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Abstract

This paper presents the stochastic analysis of a real existing industrial system model of potato chips under
Classical and Bayesian set ups. The system consists of four different subsystems viz. Destoning and
Peeling (D), Slicing (S), Coloring (C) and Frying &Salting (F). Out of four subsystems, one subsystem
(Destoning and Peeling) has its cold standby unit. All these subsystems are connected in series
configuration. Life time distributions and repair time distributions of each sub system are assumed to be
independent Weibull with different scale parameters but common shape parameter. A single repairman is
always available with the system .The repair discipline is first come first served (FCFS). Maximum
Likelihood Estimation of the parameters representing the reliability characteristics is also done. A Bayesian
approach is also adopted to evaluate the reliability characteristics .Finally, a Monte Carlo simulation study
is carried out to judge the performances of the ML and Bayes estimator.

Keywords: Regenerative point, Mean time to System Failure (MTSF), Busy period, Net Expected profit,
Fisher Information Matrix.

Mathematics Subject Classification 2010: 60H10; 62F10; 62F15

1. INTRODUCTION

A lot of research work on reliability modeling of maintained systems has been carried out by several researchers in
the field of reliability theory by considering static environmental condition. Gupta and Bhardwaj [6] analyzed the
performance measures of a two-unit warm standby system model with repair, inspection and post-repair. Goel et al.
[4] studied a two-unit warm standby system with fault detection and inspection. Chaudhary et al. [2] analyzed a two
non-identical unit parallel system model with single or double phase(s) of repair. It is worth mentioning here that all
the above studies are not based on real existing system models. However, some researchers like Gupta and Kumar
[5] carried out the analysis of Reliability characteristics of a distillery plant. Chaudhary et al. [1] analyzed reliability
characteristic of bread making system. Gupta and Kishan [7] developed a model pertaining to power, inverter and
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generator and obtained various reliability measures. Gupta and Shivakar [8] analyzed a cloth weaving system model
using regenerative point technique.

We also note that all the above studies were mainly concerned to obtain various reliability characteristics such as
mean time to system failure (MTSF), point wise and steady state availabilities etc. by using different life time and
repair time distributions of units and not to estimate the parameter(s) involved in the life time/repair time
distribution of the system/unit.

In this paper we analyze a real existing system model of a potato chips plant assuming the failure and repair time
distributions of each sub system as independent Weibull with common and known shape parameter but different
scale parameters and also find the maximum likelihood estimators of the parameters representing various reliability
characteristics. Since the lifetime experiments are very time consuming and as such the environmental conditions
throughout the experiment may not be same. Therefore, it seems reasonable to treat the failure time parameters
representing various system reliability characteristics as random variables instead of fixed constants. Keeping this in
view, a Bayesian approach is also adopted to evaluate the various measures of system effectiveness by taking
different priors and the comparative analysis is also carried out to access the performances of the MLE and Bayesian
estimators.

The probability density function (p.d.f) of Weibull distribution with shape parameter p and scale parameter a is
given by
f (t) = apt” exp (-at®); o, p> 0, t>0 (1)

The reliability/survival function and hazard (failure /repair) rate for Weibull distribution are respectively given by

R (t) =exp (-at”)

and

h (t) = apt””’

It is important to note that for p=1, the Weibull distribution given in (1), reduces to exponential distribution and for
p=2, it reduces to the Rayleigh distribution.

2. SYSTEM DESCRIPTION

The potato chips system consists of four main subsystems- Destoning & Peeling, Slicing, Coloring and Salting &
Frying. All are arranged in series network. Out of these four subsystems, one subsystem namely- Destoning
machine has its cold standby unit. The system stops functioning if any one of the subsystems stops functioning.
Destoning & Peeling machine, Coloring machine and Frying & Salting machine becomes as good as new after
repair while after the repair of Slicing machine, it first goes for inspection with known probabilities to decide
whether the repair is perfect or not. If the repair of Slicing machine is found to be perfect then it becomes
operational, otherwise it is sent for post repair. The service discipline of the repairman is First Come First Served
(FCFS). A single repair facility is used to repair each subsystem and inspection & post repair of slicing machine.
The failure and repair time distributions of each subsystem are taken as independent having the Weibull density with
common shape parameter ‘p’ but different scale parameters o4, 05, 0, 0 and Pq, Bs, Be, Pr respectively as follows:

fq(t)=0gptPexp(—0iyt?),t>0 ,0y,p > 0
f,(t)=0,pt" exp(—0itP),t>0, oty,p > 0
f (t)=o pt*exp(—aL tP),t20, ot ,p >0
£ (

and

t)=0u;pt”exp(—0;t?),t>0, Ol,p > 0

J=Bapt?exp(—Byt?) .20, By.p> 0
t):BSptp_lexp(—Bstp) ,t20,B,,p>0

[347]
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The inspection and post repair time distributions of slicing machine are taken to be independent having the Weibull
density with common shape parameter ‘p’ but different scale parameters v and 3 as follows:

o(t) = Vsptp'lexp(—\’stp); Vi.p>0,t20
m(t)= }»Sptp'lexp (—}Lstp); }Ms,p>0,t20

2.1 Roll of Subsytems

eDestoning & Peeling (D) — Destoning & Peeling machine pushes the potatoes up to a conveyer belt to the

automatic peeling machine. After they have been peeled, the potatoes are washed with cold Water.

o Slicing (S) — The main work of slicing machine is to cut the potatoes in to paper thin slices.

o Slicing (S) — The main work of slicing machine is to cut the potatoes in to paper thin slices.

® Coloring (C) — After the slices of potatoes, the potatoes are chemically treated to enhance their color.

¢ Frying & Salting (F) — Frying and salting machine is used to remove the excess water as they flow into 40-75ft
troughs filled with oil. As the slices tumble, salt is sprinkled to each of chips.

