two-unit warm standby system model with repair, inspection and post-repair. Goel et al. 

[4] studied a two-unit warm standby system with fault detection and inspection.  Chaudhary et al. [2] analyzed a two 

non-identical unit parallel system model with single or double phase(s) of repair.  It is worth mentioning here that all 

the above studies are not based on real existing system models. However, some researchers like Gupta and Kumar 

[5] carried out the analysis of Reliability characteristics of a distillery plant. Chaudhary et al. [1] analyzed reliability 

characteristic of bread making system. Gupta and Kishan [7] developed a model pertaining to   power, inverter and 
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Abstract 

This paper presents the stochastic analysis of a real existing industrial system model of potato chips under 

Classical and Bayesian set ups. The system consists of four different subsystems viz. Destoning and 

Peeling (D), Slicing (S), Coloring (C) and Frying &Salting (F). Out of four subsystems, one subsystem 

(Destoning and Peeling) has its cold standby unit. All these subsystems are connected in series 

configuration. Life time distributions and repair time distributions of each sub system are assumed to be 

independent Weibull with different scale parameters but common shape parameter. A single repairman is 

always available with the system .The repair discipline is first come first served (FCFS). Maximum 

Likelihood Estimation of the parameters representing the reliability characteristics is also done. A Bayesian 

approach is also adopted to evaluate the reliability characteristics .Finally, a Monte Carlo simulation study 

is carried out to judge the performances of the ML and Bayes estimator. 
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generator and obtained various reliability measures. Gupta and Shivakar [8] analyzed a cloth weaving system model 

using regenerative point technique. 

 

We also note that all the above  studies were mainly concerned to obtain various reliability characteristics such as 

mean time to system failure (MTSF), point wise and steady state availabilities etc. by using different life time and 

repair time distributions of units and not to estimate the parameter(s) involved in the life time/repair time 

distribution of the system/unit. 

 

In this paper we analyze a real existing system model of a potato chips plant assuming the failure and repair time 

distributions of each sub system as independent Weibull with common and known shape parameter but different 

scale parameters and also find the maximum likelihood estimators of the parameters representing various reliability 

characteristics. Since the lifetime experiments are very time consuming and as such the environmental conditions 

throughout the experiment may not be same. Therefore, it seems reasonable to treat the failure time parameters 

representing various system reliability characteristics as random variables instead of fixed constants. Keeping this in 

view, a Bayesian approach is also adopted to evaluate the various measures of system effectiveness by taking 

different priors and the comparative analysis is also carried out to access the performances of the MLE and Bayesian 

estimators. 

 

The probability density function (p.d.f) of Weibull distribution with shape parameter p and scale parameter α is 

given by 

f (t) = αpt
p-1 

exp (-αt
p
); α, p > 0, t≥ 0                                                                                 (1) 

 

The reliability/survival function and hazard (failure /repair) rate for Weibull distribution are respectively given by 

R (t) =exp (-αt
p
) 

and 

h (t) = αpt
p-1

 
It is important to note that for p=1, the Weibull distribution given in (1), reduces to exponential distribution and for 

p=2, it reduces to the Rayleigh distribution. 

 

2.  SYSTEM DESCRIPTION 

 

The potato chips system consists of four main subsystems- Destoning & Peeling, Slicing, Coloring and Salting & 

Frying. All are arranged in series network.  Out of these four subsystems, one subsystem namely- Destoning 

machine has its cold standby unit. The system stops functioning if any one of the subsystems stops functioning.  

Destoning & Peeling machine, Coloring machine and Frying & Salting  machine becomes as good as new after 

repair while after the repair of Slicing machine, it first goes for inspection with known probabilities to decide 

whether the repair is perfect or not. If the repair of Slicing machine is found to be perfect then it becomes 

operational, otherwise it is sent for post repair. The service discipline of the repairman is First Come First Served 
(FCFS). A single repair facility is used to repair each subsystem and inspection & post repair of slicing machine. 

The failure and repair time distributions of each subsystem are taken as independent having the Weibull density with 

common shape parameter ‘p’ but different scale parameters αd , αs, αc, αf and βd , βs, βc, βf  respectively as follows:  
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 The inspection and post repair time distributions of slicing machine are taken to be independent having the Weibull 

density with common shape parameter ‘p’ but different scale parameters 
sν  and 

sλ  as follows: 

 

o(t) = sν pt
p-1 

exp (- sν t
p
); sν , p > 0, t ≥ 0 

m(t)= sλ pt
p-1 

exp (- sλ t
p
); sλ , p > 0, t ≥ 0 

 

2.1 Roll of Subsytems 

.Destoning & Peeling (D) – Destoning & Peeling machine pushes the potatoes up to a conveyer belt to the      

automatic peeling machine. After they have been peeled, the potatoes are washed with cold Water. 

• Slicing (S) – The main work of slicing machine is to cut the potatoes in to paper thin slices.  

• Slicing (S) – The main work of slicing machine is to cut the potatoes in to paper thin slices. 

• Coloring (C) – After the slices of potatoes, the potatoes are chemically treated to enhance their color. 

• Frying & Salting (F) – Frying and salting machine is used to remove the excess water as they flow into 40-75ft  

troughs filled with oil. As the slices tumble, salt is sprinkled to each of chips. 
         

3. NOTATIONS AND STATES OF THE SYSTEM 

E : Set of regenerative states. 

αd ,  αs,  αc,  αf      : Scale parameters of  failure time distribution for destoning & peeling, slicing, coloring, frying &      

                            salting machine respectively. 

βd , βs, βc, βf     :Scale parameters of repair time distribution for destoning & peeling,  slicing, coloring, frying &        

                           salting machine respectively. 

P  : Shape parameter of failure/repair time distribution of each subsystem. 

hd(t)          : Failure rate of destoning & peeling machine. 

                              = αdpt
p-1   

, αd, p, t > 0  

hs(t)        : Failure rate of slicing machine. 
                              =αspt

p-1   
, αs, p, t > 0 

hc(t) : Failure rate of coloring machine. 

                             = αcpt
p-1   

, αc, p, t > 0 

hf(t)          : Failure rate of frying & salting machine. 

                              = αfpt
p-1   

, αf, p, t > 0 

Jd(t)         : Repairs rate of destoning & peeling machine. 

                             =βdpt
p-1

   , βd, p, t > 0 

Js(t)         : Repair rate of slicing machine. 

                              =βspt
p-1

   , βs, p, t > 0 

Jc(t)        : Repair rate of coloring machine. 