3. NOTATIONS AND STATES OF THE SYSTEM

E : Set of regenerative states.
Og, O O Of : Scale parameters of failure time distribution for destoning & peeling, slicing, coloring, frying &
salting machine respectively.
Ba.Bs. Be, Br :Scale parameters of repair time distribution for destoning & peeling, slicing, coloring, frying &
salting machine respectively.
P : Shape parameter of failure/repair time distribution of each subsystem.
hy(t) : Failure rate of destoning & peeling machine.
=agpt”™ , ag, p, t>0
hy(t) : Failure rate of slicing machine.
=opt*! | o, p, t>0
h.(t) : Failure rate of coloring machine.
= otcptp'l , O, P, t>0
hy(t) : Failure rate of frying & salting machine.
=apt’ oL p, t>0
Ja(t) : Repairs rate of destoning & peeling machine.
=Bapt”" , Ba, P, t>0
Js(t) : Repair rate of slicing machine.
:Bsptp_l B P t>0
J(t) : Repair rate of coloring machine.
= Bcptp-l s e p t>0
Ji(t) : Repair rate of frying & salting machine.
=Bpt*" B p,t>0
VA, : Scale parameter of inspection/post repair time distribution of slicing machine.
L(t) : Inspection rate of slicing machine having the form
= Vsptp'l; V,.p.t>0
x;(t) : Post repair rate of slicing machine having the form
= kspﬂ’"; 7&5, p,t>0
a/b : Probabilities that the repair of slicing machine is perfect or imperfect such
ie. atb=1
q;; (), Qi () : p-d.f. (probability density function) and c.d.f. (cumulative density function) of one step or direct
transition time from S;€E to S;€ek.
Dij : Steady state transition probability from state S;to S;such that

py=limQ;; (t).
&) : Steady state transition probability from state S;to S; via Sy such that
pj
Py mQ;; ™ (6).

[348]



Bulletin of Pure and Applied Sciences / Vol. 37E (Math & Stat.) No.2 / July-December 2018

X

: Mean sojourn time in regenerative state S; i.e.

=["P[T, > t]dt

: Mean repair time of Destoning and Peeling machine.

: Symbol for Laplace transform of a function i.e.

q;;=J, e *tqy(t)dt.

: Regenerative point.
: Non regenerative point.

Symbols for the States of the System

Do, Ds, Dy, Dy, Dy,

So, Sg, Sr, Swr, SI R SPr

Co, Cg, G, Cyr
Fo Fy Fr Fur

: Destoning & Peeling machine is operative, standby, good, under
repair, waiting for repair.

after repair/and post repair.
: Coloring machine is operative, good, under repair, waiting fo repair.
: Frying and Salting machine is operative, good, under repair, waiting for repair.

: Slicing machine is operative, good, under repair, waiting for repair, under inspection

With these symbols and assumptions stated above, the transition diagram of the system model along with transition
rates between different states is shown in Fig.1. Here Ss, S¢ S;, Sg states are non-regenerative whereas the other
states are regenerative. Also note that states Sy and S; are up states whereas states S, Si, Sy, S5, S6.S7, S5, Sg and S

are failed states

52
D, D. iy D, D= D; D,
' Jai S
Sg 5|’ C Sr, Cg atd Swr: Cg 8

53

Ss
S7
£ £ Jdlj Sg s Cg Sg B C""r
Fg F
- ' FWI’ Fg
T Sq LTS S8
® : Regenerative point * : Non- Regenerative point & 1 Up state 0 : Failed state

Fig. 1: Transition Diagram
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4. TRANSITION PROBABILITIES AND SOJOURN TIMES

The elements pj; of transition probability matrix (t.p.m.) of the embedded Markov chain is as follows:

Po Po Pu Pu Pu Pu Pu
p, P’ PSPy P, P, P
P, P. P. P. P. P, Pu
P=p, P, P. P. P. P, P.
P, P. P. P. P. P, P,
Py Py P, P, P. Py P
Puw Puw Pu Piw P Puw P

The steady state transition probabilities can be obtained by using the results,

Pij = tlgg Qij(t) and pgjk) = tlgg Qi(jk)(t)

Oy
0L +0L+00, + 0L

Note that the limits of integration are from 0 to e whenever not mentioned.
Similarly,

—otP —otP — p _ P
por=| o pt” e e e % e N Ny =

p — S p — O('c p — O('f
2 g toto.+o, TR agtoto o, M oyt oto, +0
O o B = oL D= o
g +oto +o+By 1 ag+op+o.+0+By 0 P ag+0gto + o +PBy
p©® = oy Pro= Ba
12 o +ato +o B, 0 oot + 0 HD,
b* VS % VS
= —; :a _
Poio N Poo N
S S S S

It can be easily verified that
Po1 Po2 +Po3 +Pos =1

S, ©), (1, @8)_
Plo*PI] TP12 TPz TP =L

1

2-5)
Pgg*Pg 10~
P29 = P30 = Pao =1

Mean Sojourn Times
If T, be the sojourn time in state S;, then mean sojourn time in state S; is given by,

Vo =[P(T;>t)dt

Therefore, the mean sojourn times for various states are as follows:

[350]
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r(1+1)
— e_adtpe_af tpe—ocC tpe—ocstpdt: e—(cxd+otf+cxc+cxs)tpdt _ P
Yo -[ I (ot +ou 4o, +or,)"
T+
_ o P —op P~ P ot =By tP —(0tg +0tp+0L + O HBOP g, P
=|e e e e e dt=| e dt =
Vi -[ I (o +o 4o, +o +B,)"
Similarly,
1 1 1 1 1
rda+) r'a+-) r'a+-) L(+) L(+)
\Ifzz—p \Ifsz—p \If4:—p Yo= —P g = —P
B)" B"™’ @™ v ) T

(6-12)
5. ANALYSIS OF CHARACTERISTICS

5.1 Reliability and Mean Time to System Failure (MTSF)
Let the random variable < T * be the time to system failure (TSF) when the system starts fromSiE E. then the
reliability of the system is given by

R.(t) =P [T,>t]

To determine the reliability of the system, we regard the failed states of the system as absorbing states. By
simple probabilistic arguments, we have the following recursive relations among R(t)’s.

Ro(t) =Zy(t) +qo,(t) OR,(1)
R (t) =Z,(t) + q,0(t) ©R(t)

(13-14)
Taking Laplace transform of Equations (13-14) and solving for R 3 (S)
(omitting the argument‘s’ for brevity), we get
N,(G)  Zo+quZ,
RO(S) — 1( ) — 0 901*1 (15)
Di(s)  1=qpi1qio
where

Z; (s) and ZT (s) are the Laplace transforms of Z(t)and Z;(t) given by

Zo(t) = e (GHEIITGIT g 7 (1) = oGt b

Taking the inverse Laplace transform (ILT) of Equation (15), one can get the reliability of the system when system
starts from the state Sy.

The mean time to system failure (MTSF) can be obtained by using the well known formula-

N,(s) _N,(0) _ N, (16)
D,(s) D,(0) D,
Now using the results q;](O) = Pjj and Z*(0) =, we get

MTSF=E(T,) = imR (s)=
s—0

r(pi) F(Pﬁl)
p + oy « p (17)

(O, +0+00, +00)"™ Oy +0L+0L, +0L (0L +0L 00, + 0t H3 )P

N, =vyo+paVy, =

Oq % Bd (18)

D, =1-pypy =1 35H
Oy +0L 0L, +0L, Oy +0L 00, + 0L +B
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5.2 Availability Analysis

Let us define Ai (t) as the probability that the system is up at time t when initially it starts from state Sie E.

By simple probabilistic arguments, we have the following recursive relations among Ai ®’s:

Ag() =Zy(1) + g1 () © A (1) + g (1) ©A, (1) +qo3(t) ©A;() +qu(t) ©AL(L)

AL = Zi(1) +q50 (1) © A (1) + 17 (1) © A, (1Hq15 (1) © A, (g1 (1) © As(DHq13 (1) © A, (1)
A, (1) =qu(t) ©Ay()

A5(t) = q50(t) © Ay(t)

AL(t) =qq(t) ©AH(1)

Ag(t) =qg50(t) © Ajp(t) +qop(t) © Ay(t)

Ap() =qi00(D) ©Ay(1)

(19-25)
- P
Wherezo(t) —e (0tg +0tsH0lc +0p )t and Z,(t) = o ~(@a+orae + By
Taking Laplace transforms of relations (19-25) and simplifying for AZ(S)
(omitting the argument‘s’ for brevity), we get
N,(s
Ay(8)= )
D,(s)
_ Zy(=q1)+q0Z,
[(~q ) (1-q0, Y = Q530 50—q 04 0]~ Qor[ Q0+ YA +q30a1) +q50q 5]
di Qo2 Y =qo3d30~Joad 40 d=o1ldio T Yq12° Tq30913" T 40914
where, Y={q 24109100+ 920990}
(26)

Taking inverse Laplace Transform of Equation (26), we get the availability of the system when it starts from state
So..

In the long run, the steady state availability of the system when it starts from state S o 1s given by

A, = lim A, (1)
t— oo

. N
=lim s A (s) = —
s—=0 2

27
where,

N, :Wo[l_Pﬁ)]"'\l’lpm

and

D,= (I—Pﬁ))\lfo +P0oi6;+ (1—Pﬁ))(Poz\|fz +PosV3 PV 4 P 2P 20V oHP02P 20P9.10¥10)
+ P01(PS)‘V2 +Pg)‘|f3 +P§§)W4+P29P§S)W9+P29P90Pg)\|110 )

(28)

where,

[352]
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(-1

0, = ———~< = Mean repair time of Destoning and Peeling machine.

1 1/
(ba) ™

The expected up time of the system during (0, t) is given by
*
Aq(s)
S

Mup (t):IAo (u)du , so that, sz (S) =
0

(29)
5.3 Busy Period Analysis

(i)The expected busy period of the repairman in repair of Destoning and Peeling machine (D)
Let us define BiD (t) as the probability that the repairman is busy in the repair of a failed Destoning and Peeling

machine (D) at epoch t when the system starts from state S; € E . By simple probabilistic arguments, we have the
following recursive relations among B () ’s:

B (1) = qgi(t) ©BY (1) +qp(t) ©BJ (1) +qgs(t) ©BY(t) +qq(t) ©BL (1)

BY (1)=Z,(1)+q,,(D© Bg ()+qi7 (DO B (1)+q}5 (DO BY (1) +q3' (1) © BY (1) +q1y (DO B (1)
BY(1) = qx(t) ©Bg (1)

B3 (1) = q49(t) © By (1)

B2 (1) = q4(t) ©Bg (D)

BJ (1) = qg,0(t) @By () +qgo(t) ©Bg (1)

Bio(t) = q00(t) ©Bg (1)

(30-36)
where,
Zl(t) — e—(ocd + 00l + 0B g )P

Taking the Laplace transform of Equations (30-36) and solving for B (I)) g (s)
(omitting the argument‘s’ for brevity), we get
k0 ok
N3(S): Z,q,, (37)
D,(s) [A=qiy )d=q02Y —qo3930~Gu940)] =01l d10+ Y12 +930915 + 90914 ]

where, Y= {ngq;,mq To,o"‘ q;q ;o }

Taking the inverse Laplace Transform of Equation (37), we get the probability that the repairman is busy in the
repair of a failed Destoning and Peeling machine at epoch t, given that the system starts from the state S,. In the
long run, the fraction of time for which the system is under repair, starting from the state S, is given by

B (s)=

. . N
By = lim By (t)= lim s By*(s) = — (38)
t—00 s—=0 2
where,
N3 =pnV¥, (39)
and D, is the same as given in (28).
The expected busy period of the repairman in the repair of Destoning and Peeling machine (D) is
t D*
By (s
uE(t):jBoD(u)du sothat Wy (s) = B ® (40)
S
0

(ii) The expected busy period of the repairman in repair of Slicing machine (S)

[353]
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Let us defineBiS( t) as the probability that the repairman is busy in the repair of a failed Slicing machine(S) at

epoch t when the system starts from state S, € E . By simple probabilistic arguments, we have following recursive
relations among B (t) ’s:

B5(t) = qgi(t) ©BY(t) +qgo(t) ©B3(t) +qes(t) ©B3(1) +qos(t) ©B3(1)