                             = βcpt
p-1

   , βc, p, t > 0  

Jf(t)        : Repair rate of frying & salting machine. 
                             = βfptp-1   , βf, p, t > 0 

s s,ν λ       : Scale parameter of inspection/post repair time distribution of slicing machine. 

ls(t)          : Inspection rate of slicing machine having the form 

                             = sν pt
p-1

; sν ,p, t > 0 

xs(t)                     : Post repair rate of slicing machine having the form 

                             = sλ pt
p-1

;
 sλ , p, t > 0 

a/b          : Probabilities that the repair of slicing machine is perfect or imperfect such                          

                              i.e. a+b=1 

����∙�, 	���∙�   : p.d.f. (probability density function) and c.d.f. (cumulative density function) of one step or direct        

                                   transition time from ���
 to ���
. 

���          : Steady state transition probability from state ��to ��such that 

                                ���=lim
�→∞

	�����. 

(k)
 pij         : Steady state transition probability from state ��to ��  via ��such that 

                                

(k)
 p  ij =lim

�→∞
	��

������. 
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ψ
�
         : Mean sojourn time in regenerative state ��  i.e. 

                             =� �[�� > �]��
∞

�
 

1θ
       

 : Mean repair time of Destoning and Peeling machine. 

∗                            : Symbol for Laplace transform of a function i.e. 

                                 q��
∗ =� !"#���$�����

∞

�
. 

∙                         : Regenerative point. 

×                           : Non regenerative point. 

 

Symbols for the States of the System 

 

Do, Ds, Dg, Dr,  Dwr : Destoning & Peeling machine is operative, standby, good, under                                           

repair, waiting for repair. 

So, Sg, Sr, Swr , SI  , SPr  : Slicing machine is operative, good, under repair, waiting  for repair, under inspection         

   after repair/and post repair. 
Co, Cg, Cr, Cwr         : Coloring machine is operative, good, under repair, waiting fo repair. 
Fo, Fg, Fr, Fwr         : Frying and Salting machine is operative, good, under repair, waiting for repair. 

 

With these symbols and assumptions stated above, the transition diagram of the system model along with transition 

rates between different states is shown in Fig.1. Here S5, S6, S7, S8 states are non-regenerative whereas the other 

states are regenerative. Also note that states S0   and S1 are up states whereas states S2, S3, S4, S5, S6, S7, S8, S9   and S10 

are failed states. 

 

 

 
 

Fig. 1: Transition Diagram 
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4. TRANSITION PROBABILITIES AND SOJOURN TIMES 

 

The elements pij of transition probability matrix (t.p.m.) of the embedded Markov chain is as follows: 
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The steady state transition probabilities can be obtained by using the results, 
(k) (k)

ij ij ij ij
t t

p = lim  Q (t) p = liand m    Q (t)
→ ∞ → ∞

 

p p p p
p 1 c sd f

d
d

01
c sd f

t t t tptp e e e e dt
− −α −α −α −α α

α
α α

= =
+α + +α∫

 

Note that the limits of  integration are from 0 to  whenever not mentioned.∞  
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s c f
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It can be easily verified that 

01 02 03 04
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                                                                                       (2-5)               

 

Mean Sojourn Times 

If iT  be the sojourn time in state iS , then mean sojourn time in state iS  is given by, 

0 iP(T t)dtψ = >∫  
Therefore, the mean sojourn times for various states are as follows: 



Bulletin of Pure and Applied Sciences / Vol. 37E (Math & Stat.) No.2 / July-December 2018 

                                                               [351] 

 

p p p p
d f c s

p
d f c s

p
d f c s d

1/p

1/p

p p p p
c sd f

1/p

d f c s

p
t t t t d

d f c s d

s

( )t

( )t

t t t t
0

t
1

2 3

1
(1 )

p

)

1

p
e e e e

)

1

p

)

t e dt

(1

t e dt

Similarly,

(1

,

 e e e e d

)

 e d

(1)

  

− α −α − α − α

− α + α +α + α

− α + α +α + α +β

− α −α −α − α

−β

Γ +

(α + α +α + α

(α + α +α + α +β

(β

= =

Γ

= =

Γ

ψ =

+

ψ =

Γ+

ψ = ψ =

∫

∫

∫

∫

9 101/p 1/p 1/p 1/p

s s sc f

4

1 1
(1 ) (1 )

p p
      

) )

1 1

p p
, , ,

) )

                                                                                                  

(1

 

) ) Γ + Γ +

ψ = ψ =
(ν +ν (λ(β (β

Γ

ψ =

+ +

  (6-12) 

              

 
5. ANALYSIS OF CHARACTERISTICS 

 
5.1 Reliability and Mean Time to System Failure (MTSF) 

Let the random variable ‘ T ’ be the time to system failure (TSF) when the system starts from iS E∈ , then the 

reliability of the system is given by 

     i iR (t )  = P  [T  t ]>   

   To determine the reliability of the system, we regard the failed states of the system as absorbing states. By 

simple probabilistic arguments, we have the following recursive relations among Ri(t)’s.  

0 0 01 1R (t) Z (t)  q (t) R (t)= +   

1 1 10 0R (t)  Z (t)  q (t) R (t) = +  
 

           (13-14)  

Taking Laplace transform of Equations (13-14) and solving for 
*
0R (s)

                         
 (omitting the argument‘s’ for brevity), we get

  

1

1

* * *
* 0 01 1
0 * *

01 10

N (s)

D (s)

Z q Z
R (s)

1 q q
=

+
=

−
                                                                       (15)    

where  

 
* *
0 1  anZ (s) Zd  (s)  are the Laplace transforms of 0Z (t) and 1Z (t)  given by 

 

and  
p

d f c s d( )t
1 eZ (t) − α +α +α +α +β=  

 

Taking the inverse Laplace transform (ILT) of Equation (15), one can get the reliability of the system when system 

starts from the state S0. 

 

The mean time to system failure (MTSF) can be obtained by using the well known formula- 

MTSF= ( )1 1 1
0 0

s 0
1 1 1

N (s) N
1

(0) N
E(T ) lim R (s)

D (s) D (0) D
6∗

→
= = = =

Now using the results
*
ij ijq (0) p=  and Zi*(0) = iψ , we get 

                                                                                             

          

(17) 
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5.2 Availability Analysis 

Let us define iA (t) as the probability that the system is up at time t when initially it starts from state iS E∈ .  

By simple probabilistic arguments, we have the following recursive relations among iA (t)’s:  

0 0 01 1 02 2 03 3 04 4

(5) (6) (7) (8)
1 1 10 0 11 1 12 2 13 3 14 4

2 29 9

A (t) Z (t)  q (t) A (t)  q (t) A (t)  q (t) A (t)  q (t) A (t) 

A (t)  Z (t)  q (t) A (t)  q (t) A (t) q (t) A (t) q (t) A (t) q (t) A (t)

A (t) q (t) A

= +  +  +  + 

= +  +  +  +  + 

= 

    

     

 

3 30 0

4 40 0

9 9,10 10 90 0

10 10,0 0

(t)

A (t)  q (t) A (t)

A (t) q (t) A (t)

A (t) q (t) A (t)  q (t) A (t)

A (t) q (t) A (t)  

= 

= 

=  + 

= 

 

 

  

 

                                                             (19-25) 

Where
p

s cd f( )t
0Z (t) e− α +α +α +α= and  

p
d s c f d( ) t

1 eZ (t) − α + α +α + α +β=  

Taking Laplace transforms of relations (19-25) and simplifying for 
*
0A (s)

 
(omitting the argument‘s’ for brevity), we get

  

2

2

*
0
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N

D
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(s)

Z (1 q ) q Z

[(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }
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− +
=

− − − − − + + +

= +

                  

                                                                (26) 

 

Taking inverse Laplace Transform of Equation (26), we get the availability of the system when it starts from state 

S0.. 
 

In the long run, the steady state availability of the system when it starts from state 0S  is given by 

0 0
t

A   lim  A ( t )
→ ∞

=
 

      2

0
s 0

2

N
lim  s A (s)  

D
 ∗

→
==                                                                          

                                                                     (27) 

where, 
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                                                                (28)     

where, 
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( )

1
Γ 1+

p
θ =
1 1/p

β
d

 
 
  = Mean repair time of Destoning and Peeling machine.  

The expected up time of the system during (0, t) is given by 

( )
t

up 0

0

A u du(t)µ =∫ , so that,  

*
* 0
up

A (s)
(s)

s
µ =                                              

                                                               (29) 

5.3  Busy Period Analysis 

 

 (i)The expected busy period of the repairman in repair of Destoning and Peeling machine (D) 

Let us define 
D
iB (t)  as the probability that the repairman is busy in the repair of a failed Destoning and Peeling 

machine (D) at epoch t when the system starts from state iS E∈ . By simple probabilistic arguments, we have the 

following recursive relations among
D
iB (t) ’s:  

D D D D D
0 01 1 02 2 03 3 04 4

D D (5) D (6) D (7) D (8) D
1 1 10 0 11 1 12 2 13 3 14 4

D
2 29 9
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B (t)   q (t) B

=  +  +  + 

= +  +  +  +  + 

= 
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= 

 

 

  

 

                                                               (30-36) 

where, 
p

d s c f d( ) t
1 eZ (t) − α + α +α + α +β=

.
 

Taking the Laplace transform of Equations (30-36) and solving for 
D
0B (s)∗

                        
(omitting the argument‘s’ for brevity), we get 

 

( )3

2

* *
D 1 01
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37

0

N
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B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ = =
− − − − − + + +

= +
Taking the  inverse Laplace Transform of  Equation (37), we get the probability that the repairman is busy in the 

repair of a failed Destoning and Peeling  machine at epoch t, given that the system starts from the state S0. In the 

long run, the fraction of time for which the system is under repair, starting from the state S0, is given by 

D D D 3
0 0 0

t s 0
2

N
B   lim B (t)  lim  s B (s) =

D

∗

→∞ →
= =    (38) 

where,

 
3 01 1N p= ψ                                                                                                                           (39)                                                                              

and D2 is the same as given in (28). 

The expected busy period of the repairman in the repair of  Destoning and Peeling machine (D) is 

 

t
D D
b 0

0

(t) B (u)duµ =∫
     

so that    

D*
D* 0
b

B (s)
(s)

s
µ =                                                                      (40) 

 (ii) The expected busy period of the repairman in repair of Slicing machine (S) 
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Let us define
S
iB (t)  as the probability that the repairman is busy in the repair of a failed Slicing machine(S) at 

epoch t when the system starts from state iS E∈ . By simple probabilistic arguments, we have following recursive 

relations among
S
iB (t) ’s: 

S S S S S
0 01 1 02 2 03 3 04 4

S S (5) S (6) S (7) S (8) S
1 10 0 11 1 12 2 13 3 14 4

S
2 2 29

B (t)  q (t) B (t)   q (t) B (t)   q (t) B (t)   q (t) B (t)

B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)

B (t)   Z (t) q (t) 

=  +  +  + 

=  +  +  +  + 

= +

    

     

S
9

S S
3 30 0

S S
4 40 0

S S S
9 9,10 10 90 0

S S
10 10,0 0

B (t) 

B (t)   q (t) B (t) 

B (t)  q (t) B (t)

B (t)   q (t) B (t)  q (t) B (t)

B (t)   q (t) B (t)

 



= 

= 

=  + 

= 

 

 

 

  

 

         

                                                                                                                                                                             (41-47) 

where,     
p

s
2

tZ (t) e −β=  

Taking the Laplace transform of Equations (41-47) and solving for 
S
0B (s)∗

                        
(omitting the argument‘s’ for brevity), we get

  

( )4

2

* * (5)* * (6)*
S 2 02 11 01 12
0 (5)* * * * * * * * (6)* * (7)* * (8)*

11 02 03 30 04 40 01 10 12 30 13 40 14

* * * * *
29 9,10

4

1 ,0

8

0 29 90

N

D

(s) Z [q (1 q ) q q ]
B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ − +
= =

− − − − − + + +

= +

 
Taking the inverse Laplace Transform of equation (48), we get the probability that the repairman is busy in the 

repair of a failed Slicing machine at epoch t given that the system starts from the state S0. In the long run, the 

fraction of time for which the system is under repair, starting from state S0, is given by 

 

S S
0 0

t
B   lim  B (t)

→∞
=  

S 4
0

s 0
2

N
 lim  s B (s) =

D

∗

→
=   

         (49)   

where                                                              

                                 (50) 

                                                                                            
and D2 is as given in (28). 