BY (1) = q50(t) ©B3(D+q 17 (DO B () +q15 (DO B3 (D + q3 (DO B3 (1) + g3’ (1) © Bi(1)
Bg(t) = Z,(t) +q (1) © Bg(t)

B3(t) = q30(t) ©B(1)

B3 (1) = q4(t) ©B(1)

B3(1) = qo0(t) ©Bjy(t) +q(t) ©B(1)

Bio() = do0(t) ©By(t)

(41-47)
where, Z,(t)= G_Bs v
Taking the Laplace transform of Equations (41-47) and solving for B g* (s)
(omitting the argument‘s’ for brevity), we get
N,(s) Z,[q0(1-q17 Hq0191>” ] (19)
D,(s) [(=q;7 )(I=q0Y =9 03930~ 9u940)] =01l D10+ Y12 +d30915 + 940914 |
where, Y={qq9,09100% 929990}
Taking the inverse Laplace Transform of equation (48), we get the probability that the repairman is busy in the

repair of a failed Slicing machine at epoch t given that the system starts from the state Sy. In the long run, the
fraction of time for which the system is under repair, starting from state Sy, is given by

By (s)=

) ) « N
B; = lim Bg(t) = lim s By'(s) = —*

2
(49)
where
— (5) (6) (50)
N, =[(1=pi1)Po2+PoiP12 W2
and D, is as given in (28).
The expected busy period of the repairman in the repair of Slicing machine (M) is
t Sk
x Bg (s
uﬁ(t)=j Bi(u)du so that ny (s) = Bo )
0
6]

(iii) The expected busy period of the repairman in inspection of Slicing machine (S)
Let us define BiSI (t) as the probability that the repairman is busy in the inspection after the repair of Slicing

machine(S) at epoch t when the system starts from the state Sie E . By simple probabilistic arguments, we have the

following recursive relations in B}' (t)’s:
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Bi'(1) = qpu() ©BT(1) +qpy(t) ©B3' (1) +qos(t) OB (1) +qgs(t) ©BS' (1)

BY'(1) = qi0(t) ©B3 (D+q1Y (DO B ()+qi5 (DO B3 (1) + g3 (DO B (1) + g3 (1) © B3 (1)
B3'(1) = qu(t) ©BJ'(D)

B3'(1) = qs0(t) ©Bg (D)

B3'(1) = quo(t) ©BJ (1)

BS' (1) = Zo (1) + qo,0(t) © Bij(1) +qo0(t) ©BJ' (D)

Bi(t) = q90(t) ©Bg' (1)

(52-58)

where,

Zg (t) :e—(V5+V5)tp
Taking the Laplace transform of Equations (52-58) and solving for B (S)I* (s)
(omitting the argument‘s’ for brevity), we get

5)* [§
BS*(s)= Ns(8)_ Z5Q59[90:(1=q1} H401915" ] (59)
S5)F * 6 7y ]
D,(s) [1-q7)(1-q0Y =4 0:d30—d 0D 40)] =il A1+ Y15 +a50015 +q40q15 ]

* * * *
where, Y={q 190109 10.0+ 92990}
(59)
Taking the inverse Laplace Transform of (59), we get the probability that the repairman is busy in the inspection of
the Slicing machine(S) at epoch t after its repair, given that the system starts from the state Sy.
In the long run, the fraction of time for which the system is under inspection, starting from state S, is given by

. . . N
B(S)I = lim B(S)I(t) = lim s B(S)I () =— (60)
t— oo s—0 D 2
where,
— (5) (6)
N5 =[(A=pi7)Po+PoiPi> P20V 1)
and D, is given by (28).
The expected busy period of the repairman in the inspection of Slicing Machine (S) is
t B ST* ( )
v (0= B (Wdu sothat pi(s) = 62)
S

(iv) The expected busy period of the repairman in post repair of Slicing machine (S)
Let us deﬁneBiSPr(t) as the probability that the repairman is busy in the post repair after the inspection of the

repaired Slicing Machine (S) at epoch t when the system starts from the state SiE E . By simple probabilistic
arguments, we have the following recursive relations in B> (t) s:

B (1) = qoi() OB (1) +qoa(t) © B3 (1) +qs(t) ©B3"(1) +qou(t) OB (1)

BYY (D) = q,0() © B (D+qi] (DO By ™ (0+ qi2’ (DO B3 () +q13 (DO BS™ (0+qi () © B (1)
B3 () = q(t) ©B5™ (1)

B3"()= qu(t) ©B;" (1)

B3"(1) = qu(1) ©BG (1)

B5™ (1) = qo0(t) © B (1) + qoo(t) ©BG™ (1)

BT (1) = Zip(t) + qyo(t) ©BGT (1)

(63-69)
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where,

vy

Z(t)=e ™
Taking the Laplace transform of (63-69) and solving for B (S)Pr* (s)
(omitting the argument‘s’ for brevity), we get

RSP ()= Ng(s) Zm‘]zt)%m[%)z(l %5)*)"‘(] 01q(6) ]
0 — % % &
D,(s) [(I_QS) )(I_QOzY_QO3Q30_QO4Q40)] QOl[Q10+YQ12 +Q30qg) +Q4OQE§)

where, Y={q ;9(] ;,mq 10014 ;9(] ;0 }

tP

] (70)

Taking the inverse Laplace Transform of (70), we get the probability that the repairman is busy in the post repair
after the inspection of the repaired Slicing Machine (S) at epoch t given that the system starts from the state Sy. In
the long run, the fraction of time for which the system is under post repair, starting from state S, is given by

N

B = lim BiP(t) = lim s B™ (s) = —% 1)
s—0 D 5
where,
— &) (6) 72
Ng =[A=pi7)Po2tPoiPi2 1P20P9.10Y 10 72
and D, given by (28).
The expected busy period of the repairman in post repair of Slicing Machine (S) is
BSPI‘* (S)
SPr(t)—I B3P (u)du  sothat piT(s) = —0—>2 (73)
S

(v) The expected busy period of the repairman in the repair of the Coloring machine (C)
Let us define BiC (t) as the probability that the repairman is busy in the repair of a failed Coloring machine (C) at

epoch t when the system starts from the stateSiG E . By simple probabilistic arguments, we have the following

recursive relations among B (1) ’s:

BG (1) = qg;(t) © BT (1) +qpy(t) © BT (1) + qo3(t) © BS (1) + q4(t) © B (1)

BI (1) = q,0(1) ©B5(D+qf} (VOB (H+qi5 (DO BS (D+qi3 (DO BS () +q1 (1) © BE (1)
Bz (1) = qp9(t) ©B9 (1)

BS (1) = Z5(1) + q5(t) ©BG(1)

BS (1) = qu(t) ©Bg (1)

BS (1) = qo,0(t) ©B(1) + g0 (t) ©BG (1)

By (1) =q0,(t) ©Bg (1)

(74-80)
where, Z3(t)=C_B° ¢
Taking the Laplace transform of (74-80) and solving for B g* (s)
(omitting the argument‘s’ for brevity), we get
© (5)= N7(S): i i Z31d03(-91Y 90913 _
D,(s) [(-97)(1=q0,Y =q3q 30~ 904G 20)]=qo1[d10+ YA +q30q15 +qa0q 13 ] @1)

where, Y={q ;q ;,10(] 10,0174 29(] ;o }
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Taking the inverse Laplace Transform of (81), we get the probability that the repairman is busy in the repair of a
failed Coloring machine (C) at epoch t given that the system starts from the state S,. In the long run, the fraction of
time for which the system is under repair, starting from the state S, is given by
. . N
BS = lim BS(t) = lim s B{"(s) = —L (82)
t—>o0 s—=0 2
where,

N, =[(1-p{)pos+PoiP {5 W3

(83)
and D, is given by (28).
The expected busy period of the repairman in the repair of Coloring machine (C) is
¢ (0=[BE ¢ _BS ()
ub (t):IBo(U)du so that Wy (S) - 7 &)
S
0

(vi)The expected busy period of the repairman in repair of Frying & Salting machine (F)
Let us deﬁneBiF(t) as the probability that the repairman is busy in the repair of a failed Frying and Salting

machine (F) at epoch t when the system starts from the stateSi € E . By simple probabilistic arguments, we have

the following recursive relations among B (t) ’s:

B (1) = qoi(t) ©B (1) +qpa(t) © B3 (1) +qg3(t) ©B3 (1) +qu(t) ©BL(1)

B (1) = q40(t) © B5(D+ qiY (DO BT (D + q13 (DO B3 () + q13 (DO B (1) + 1’ (1) © B4 (1)
B3 (1) = q(t) ©Bg(1)

B3 (1) = qs(t) ©Bg(t)

B (1) = Z (1) +q49(t) © Bg(1)

B(t) = qoo(t) ©B (1) +q(t) ©Bg(t)

Biy(t) = qo0(t) ©Bg(t)

(85-91)

where,
Z,(1) =e Pt

Taking the Laplace transform of (85-91) and solving for B g* (s)
(omitting the argument‘s’ for brevity), we get

Ny(s)_ Zil40s (=917 Hqodia’ ]
D,(s) [(1_Clﬁ)*)(1_CI02Y_Cl03CI30_C104C140)]_C101[CI10+qu)*+CI3oqg)+CI40C1§§)] ©92)
where, Y:{ngq;,locﬁo,o"‘q;gq j;0}

By (s)=

Taking the inverse Laplace Transform of (92), we get the probability that the repairman is busy in the repair of a
failed Frying and Salting Machine at epoch t given that the system starts from the state S,. In the long run, fraction
of time for which the system is under repair, starting from the state Sy, is given by

\ N
B = lim Bi(t) = lim sBy(s)=—2 (93)
S— 2

where,

N =[(1-p))Pos+PorPy W4 o9
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and D, is the same as given in (28).

The expected busy period of the repairman in the repair of the Frying and Salting machine (F) is

t F*
ME(O=[ B (u)du sothat i (s) B ) (95)
0

5.4 Profit Function Analysis

Let us define

Ko = revenue (in Rs.) per-unit up time of the system.

K, = cost (in Rs.) per unit time when the repairman is busy in the repair of the Destoning and
Peeling machine

K, = cost (in Rs.) per unit time when the repairman is busy in the repair of the Slicing
machine.

K; = cost (in Rs.) per unit time when the repairman is busy in the repair of the Coloring
machine.

K, = cost (in Rs.) per unit time when the repairman is busy in the repair of the Frying &
Salting.

Ks = cost (in Rs.) per unit time when the repairman is busy in the inspection of the Slicing
machine.

K = cost (in Rs.) per unit time when the repairman is busy in the post repair of the Slicing
machine after inspection.

Then, the expected total profit incurred in time interval (0, t) is
P (t) = Expected total revenue in (0, t) — Expected total cost of repair in (0, t) - Expected total cost of inspection in
(0, t) - Expected total cost of post repair in (0, t)

= Kol (0 - Ky (=Ko g (0K iy (0-K iy (0K 1y (0-K g pg™ (0 96)
The expected total profit per-unit time in steady-state is given by
P=K,A,~K,B)-K,B;-K,B{-K ,Bf-K .BS'-K B5" 97)

where A ,,BC,BS BS,BiBS, BT are given in (27), (38), (49), (82),(93), (60) and (71), respectively.
6. ESTIMATION OF PARAMETERS, MTSF AND PROFIT FUNCTION

6.1 Classical Estimation

6.1.1 ML Estimation

Suppose that the failure, repair, inspection and post repair times of units of system are independently distributed as
Weibull with failure rates hy (.), hs (.),he (), he (\),repair rates Ja(.), Js(.),Jc(.),J5(.),inspection rate 1,(.) and post repair
rate X,(.) as defined in Section 3. Let

X = (X s Xqgseeeeen X )y Xy =(Xgn Xgp e Xon, )5 X3= (X3, X505 X3, ) s Xy =(Xgp X g Xy, )s
X5 =(Xs57,X5950e0ee Xsng)s X =(XgpsXgpsemenn: Xeng )» X7 =(X71,X 755000 X0, )5
X =(Xg1,Xgpsereeene ’Xgng)’ Xo=(Xg[,Xgyseerreer ’X9n9)’ Xi0=(X1015X1gpseeeeee ,xmnm)

be ten independent random samples of size n; (i=1,2,3,4,5,6,7,8,9,10) drawn from Weibull distribution with failure
rates hy (1), hy ()he (), hy (),repair rates J4(.), Jo(.),J.(.),J¢(.),inspection rate 1i(.) and post repair rate x(.)
respectively.