 

The expected busy period of the repairman in the repair of Slicing machine (M) is  

t
S S
b 0

0

(t) B (u)duµ =∫
          

so that         

S*
S* 0
b

B (s)
(s)

s
µ =             

                                                                (51) 

(iii) The expected busy period of the repairman in inspection of Slicing machine (S) 

      Let us define
SI
iB (t)  as the probability that the repairman is busy in the inspection after the repair of Slicing 

machine(S) at epoch t when the system starts from the state iS E∈ . By simple probabilistic arguments, we have the 

following recursive relations in
SI
iB (t) ’s: 

4
(5) (6)

02 01 211 12N [ 1 ]( p )p p p= − + ψ
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SI SI SI SI SI
0 01 1 02 2 03 3 04 4

SI SI (5) SI (6) SI (7) SI (8) SI
1 10 0 11 1 12 2 13 3 14 4

SI
2

B (t)  q (t) B (t)   q (t) B (t)   q (t) B (t)   q (t) B (t)  

B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)

B (t)   q

=  +  +  + 

=  +  +  +  + 

=

    

     

SI
29 9

SI SI
3 30 0

SI SI
4 40 0

SI SI SI
9 9 9,10 10 90 0

SI SI
10 10,0 0

(t) B (t) 

B (t)   q (t) B (t) 

B (t)  q (t) B (t)

B (t)  Z (t)  q (t) B (t)  q (t) B (t)

B (t)   q (t) B (t)



= 

= 

= +  + 

= 

 

 

 

  

 

 

                                                            (52-58) 

 

where,  

    
p

s s )
9

( tZ (t) e− ν +ν=  

Taking the Laplace transform of Equations (52-58) and solving for 
SI
0B (s)∗

                        
(omitting the argument‘s’ for brevity), we get

  

( )5

2

* * * (5)* * (6)*
SI 9 29 02 11 01 12
0 (5)* * * * * * * * (6)* * (7)* * (8)*

11 02 03 30 04 40 01 10 12 30 13 40 14

* * * * *
29 9,10 10,0 2 0

59

9 9

N

D

(s) Z q [q (1 q ) q q ]
B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ − +
= =

− − − − − + + +

= +
        (59) 

Taking the inverse Laplace Transform of (59), we get the probability that the repairman is busy in the inspection of 

the Slicing machine(S) at epoch t after its repair, given that the system starts from the state S0. 

 In the long run, the fraction of time for which the system is under inspection, starting from state S0, is given by 

SI SI
0 0

t
B   lim  B (t)

→ ∞
=  

SI 5
0

s 0
2

N
 lim  s B (s) =

D

∗

→
=                                                                                           (60) 

where,

  

                                                                   (61) 
and D2 is given by (28). 

The expected busy period of the repairman in the inspection of Slicing Machine (S) is  

t
SI SI
b 0

0

(t) B (u)duµ =∫
  

so that    

SI*
SI* 0
b

B (s)
(s)

s
µ =                                     (62) 

(iv) The expected busy period of the repairman in post repair of Slicing machine (S) 

 Let us define
SPr
iB (t)  as the probability that the repairman is busy in the post repair after the inspection of the 

repaired Slicing Machine (S) at epoch t when the system starts from the state iS E∈ . By simple probabilistic 

arguments, we have the following recursive relations in
SPr
iB (t) ’s: 

SPr SPr SPr SPr SPr
0 01 1 02 2 03 3 04 4

SPr SPr (5) SPr (6) SPr (7) SPr (8) SPr
1 10 0 11 1 12 2 13 3 14 4

B (t)  q (t) B (t)   q (t) B (t)   q (t) B (t)   q (t) B (t)  

B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)

=  +  +  + 

=  +  +  +  + 

    

     

SPr SPr
2 29 9

SPr SPr
3 30 0

SPr SPr
4 40 0

SPr SPr SPr
9 9,10 10 90 0

SPr SPr
10 10 10,0 0

B (t)   q (t) B (t) 

B (t)   q (t) B (t) 

B (t)  q (t) B (t)

B (t)   q (t) B (t)  q (t) B (t)

B (t)   Z (t)  q (t) B (t)

= 

= 

= 

=  + 

= + 

 

 

 

  

 

 
        (63-69) 

5
(5) (6)

02 01 29 911 12N [ 1 ]( p )p p p p= − + ψ



Ram Kishan & Divya Jain / Stochastic Analysis of Potato Chips Plant Model Under Classical and 

Bayesian Set Ups 

[356] 

 

where,  

    
p

s
10

tZ (t) e −λ=  

Taking the Laplace transform of  (63-69) and solving for 
S Pr
0B (s)∗

     
(omitting the argument‘s’ for brevity), we get

  

6

2

* * * * (5)* * (6)*
10 29 9,10 02 11 01 12SPr

0 (5)* * * * * * * * (6)* * (7)* * (8)*
11 02 03 30 04 40 01 10 12 30 13 40 14

* * * * *
29 9,10 10,0 29 90

N

D

Z q q [q (1 q ) q q ](s)
B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ − +
= =

− − − − − + + +

= +
 (70) 

 

Taking the inverse Laplace Transform of  (70), we get the probability that the repairman is busy in the post repair  

after the inspection of the repaired  Slicing Machine (S)  at epoch t given that the system starts from the state S0. In 

the long run, the fraction of time for which the system is under post repair, starting from state S0, is given by 

SPr SPr
0 0

t
B   lim  B (t)

→∞
=  

SPr 6
0

s 0
2

N
 lim  s B (s) =

D

∗

→
=  (71)       

where, 

                                                                                          (72)       
 

                            

and D2 given by (28). 

 

The expected busy period of the repairman in post repair of Slicing Machine (S) is  

t
SPr SPr
b 0

0

(t) B (u)duµ =∫
  

so that  

SPr*
SPr* 0
b

B (s)
(s)

s
µ =                             (73)  

(v) The expected busy period of the repairman in the repair of the Coloring machine (C) 

Let us define
C
iB (t)  as the probability that the repairman is busy in the repair of a failed Coloring machine (C) at 

epoch t when the system starts from the state iS E∈ . By simple probabilistic arguments, we have the following 

recursive relations among
C
iB (t) ’s: 

C C C C C
0 01 1 02 2 03 3 04 4

C C (5) C (6) C (7) C (8) C
1 10 0 11 1 12 2 13 3 14 4

C C
2 29 9

3

B (t) q (t) B (t)   q (t) B (t)   q (t) B (t)   q (t) B (t)  

B (t) q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)

B (t) q (t) B (t)

B

=  +  +  + 

=  +  +  +  + 

= 

    

     

 

C C
3 30 0

C C
4 40 0

C C C
9 9,10 10 90 0

C C
10 10,0 0

(t) Z (t)  q (t) B (t) 

B (t)  q (t) B (t)

B (t)  q (t) B (t)  q (t) B (t)

B (t) q (t) B (t) 

= + 

= 

=  + 

= 

 

 

  

 

 

                                                           
 (74-80) 

where,     
p

c
3

tZ (t) e−β=
.
 