The likelihood function of the combined sample is
L: L(XI’XZ,X 3,X49X59X67X 7,X8’X9,X10 ada asa aca afa Bd,BS’ Bca BfaVSs}\‘Sj

n n n n n n n n n n N, +N,+N,+0 +Nc+0 +1N~+0o+10 o+
=0 o 200 a4 g, 5, "0p T B, "8y Mg, 10 p T2 e AT e s T %)

X7, 7y Zy 2y Zs ZoZoy Zg Zg Zyy €\ Ha W10 WortOeWat 0 Wy g WsHBs W sBeWy 4By Wyrvs Wy 4, Wi )

where
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n; n;
W,=Y x,"and Z=[[x,” ; i1,2,3,4,5,6,7,8,9,10.
A A

By using the usual maximization likelihood approach, the M.L. estimates (say 0y, O, G, O, BdB B B \A/S)\‘S)
of the parameters (O 4, Ols, Oc, O, Bd Bs’ BC, Bf,VS,)uS) are

OLd=n1/W1,OL /W IW 5, & =n4/W4,[3d=n

)

2, =13 /WS’

/W

f 5

/W

A

7,[3f=n8 /W

g:Vg=ng/Wo,Ao=n,,/W,

Now, using the invariance property of ML estimates, the MLEs of the MTSF and profit function, say, M and P
can be obtained. The asymptotic distribution of

N N N A 5 A A A - & " -1
(ad—adyas —Os,0c—Oc, Of —0f, Bd—Bd. Ps—Ps. Be—Pc. B Bf, Vs—Vs. 7"s_7"s) ~Nyp 0.1,
where I denotes the Fisher information matrix with diagonal elements.

n n

N 2 n3 ng s ne ny ng Ny "o
== Is3 =5 Iy = 2 Ass=—leg = 177=7 1gs = log == 11010 =5
0Ld 0cs OLc f B B B B S }“s

and the non diagonal elements are all zero.

Also, the asymptotic distribution of (M—M) is N(O, A'IflA) and that of (IS—P) 1S N(O, B’I_IB) , where

Ae oM oM dM oM oM oM oM oM oM oM
do, oo, da, ot By B, 9P, IP; v, I\,

6.1.2 Bayesian Estimation
In the Bayesian method of estimation parameters are taken as random variables. Suppose the parameters involved in
the model are random variables having independent Gamma prior distributions as
oq~Gamma(a,,b;)
o,~Gamma(a,,b,)
o.~Gamma(as,b;)
~Gamma(a,,b,)
By~Gamma(as,bs)
B,~Gamma(ag,bg)
B.~Gamma(a,,b,)
B;~Gamma(ag,byg)
v,~Gamma(ay,by)
Ay~Gamma(a,y,byg) (99-108)

Now, using the likelihood function in (98) and taking the prior distributions (99-108), the posterior distributions of
these parameters, given the data, are obtained as follows:
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oy | X,~Gamma(n,+a;,b, +W,)
o | X,~Gamma(n,+a,,b, +W,)

(x{.‘

X;~Gamma(n;+az, by +W;)
Ol ‘X4~Gamma(n4+a4,b4+w4)
By | X5 ~Gamma(ns+as,bs+Ws)
BS

B. | X;~Gamma(n;+a;,b; +W;)

Xe~Gamma(ng+ag, b +Wy)

By ‘ Xg~Gamma(ng+ag,bg +Ws)
Vi ‘)59~Gamma(n9+a9,b9 +Wy)

ks‘)510~Gamma(nm+am,bm+W10) (109-118)

Now, under the squared error loss function, the Bayes estimates of the parameters are the means of the posterior
distributions (109-118). For obtaining the Bayes estimates and width of the highest posterior density (HPD) intervals
of the parameters, we generated observations from the above posteriors distributions. For obtaining Bayesian
estimation and width of HPD intervals of MTSF and Profit function, we substituted the above draws directly into
(16) and (97). Finally, the sample means of the respective draws are taken as the Bayes estimates of the parameter
and reliability characteristics. For obtaining the width of HPD intervals, ‘boa’ package of R-software was used.

The highest posterior density (HPD) intervals of the parameters are obtained using the concept of Chen and Shao

[3].
7. SIMULATION STUDY

A simulation study is carried out to examine the behavior of the estimates of parameters and reliability
characteristics. .

Samples of sizes N} =Ny =N3 =04 =Ng5=Ng =Ny =Ng =Ng =0Ny5 =120 were drawn from the ten
considered distributions by assuming various values of the parameters as given in Tables 1-6. All calculations were

performed on R.2.14.2.
For a more concrete study of the system behavior, we also plot curves for MTSF and Profit function with respect to

the failure rate Ol for different values of repair rate [3 d:O‘S’l .5,2.5 while the other parameters are kept fixed as
p=1.0,0,=0.9, 0t=0.2, 0t;=6, Bs=1.5, B=0.5, P;=1.4,V;=0.41;=1.5
Ky=3000, K;=1200, K,=400, K3=200, K;=100, K5=2500 and K=1500.

8. CONCLUDING REMARKS
From the Figs. 2-4, it is observed that Mean time to system failure (MTSF) decreases as failure rate O(; increases

while it increases as repair rate Bz increases. Same trends for profit function are also observed from Figs 5-7.