Taking the Laplace transform of (74-80) and solving for 
C
0B (s)∗

   
(omitting the argument‘s’ for brevity), we get

  

7

2

* * (5)* * (7)*
C 3 03 11 01 13
0 (5)* * * * * * * * (6)* * (7)* * (8)*

11 02 03 30 04 40 01 10 12 30 13 40 14

* * * * *
29 9,10 10,0 29 90

N

D

(s) Z [q (1 q ) q q ]
B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ − +
= =

− − − − − + + +

= +
(81)    

     

6
(5) (6)

02 01 29 9,10 1011 12N [ 1 ]( p )p p p p p= − + ψ
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Taking the inverse Laplace Transform of (81), we get the probability that the repairman is busy in the repair of a 

failed Coloring machine (C) at epoch t given that the system starts from the state S0. In the long run, the fraction of 

time for which the system is under repair, starting from the state S0, is given by 

 
C C
0 0

t
B   lim  B (t)

→∞
=  

C 7
0

s 0
2

N
 lim  s B (s) =

D

∗

→
=                                  (82) 

where,

  

                                                                                    

                                                            (83) 

and D2 is given by (28). 

 

The expected busy period of the repairman in the repair of Coloring machine (C) is  

t
C C
b 0

0

(t) B (u)duµ =∫  so that 

C*
C* 0
b

B (s)
(s)

s
µ =                                    (84)                                                                                

 

(vi)The expected busy period of the repairman in repair of Frying & Salting machine (F)

 Let us define
F
iB (t)  as the probability that the repairman is busy in the repair of a failed Frying and Salting 

machine (F) at epoch t when the system starts from the state iS E∈ . By simple probabilistic arguments, we have 

the following recursive relations among
F
iB (t) ’s: 

F F F F F
0 01 1 02 2 03 3 04 4

F F (5) F (6) F (7) F (8) F
1 10 0 11 1 12 2 13 3 14 4

F F
2 29 9

B (t)  q (t) B (t)   q (t) B (t)   q (t) B (t)   q (t) B (t)  

B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)  q (t) B (t)

B (t)   q (t) B (

=  +  +  + 

=  +  +  +  + 

= 

    

     

 

F F
3 30 0

F F
4 4 40 0

F F F
9 9,10 10 90 0

F F
10 10,0 0

t) 

B (t)   q (t) B (t) 

B (t)  Z (t) q (t) B (t)

B (t)   q (t) B (t)  q (t) B (t)

B (t)    q (t) B (t)

= 

= + 

=  + 

= 

 

 

  

 

                                                                                                                                                                             
 (85-91) 

where,  

    
p

f
4

tZ (t) e−β=  

Taking the Laplace transform of (85-91) and solving for 
F
0B (s)∗

 
(omitting the argument‘s’ for brevity), we get

  

8

2

* * (5)* * (8)*
F 4 04 11 01 14
0 (5)* * * * * * * * (6)* * (7)* * (8)*

11 02 03 30 04 40 01 10 12 30 13 40 14

* * * * *
29 9,10 10,0 29 90

N

D

(s) Z [q (1 q ) q q ]
B (s)

(s) [(1 q )(1 q Y q q q q )] q [q Yq q q q q ]

where, Y {q q q q q }

∗ − +
= =

− − − − − + + +

= +
 (92)    

                                                                           
Taking the inverse Laplace Transform of  (92), we get the probability that the repairman is busy in the repair of a 

failed Frying and  Salting Machine at epoch t given that the system starts from the state S0. In the long run, fraction 

of time for which the system is under repair, starting from the state S0, is given by 

 
F F
0 0

t
B   lim  B (t)

→∞
=  

F 8
0

s 0
2

N
 lim  s B (s) =

D

∗

→
=                                                                                         (93) 

 

where, 

 (94)                                      

7
(5) (7)

03 01 311 13N [ 1 ]( p )p p p= − + ψ

8
(5) (8)

04 01 411 14N [ 1 ]( p )p p p= − + ψ
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and D2 is the same as given in (28). 

 

The expected busy period of the repairman in the repair of the Frying and Salting machine (F) is  

t
F F
b 0

0

(t) B (u)duµ =∫
  

so that  

F*
F* 0
b

B (s)
(s)

s
µ =                                                                                 (95) 

                                                                                                     
5.4   Profit Function Analysis 

Let us define  

K0 = revenue (in Rs.) per-unit up time of the system. 
K1 = cost (in Rs.) per unit time when the repairman is busy in the repair of the Destoning and    

        Peeling machine 

K2 = cost (in Rs.) per unit time when the repairman is busy in the repair of the Slicing       

        machine. 

K3 = cost (in Rs.) per unit time when the repairman is busy in the repair of the Coloring   

         machine. 

K4 = cost (in Rs.) per unit time when the repairman is busy in the repair of the Frying &  

         Salting. 

K5 = cost (in Rs.) per unit time when the repairman is busy in the inspection of the Slicing       

        machine.  

K6 = cost (in Rs.) per unit time when the repairman is busy in the post repair of the Slicing  
         machine after inspection. 

 

Then, the expected total profit incurred in time interval (0, t) is 

P (t) = Expected total revenue in (0, t) – Expected total cost of repair in (0, t) - Expected total cost of inspection in 

(0, t) - Expected total cost of post repair in (0, t) 

     = 0 up (t)K µ - 
D S C F SI SPr
b 2 b 3 b 4 b 5 b1 b 6K (t) (t) (t) (t   K    K  ) (t)  K   K    K           (t)µ µ µ µ µ− µ− − − −      (96) 

The expected total profit per-unit time in steady-state is given by 

                                            
D S C F SI SPr

0 0 1 0 2 0 3 0 4 0 5 0 6                 0     P K A K B B BK K KB B BK K− − − −= −−
                            

(97) 

where D S C F SI S Pr
0 0 0 0 0 0 0A ,B , B ,B ,B B ,B  are given in (27), (38), (49), (82),(93), (60) and  (71), respectively.   

 

6. ESTIMATION OF PARAMETERS, MTSF AND PROFIT FUNCTION 

 

6.1 Classical Estimation 

6.1.1 ML Estimation 

Suppose that the failure, repair, inspection and post repair times of units of system are independently distributed as 

Weibull with failure rates  hd (.), hs (.),hc (.), hf (.),repair rates Jd(.), Js(.),Jc(.),Jf(.),inspection rate ls(.) and post repair 
rate xs(.) as defined in Section 3. Let 

1 2 3 4

5 76

1 11 12 1n 2 21 22 2n 3 31 32 3n 4 41 42 4n

5 5n 7 7n51 52 6 61 62 6n 71 72

8 81 8

X (x , x ,......., x ) , X (x , x ,......., x ) , X (x , x ,......., x ) , X (x , x ,......., x ) ,

X (x , x ,......., x ) , X (x , x ,......., x ), X (x , x ,......., x ),

X (x , x

= = = =

= = =

=

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ 8 9 102 8n 9 91 92 9n 10 101 102 10n,......., x ) , X (x , x ,......., x ) , X (x , x ,......., x )= =
ɶ ɶ

 

be ten independent random samples of size  ni (i=1,2,3,4,5,6,7,8,9,10) drawn from Weibull distribution  with failure 

rates  hd (.), hs (.),hc (.), hf (.),repair rates Jd(.), Js(.),Jc(.),Jf(.),inspection rate ls(.) and post repair rate xs(.)  
respectively. 

 

The likelihood function of the combined sample is 

s c sd s

s c1 2 3d f
5 71 2 3 4 6 8 9 10

s s5 71 2 3 4 6 8 9 10

5 73 5 6 7 8 9 10 1 2 3 4 6 8 9 101 2 4

s c s c

( W

d f d,

W W W

f, , ,

n n n n n n n n n n n n n n nn n n n n
s cd f f

Z Z Z Z Z Z Z Z Z Z

p

L L X ,X ,X ,X ,X ,X ,  ,  ,  ,  ,  ,X ,X ,X  ,X

e

+ + + + + + + + +

− α +α +α +α

β β β

 
 
 

ν λα α β

α= ν λα α α β β

=

β β

×

α α
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

s c s s5 74 6 8 9 10sd fW W W W W W )+ + +β +β β +β ν +λ
 (98) 

   

where  
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i
p 1

ij

j 1

i
p

i ij i
j 1

n n

and xW x Z ; i 1,2,3,4,5,6,7,8,9,10.
−

==

= = =∏∑

 
By using the usual maximization likelihood approach, the M.L. estimates (say d s c f d, f sc ss

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , ˆˆ ,, ,α α α α β β νβ λβ ) 

of the parameters ( s c s cd f d s s, f , ,,  ,  ,  ,  ,  ,  α να α β β β β λα ) are 

3
ˆˆ ˆ ˆ ˆn / W , n / W , n / W , n / W , n / W ,

d 1 1 s 2 2 c 3 f 4 4 d 5 5

ˆ ˆ ˆ ˆˆn / W , n / W , n / W , n / W , n / W
s 6 6 c 7 7 f 8 8 s 9 9 s 1 0 1 0

α = α = α = α = β =

β = β = β = ν = λ =  

Now, using the invariance property of ML estimates, the MLEs of the MTSF and profit function, say, ˆ ˆM and P
 

can be obtained. The asymptotic distribution of 

( )
'

1

10

'
N (0, I )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , , , , ,d d s s c c f f d d s s c c f f , s s s s

−
α −α α −α α −α α −α β −β β −β β −β β −β ν −ν λ −λ ∼ , 

where I denotes the Fisher information matrix with diagonal elements. 

n n n n n n nn n n
3 5 6 7 8 9 101 2 4I , I , I , I , I , I , I , I , I , I

11 22 33 44 55 66 77 88 99 10102 2 2 2 2 2 2 2 2 2
d s c f d s c f s s

= = = = = = = = = =
α α α α β β β β ν λ      

and the non diagonal elements are all zero. 

Also, the asymptotic distribution of ( ) ( )1M̂ M is N 0, A I A−′−
 
and that of ( ) ( )1P̂ P is N 0,B I B−− ′  , where 

s c s c s sd f d f

, , ,
M M M M M M M M M M

A , , , , , ,
 
 
 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
′=

∂α ∂α ∂α ∂α ∂β ∂β ∂β ∂β ∂ν ∂λ
,

s c s c s sd f d f

, , ,
P P P P P P P P P P

B , , , , , ,
 
 
 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
′=

∂α ∂α ∂α ∂α ∂β ∂β ∂β ∂β ∂ν ∂λ
  

 

6.1.2 Bayesian Estimation 

In the Bayesian method of estimation parameters are taken as random variables. Suppose the parameters involved in 

the model are random variables having independent Gamma prior distributions as 

c 3 3

f 4 4

s

f

1 1d

s 2 2

5 5d

6 6

c 7 7

8 8

s 9 9

s 10 10

Gamma(a , b )

Gamma( a , b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

Gamma(a ,b )

α

α

α

α

β

β

β

β

ν

λ

∼

∼

∼

∼

∼

∼

∼

∼

∼

∼
                                                (99-108)

 

Now, using the likelihood function in 

 

(98) and taking the prior distributions (99-108), the posterior distributions of 

these parameters, given the data, are obtained as follows: 
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c 3 3 3 3 3

f 4 4 4 4 4

s

f

1 1 1 1 1d

s 2 2 2 2 2

5 5 5 5 5d

6 6 6 6 6

c 7 7 7 7 7

8 8 8 8 8

s 9

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Gamma(n a ,b W )

X Ga

α

α

α + +

α + +

β

β

β

β

+ +

+ +

+ +

+ +

+ +

+ +

ν

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

∼
ɶ

9 9 9 9

s 10 10 10 10 10

mma(n a ,b W )

X Gamma(n a ,b W )

+ +

λ + +∼
ɶ          (109-118)

 

Now, under the squared error loss function, the Bayes estimates of the parameters are the means of the posterior 

distributions (109-118). For obtaining the Bayes estimates and width of the highest posterior density (HPD) intervals 

of the parameters, we generated observations from the above posteriors distributions. For obtaining Bayesian 

estimation and width of HPD intervals of MTSF and Profit function, we substituted the above draws directly into 

(16) and (97). Finally, the sample means of the respective draws are taken as the Bayes estimates of the parameter 

and reliability characteristics. For obtaining the width of HPD intervals, ‘boa’ package of R-software was used. 

The highest posterior density (HPD) intervals of the parameters are obtained using the concept of Chen and Shao 
[3].  

 

7. SIMULATION STUDY 

 

A simulation study is carried out to examine the behavior of the estimates of parameters and reliability 

characteristics. .  

Samples of sizes 1 2 3 4 5 6 7 8 9 10n = n = n = n = n n = n = n = n n 120= = =  were drawn from the ten 

considered distributions by assuming various values of the parameters as given in Tables 1-6. All calculations were 

performed on R.2.14.2. 

For a more concrete study of the system behavior, we also plot curves for MTSF and Profit function with respect to 

the failure rate dα  for different values of repair rate 
d 0.5,1.5,2.5β =  while the other parameters are kept fixed as 

s c s cf f s s, ,0.9 0.2 .6 1.5 0.5 1.4 0.4 1.5p 1.0, , , , , , = = = = = = = == α α α β β ν λβ   

K0=3000, K1=1200,  K2=400,  K3=200,  K4=100, K5=2500 and K6=1500. 
 