From the Tables 1-6, it is also observed that for fixed Bzand varying Ot , Bayes estimates of MTSF and profit

function perform well as compared to their MLEs as they have lesser posterior standard error (PSE) than that of
MLEs. Also the width of the HPD intervals is more conservative as compared to the width of the confidence
intervals, so here we conclude that Bayes estimates perform well as compared to their MLEs.
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Tablel: The values of MTSF for fixed Bd =.5 and varying o4

oq TRUE. | ML. SE [LOWER | WIDT | GAMMA | PSE |[LOWER | WIDTH_
MTSF MTSF LIMIT, H_C.I. | -BAYES. LIMIT, HPD
UPPER MTSF UPPER INTERV
LIMIT] LIMIT] AL
OF C.I OF HPD
0.1 | 0.586797 | 0.63277 0.035 | 0.5641777 | 0.137 0.508 0.027 | 0.4582073 | 0.105
0.7013777 0.5633709
0.2 |0.5829 0.632768 0.034 | 0.5661288 | 0.133 0.508 0.027 | 0.4578306 | 0.105
0.6994088 0.5631876
0.3 | 0.57731 | 0.631566 0.033 | 0.5668863 | 0.129 0.478 0.023 | 0.4543530 | 0.091
0.6962463 0.5453532
0.4 | 057034 | 0.623941 0.032 | 0.5612211 | 0.125 0.411 0.017 | 0.4542650 | 0.065
0.6866611 0.5199373
0.5 |0.56239 | 0.609848 0.031 | 0.5490885 | 0.122 0.386 0.015 | 0.4308935 | 0.058
0.6710885 0.4889530
0.6 | 0.553745 | 0.5944 0.030 | 0.535639 0.118 0.373 0.015 | 0.4121326 | 0.054
0.653639 0.4661301
0.7 | 0.54462 | 0.5808 0.029 | 0.5240492 | 0.114 0.311 0.017 | 0.4112600 | 0.052
0.6380492 0.4639130
0.8 | 0.5352 0.57000 0.028 | 0.5151232 | 0.110 0.303 0.018 | 0.4010023 | 0.049
0.6251232 0.4500068
0.9 | 0.5256 0.5615 0.028 | 0.5066911 | 0.110 0.297 0.02 | 0.3900560 | 0.046
0.6166911 0.4360564
1.0 | 0.5159 0.5551 0.027 | 0.5022058 | 0.106 0.295 0.021 | 0.3700560 | 0.045
0.6082058 0.4150567
Table 2: The values of MTSF for fixed Bd =1.5 and varying a4
aqg | TRUE. | ML. SE [LOWER | WIDTH | GAMMA | PSE | [LOWER | WIDTH_
MTSF MTSF LIMIT, _CI. -BAYES. LIMIT, HPD
UPPER MTSF UPPER INTERV
LIMIT] OF LIMIT] AL
Cl OF HPD
0.1 | 0.58721 | 0.632777 | 0.035 | 0.5641777 | 0.137 0.164 0.005 | 0.1548411 | 0.018
0.7013777 0.1727726
0.2 | 0.58441 | 0.632770 | 0.034 | 0.5661307 | 0.133 0.164 0.005 | 0.1544836 | 0.018
0.6994107 0.1725691
0.3 | 0.58015 | 0.631819 | 0.033 | 0.5651794 | 0.133 0.162 0.005 | 0.1543062 | 0.018
0.6984594 0.1723479
0.4 | 057471 | 0.62558 |0.033 | 0.5609075 | 0.129 0.156 0.004 | 0.1536105 | 0.016
0.6902675 0.1696105
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0.5 | 0.5683 0.6136 0.032 | 0.5508968 | 0.125 0.154 0.005 | 0.1532001 | 0.015
0.6763368 0.1682357
0.6 | 0.56122 | 0.6000 0.031 0.539333 0.122 0.153 0.004 | 0.1520496 | 0.014
0.660853 0.1670417
0.7 | 0.5535 0.5879 0.030 | 0.529117 0.118 0.150 0.004 | 0.1515592 | 0.014
0.646717 0.1655592
0.8 | 0.5454 0.5779 0.030 | 0.5191737 | 0.118 0.149 0.004 | 0.1510085 | 0.013
0.6367737 0.1646234
0.9 |0.5370 0.5701 0.029 | 0.5133444 | 0.114 0.130 0.004 | 0.1503497 | 0.011
0.6270244 0.1613497
1.0 | 0.5284 0.5641 0.028 | 0.509303 0.110 0.127 0.004 | 0.1492637 | 0.009
0.619063 0.1582637
Table 3: The values of MTSF for fixed Bd =2.5 and varying oy
oq TRUE. | ML. SE [LOWER WIDT | GAMMA- | PSE | [LOWER | WIDTH_
MTSF | MTSF LIMIT, H_C.I. | BAYES. LIMIT, HPD
UPPER MTSF UPPER INTERV
LIMIT] OF LIMIT] AL
C.lI OF HPD
0.1 |0.5874 | 0.63277 0.035 | 0.5641777 0.137 | 0.164 0.005 | 0.1549011 | 0.018
4 0.7013777 0.1729011
0.2 |0.5852 |0.63277 0.034 | 0.5661308 0.133 | 0.164 0.005 | 0.1544890 | 0.018
4 0.6994108 0.1724890
0.3 |0.5818 |0.6318 0.034 | 0.565188 0.133 | 0.162 0.005 | 0.1543543 | 0.018
0.698468 0.1723543
04 | 0.5773 | 0.6256 0.033 | 0.5609651 0.129 | 0.156 0.004 | 0.1537713 | 0.017
0.6903251 0.1707713
0.5 | 0.5720 | 0.6137 0.033 | 0.5490725 0.129 | 0.153 0.004 | 0.1532344 | 0.016
0.6784325 0.1692344
0.6 | 0.5660 | 0.600 0.032 | 0.5375809 0.125 | 0.152 0.004 | 0.1521287 | 0.015
0.6630209 0.1671287
0.7 |0.5594 | 0.58817 0.031 0.5274191 0.122 | 0.150 0.004 | 0.1517029 | 0.014
0.6489391 0.1657038
0.8 | 0.5523 | 0.5782 0.031 0.517514 0.122 | 0.148 0.004 | 0.1512378 | 0.014
0.639034 0.1652378
0.9 | 0.5449 | 0.5705 0.03 0.5117112 0.118 | 0.147 0.004 | 0.1523920 | 0.011
0.6293112 0.1633920
1.0 | 0.5372 | 0.5645 0.029 | 0.5076885 0.114 | 0.140 0.004 | 0.1522908 | 0.009
0.6213685 0.1612908
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Table 4: The values of PROFIT for fixed Bd =.5 and varying o4

aq | TRUE. ML. SE [LOWER | WIDTH | GAMMA | PSE [LOWER | WIDTH_
PROFIT | PROFIT LIMIT, _CI. -BAYES. LIMIT, HPD

UPPER PROFIT UPPER INTERV
LIMIT] LIMIT] AL
OF C.1 OF HPD

0.1 | 213.7174 | 320.7097 | 50.272 | 222.1766 197.066 | 222.33 40.6 144.2740 | 158.792
419.2428 303.0659