8.  CONCLUDING REMARKS 

From the Figs. 2-4, it is observed that Mean time to system failure (MTSF) decreases as failure rate 1α  increases 

while it increases as repair rate 
2β increases. Same trends for profit function are also observed from Figs 5-7. 

From the Tables 1-6, it is also observed that for fixed 
2β and varying 1α , Bayes estimates of MTSF and profit 

function perform well as compared to their MLEs as they have lesser posterior standard error (PSE) than that of 

MLEs. Also the width of the  HPD intervals is more conservative as compared to the width of the confidence 

intervals, so here we conclude that Bayes estimates perform well as compared to their MLEs. 
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Table1: The values of MTSF for fixed β
d
 =.5 and varying αd 

 

αd TRUE. 

MTSF 

ML. 

MTSF 

SE [LOWER 

LIMIT, 

UPPER 

LIMIT] 

OF C.I 

WIDT

H_C.I. 

GAMMA

-BAYES. 

MTSF 

PSE [LOWER 

LIMIT, 

UPPER 

LIMIT] 

OF HPD 

WIDTH_ 

HPD 

INTERV

AL 

0.1 0.586797 0.63277 0.035 0.5641777  

0.7013777 

0.137 0.508 0.027 0.4582073    

0.5633709 

0.105 

0.2 0.5829 0.632768 0.034 0.5661288  

0.6994088 

0.133 0.508 0.027 0.4578306   

0.5631876 

0.105 

0.3 0.57731 0.631566 0.033 0.5668863  

0.6962463 

0.129 0.478 0.023 0.4543530   

 0.5453532 

0.091 

0.4 0.57034 0.623941 0.032 0.5612211  

0.6866611 

0.125 0.411 0.017 0.4542650  

0.5199373 

0.065 

0.5 0.56239 0.609848 0.031 0.5490885  

0.6710885 

0.122 0.386 0.015 0.4308935    

0.4889530 

0.058 

0.6 0.553745 0.5944 0.030 0.535639 

0.653639 

0.118 0.373 0.015 0.4121326 

0.4661301 

 

0.054 

0.7 0.54462 0.5808 0.029 0.5240492  

0.6380492 

0.114 0.311 0.017 0.4112600  

0.4639130 

0.052 

0.8 0.5352 0.57000 0.028 0.5151232  

0.6251232 

0.110 0.303 0.018 0.4010023  

0.4500068 

0.049 

0.9 0.5256 0.5615 0.028 0.5066911  

0.6166911 

0.110 0.297 0.02 0.3900560   

0.4360564 

0.046 

1.0 0.5159 0.5551 0.027 0.5022058  

0.6082058 

0.106 0.295 0.021 0.3700560 

 0.4150567 

0.045 

 

Table 2: The values of MTSF for fixed β
d
 =1.5 and varying αd 

 

αd TRUE. 
MTSF 

ML. 
MTSF 

SE [LOWER 
LIMIT, 

UPPER 

LIMIT] OF 

C.I 

WIDTH 
_C.I. 

GAMMA
-BAYES. 

MTSF 

PSE [LOWER 
LIMIT, 

UPPER 

LIMIT] 

OF HPD 

WIDTH_ 
HPD 

INTERV

AL 

0.1 0.58721 0.632777 0.035 0.5641777 

0.7013777 

0.137 0.164 0.005 0.1548411   

0.1727726 

0.018 

0.2 0.58441 0.632770 0.034 0.5661307 

0.6994107 

0.133 0.164 0.005 0.1544836   

0.1725691 

0.018 

0.3 0.58015 0.631819 0.033 0.5651794 

0.6984594 

0.133 0.162 0.005 0.1543062   

0.1723479 

0.018 

0.4 0.57471 0.62558 0.033 0.5609075 

0.6902675 

0.129 0.156 0.004 0.1536105   

0.1696105 

0.016 
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0.5 0.5683 0.6136 0.032 0.5508968 

0.6763368 

0.125 0.154 0.005 0.1532001   

0.1682357 

0.015 

0.6 0.56122 0.6000 0.031 0.539333  

0.660853 

0.122 0.153 0.004 0.1520496   

0.1670417 

0.014 

0.7 0.5535 0.5879 0.030 0.529117 

 0.646717 

0.118 0.150 0.004 0.1515592 

0.1655592 

0.014 

0.8 0.5454 0.5779 0.030 0.5191737 

0.6367737 

0.118 0.149 0.004 0.1510085   

0.1646234 

0.013 

0.9 0.5370 0.5701 0.029 0.5133444 

0.6270244 

0.114 0.130 0.004 0.1503497   

0.1613497 

0.011 

1.0 0.5284 0.5641 0.028 0.509303  

0.619063 

0.110 0.127 0.004 0.1492637   

0.1582637 

0.009 

 
Table 3: The values of MTSF for fixed β

d
 =2.5 and varying αd 

 

αd TRUE. 

MTSF 

ML. 

MTSF 

SE [LOWER 

LIMIT, 

UPPER 

LIMIT] OF 

C.I 

WIDT

H_C.I. 

GAMMA-

BAYES. 

MTSF 

PSE [LOWER 

LIMIT, 

UPPER 

LIMIT] 

OF HPD 

WIDTH_ 

HPD 

INTERV

AL 

0.1 0.5874

4 

0.63277 0.035 0.5641777 

0.7013777 

0.137 0.164 0.005 0.1549011   

0.1729011 

0.018 

0.2 0.5852

4 

0.63277 0.034 0.5661308 

0.6994108 

0.133 0.164 0.005 0.1544890  

0.1724890 

0.018 

0.3 0.5818 0.6318 0.034 0.565188  

0.698468 

0.133 0.162 0.005 0.1543543   

0.1723543 

0.018 

0.4 0.5773 0.6256 0.033 0.5609651 

0.6903251 

0.129 0.156 0.004 0.1537713   

0.1707713 

0.017 

0.5 0.5720 0.6137 0.033 0.5490725 

0.6784325 

0.129 0.153 0.004 0.1532344   

0.1692344 

0.016 

0.6 0.5660 0.600 0.032 0.5375809 
0.6630209 

0.125 0.152 0.004 0.1521287   
0.1671287 

0.015 

0.7 0.5594 0.58817 0.031 0.5274191 

0.6489391 

0.122 0.150 0.004 0.1517029 

0.1657038 

0.014 

0.8 0.5523 0.5782 0.031 0.517514  

0.639034 

0.122 0.148 0.004 0.1512378   

0.1652378 

0.014 

0.9 0.5449 0.5705 0.03 0.5117112 

0.6293112 

0.118 0.147 0.004 0.1523920   

0.1633920 

0.011 

1.0 0.5372 0.5645 0.029 0.5076885 

0.6213685 

0.114 0.140 0.004 0.1522908   

0.1612908 

0.009 
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Table 4: The values of PROFIT for fixed β
d
 =.5 and varying αd 

αd TRUE. 
PROFIT 

ML. 
PROFIT 

SE [LOWER 
LIMIT, 

UPPER 

LIMIT] 

OF C.I 

WIDTH
_C.I. 