0.2 | 193.3077 | 319.015 |47.28 | 221.3462 185.338 | 213.711 39.512 | 137.9324 | 154.357
406.6842 292.2892

0.3 | 175.2433 | 301.0575 | 44.651 | 213.5416 175.032 | 144.992 30.891 | 84.64397 | 120.638
388.5735 205.28177

0.4 | 159.2118 |268.1629 | 42.32 | 185.2157 165.894 | 87.776 23.484 | 42.00488 | 92.271
351.1101 134.27635

0.5 | 144.9457 |236.9921 | 40.233 | 158.1354 157.713 | 73.109 21.457 | 30.98141 | 84.366
315.8487 115.34771

0.6 | 132.2163 | 213.4774 | 38.351 | 138.3094 150.336 | 72.037 20.009 | 27.7681 83.529
288.6454 111.2971

0.7 | 120.8277 | 196.8815 | 36.641 | 125.0652 143.633 | 70.76 19.482 | 23.99323 | 82.264
268.6979 106.25723

0.8 | 110.6121 | 185.2721 | 35.079 | 116.5173 137.51 67.573 17.193 | 19.57317 | 78.947
254.0270 98.52017

0.9 | 101.4254 | 177.0665 | 33.644 | 111.1243 131.884 | 64.405 16.868 | 16.76429 | 75.403
243.0088 92.16729

1.0 | 93.14342 | 171.1767 | 32.32 | 107.8295 126.694 | 61.354 13.402 | 12.86457 | 74.413
234.5239 87.27757

Table 5: The values of Profit for fixed Bd =1.5 and varying oq4

oaq | TRUE. ML. SE [LOWER WIDTH_ | GAMMA- | PSE [LOWER | WIDTH_

PROFIT | PROFIT LIMIT, C.L BAYES. LIMIT, HPD

UPPER PROFIT UPPER INTERV
LIMIT] OF LIMIT] AL
Cl OF HPD

0.1 | 2144173 | 321.9047 | 51.378 | 222.1790 197.090 223.678 40.90 | 144.3756 | 159.897
419.2690 304.2726

0.2 | 194.8977 | 320..021 |47.95 |221.57862 186.663 214.119 39.989 | 138.2920 | 155.289
408.0092 293.581°

0.3 | 175.5783 | 303.0678 | 45.678 | 214.3853 177.012 146.338 31.899 | 86.25087 | 122.456
391.3976 208.70687

0.4 | 161.2118 |270.2863 | 43.567 | 187.1520 166.389 88.103 25.678 | 43.03044 | 93.767
353.541 136.79744

0.5 | 146.4987 |237.9921 | 41.567 | 160.0489 157.094 74.109 21.957 | 31.00278 | 86.018
317.1429 117.02078

0.6 | 134.6783 |215.7744 | 38.567 | 142.2673 151.664 73.037 20.789 | 29.02139 | 87.287
293.9313 116.30839

0.7 | 122.209 197.9941 | 36.989 | 126.0987 144.118 71.76 19.987 | 24.38278 | 83.165
270.2167 107.54778

0.8 | 114.5478 | 185.2744 | 37.156 | 117.1256 137.813 68.573 18.287 | 21.27384 | 79.034
254.9386 100.30784
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0.9 | 103.8764 | 179.733 | 35.249 | 113.1567 133.118 64.789 17.478 | 19.28104 | 77.109
246.2747 96.39004

1.0 | 95.4672 173.1278 | 33.409 | 109.4586 128.204 62.678 14.402 | 15.16781 | 75.221
237.6626 90.38881

Table 6: The values of PROFIT for fixed Bd =2.5 and varying oq4
aq | TRUE. ML. SE [LOWER WIDTH | GAMMA | PSE [LOWER | WIDTH_
PROFIT | PROFIT LIMIT, _C.IL -BAYES. LIMIT, HPD

UPPER PROFIT UPPER INTERV
LIMIT] OF LIMIT] AL
ClI OF HPD

0.1 | 214989 | 323.4098 51.990 | 223.3726 198.483 | 223.450 41.90 145.2019 160.409
421.8556 305.6109

0.2 | 195387 | 321.173 48.934 | 222.1835 187.119 | 217.578 40.02 139.07780 | 157.937
409.3025 297.0148

0.3 | 177.281 | 304.134 46.598 | 215.0947 179.589 | 149.002 33.389 | 88.56289 129.128
394.6837 217.69089

04 | 162.114 | 273.2657 | 45.134 | 189.1429 169.109 | 90.220 26.908 | 44.42046 97.345
358.2519 141.76546

0.5 | 148.567 | 240.1260 | 42.423 | 161..0389 158.478 | 77.567 23.506 | 33.27897 89.093
319.5169 122.37197

0.6 | 135.112 | 217.3387 39.903 | 144.7210 155.689 | 74.045 21.309 | 30.00965 88.345
300.410 118.35465

0.7 | 123.406 | 200.0012 37.108 | 128.0927 147.118 | 73.290 20.005 | 25.10326 84.198
275.2107 109.30126

0.8 | 117.345 | 186.1674 | 39.249 | 118.2768 140.209 | 69.590 19.012 | 22.57292 79.078
258.4858 101.65092

0.9 | 106.467 | 181.244 39.118 | 114.6629 135.002 | 65.630 18.408 | 20.84298 77.228
249.6649 98.07098

1.0 | 97.789 176.2345 34.012 | 110.1830 129.109 | 63.678 16.334 | 18.18272 76.098
239.292 94.28072
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