GAMMA
-BAYES. 

PROFIT 

PSE [LOWER 
LIMIT, 

UPPER 

LIMIT] 

OF HPD 

WIDTH_ 
HPD 

INTERV

AL 

0.1 213.7174 320.7097 50.272 222.1766 

419.2428 

197.066 222.33 40.6 144.2740 

303.0659 

158.792 

0.2 193.3077 319.015 47.28 221.3462 

406.6842 

185.338 213.711 39.512 137.9324 

292.2892 

154.357 

0.3 175.2433 301.0575 44.651 213.5416 

388.5735 

175.032 144.992 30.891 84.64397 

205.28177 

120.638 

0.4 159.2118 268.1629 42.32 185.2157 

351.1101 

165.894 87.776 23.484 42.00488 

134.27635 

92.271 

0.5 144.9457 236.9921 40.233 158.1354 

315.8487 

157.713 73.109 21.457 30.98141 

115.34771 

84.366 

0.6 132.2163 213.4774 38.351 138.3094 

288.6454 

150.336 72.037 20.009 27.7681 

111.2971 

83.529 

0.7 120.8277 196.8815 36.641 125.0652 

268.6979 

143.633 70.76 19.482 23.99323 

106.25723 

82.264 

0.8 110.6121 185.2721 35.079 116.5173 
254.0270 

137.51 67.573 17.193 19.57317 
98.52017 

78.947 

0.9 101.4254 177.0665 33.644 111.1243 

243.0088 

131.884 64.405 16.868 16.76429   

92.16729 

75.403 

1.0 93.14342 171.1767 32.32 107.8295 

234.5239 

126.694 61.354 13.402 12.86457   

87.27757 

74.413 

 

Table 5: The values of Profit for fixed β
d
 =1.5 and varying αd 

 

αd TRUE. 

PROFIT 

ML. 

PROFIT 

SE [LOWER 

LIMIT, 

UPPER 
LIMIT] OF 

C.I 

WIDTH_

C.I. 

GAMMA-

BAYES. 

PROFIT 

PSE [LOWER 

LIMIT, 

UPPER 
LIMIT] 

OF HPD 

WIDTH_ 

HPD 

INTERV
AL 

0.1 214.4173 321.9047 51.378 222.1790 

419.2690 

197.090 223.678 40.90 144.3756 

304.2726 

159.897 

0.2 194.8977 320..021 47.95 221.57862 

408.0092 

186.663 214.119 39.989 138.2920 

293.581` 

155.289 

0.3 175.5783 303.0678 45.678 214.3853 

391.3976 

177.012 146.338 31.899 86.25087 

208.70687 

122.456 

0.4 161.2118 270.2863 43.567 187.1520 

353.541 

166.389 88.103 25.678 43.03044 

136.79744 

93.767 

0.5 146.4987 237.9921 41.567 160.0489 

317.1429 

157.094 74.109 21.957 31.00278 

117.02078 

86.018 

0.6 134.6783 215.7744 38.567 142.2673 

293.9313 

151.664 73.037 20.789 29.02139 

116.30839 

87.287 

0.7 122.209 197.9941 36.989 126.0987 

270.2167 

144.118 71.76 19.987 24.38278 

107.54778 

83.165 

0.8 114.5478 185.2744 37.156 117.1256 

254.9386 

137.813 68.573 18.287 21.27384 

100.30784 

79.034 



Ram Kishan & Divya Jain / Stochastic Analysis of Potato Chips Plant Model Under Classical and 

Bayesian Set Ups 

[364] 

 

0.9 103.8764 179.733 35.249 113.1567 

246.2747 

133.118 64.789 17.478 19.28104  

96.39004 

77.109 

1.0 95.4672 173.1278 33.409 109.4586 

237.6626 

128.204 62.678 14.402 15.16781   

90.38881 

75.221 

                

 

Table 6: The values of PROFIT for fixed β
d
 =2.5 and varying αd 

 

αd TRUE. 

PROFIT 

ML. 

PROFIT 

SE [LOWER 

LIMIT, 
UPPER 

LIMIT] OF 

C.I 

WIDTH

_C.I. 

GAMMA

-BAYES. 
PROFIT 

PSE [LOWER 

LIMIT, 
UPPER 

LIMIT] 

OF HPD 

WIDTH_ 

HPD 
INTERV

AL 

0.1 214.989 323.4098 51.990 223.3726 

421.8556 

198.483 223.450 41.90 145.2019 

305.6109 

160.409 

0.2 195.387 321.173 48.934 222.1835 

409.3025 

187.119 217.578 40.02 139.07780 

297.0148 

157.937 

0.3 177.281 304.134 46.598 215.0947 

394.6837 

179.589 149.002 33.389 88.56289 

217.69089 

129.128 

 

 

0.4 162.114 273.2657 45.134 189.1429 

358.2519 

169.109 90.220 26.908 44.42046 

141.76546 

97.345 

0.5 148.567 240.1260 42.423 161..0389 

319.5169 

158.478 77.567 23.506 33.27897 

122.37197 

89.093 

0.6 135.112 217.3387 39.903 144.7210 

300.410 

155.689 74.045 21.309 30.00965 

118.35465 

88.345 

0.7 123.406 200.0012 37.108 128.0927 

275.2107 

147.118 73.290 20.005 25.10326 

109.30126 

84.198 

0.8 117.345 186.1674 39.249 118.2768 

258.4858 

140.209 69.590 19.012 22.57292 

101.65092 

79.078 

0.9 106.467 181.244 39.118 114.6629 

249.6649 

135.002 65.630 18.408 20.84298  

98.07098 

77.228 

1.0 97.789 176.2345 34.012 110.1830 

239.292 

129.109 63.678 16.334 18.18272  

94.28072 

76.098 
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                              Fig. 2: 

 

 
                                     Fig. 3: 
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Fig. 4: 

 

 
 

Fig. 5: 
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                               Fig. 6: 
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