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1. INTRODUCTION 

           
The theory of D-branes has proven to be of great importance in the development of string theory. We will focus 

on certain mathematical structures central to the idea of D-branes. One might at first be tempted to declare that 

D-branes simply correspond to conformally invariant boundary conditions for the open string. This viewpoint is 

not very useful because there are too many such boundary conditions, and in general they have no geometrical 

description. It also neglects important restrictions imposed by sewing consistency conditions. 

 

The drastically simpler case of two dimensional topological field theory (TFT), where the whole content of the 

theory is encoded in a finite-dimensional commutative Frobenius algebra. We shall find that describing the 

sewing conditions, and their solutions for 2d topological open and closed Topological field theory, is a tractable 

but not entirely trivial problem. We also extend our results to the equivariant case, where we are given a finite 

group G, and the world sheets are surfaces equipped with G - bundles. This is relevant to the classification of D 
- branes in orbifolds. 

 

A closely related point is that in open string field theory there are different open string algebras ��� for the 

different boundary conditions a. For boundary conditions with maximal support, however, they are Morita 

equivalent via the bimodules ���. For some purposes it might seem more elegant to start with a single algebra. 

(Indeed, Witten has suggested in [1] that one should use something analogous to stabilization of �∗ algebras, 
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namely one should replace the string field algebra by ���� K where K is the algebra of compact operators.) In 

our framework, the single algebra is replaced by the category of boundary conditions. If one believes that a 

stringy spacetime is a non - commutative space, our framework is in good agreement with Kontsevich’s 

approach to non-commutative geometry, according to which a non - commutative space is a linear category - 

essentially the category of modules for the ring, if the space is defined by a ring. For commutative rings the 
category of modules determines the ring, but in the non - commutative case the ring is determined only up to 

Morita equivalence. 

 

Finally, we comment briefly on some related literature. There is a rather large literature on 2d Topological field 

theory and it is impossible to give comprehensive references. Here we just indicate some closely related works. 

The 2d closed sewing theorem is a very old result implicit in the earliest papers in string theory. The algebraic 

formulation was perhaps first formulated by Friedan. Accounts have been given in [1] and in the Stanford 

lectures by Segal. Sewing constraints in 2D open and closed string theory were first investigated in 

[2].Extensions to unorientable worldsheets were described in [3]. Our work -which is primarily intended as a 

pedagogical exposition - was first described at strings 2000 [4] and summarized briefly in [5]. It was described 

more completely in lectures at the KITP in 2001 and at the 2002 Clay School [6]. In [7] one can find alternative 

C. Lazaroiu although the emphasis in these papers is on applications to disk instanton corrections in low energy 
supergravity. Regarding G-equivariant theories, there is a very large literature on D - branes and orbifolds not 

reflected. In the context of 2D Topological field theory two relevant references are [8].Alternative discussions 

on the meaning of B - fields in orbifolds (in Topological Field Theory) can be found in [9] .Our treatment of 

cochain - level theories and �∞ algebras has been developed considerably further by Costello [10]. 

 

 

2. OPEN AND CLOSED 2D TOPOLOGICAL FIELD THEORY  

 

Roughly speaking, a quantum field theory is a functor from a geometric category to a linear category. The 

simplest example is a Topological Field Theory, where we choose the geometric category to be the category  
whose objects are closed, oriented (d - 1) - manifolds, and whose morphisms  are oriented cobordisms (two such 

cobordisms being identified if they are diffeomorphic by a diffeomorphism which is the identity on the 

incoming and outgoing boundaries). The linear category in this case is simply the category of complex vector 

spaces and linear maps, and the only property we require of the functor is that it takes disjoint unions to tensor 

products. The case d = 2 is of course especially well known and understood. 

 

There are several natural ways to generalize the geometric category. One may, for example, consider manifolds 

equipped with some structure such as a Riemannian metric. The focus of this paper is on a different kind of 

generalization where the objects of the geometric category are oriented (d - 1) – manifolds with boundary, and 

each boundary component is labelled with an element of a fixed set B0 called the set of boundary conditions. In 

this case a cobordisms from Y0 to Y1 means a d - manifold X whose boundary consists of three parts �� = 
� ∪


 ∪ ����� �, where the “constrained boundary” ����� � is a cobordisms from �
� �� �

. Furthermore, we 

require the connected components of ����� � to be labelled with elements of B0 in agreement with the labelling 

of �
� ��� �

. 

 

Thus when d = 2 the objects of the geometric category are disjoint unions of circles and oriented intervals with 

labelled ends. A functor from this category to complex vector spaces which takes disjoint unions to tensor 

products will be called an open and closed topological field theory; such theories will give us a “baby” model of 

the theory of D - branes. We shall always write C for the vector space associated to the standard circles �
, and 

��� for the vector space associated to the interval [0, 1] with ends labelled �, � ∈ �� . 
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Figure 1: Basic cobordisms on open strings. 

           

 The cobordisms fig.1 gives us a linear map ��� ⊗ ��� → ���, or equivalently a bilinear map 

                                                     ��� X ��� → ���                                              (2.1) 

 The cobordisms fig.2 gives us a ���⨂ ��� → ��� linear map ��� ⨂��  → ��  or equivalently a 
bilinear map               

                                                    ��� X ��  → ��                                                             (2.2) 

which we think of as a composition law. In fact we have a ℂ - linear category � whose objects are the elements 

of �� , and whose set of morphisms from b to a is the vector space ���, with composition of morphisms given by 

(2.1).To say that B is a category means no more than that the composition (2.1) is associative in the obvious 

sense, and that there is an identity element 1�  ∈ ��� for each � ∈ ��;  
 

For any open and closed Topological field theory we have a map $: � → � defined by the cylindrical cobordism 

�
  & '0,1), and map  $��: �*+ → �*+ defined by the square [0, 1] X [0, 1]. Clearly$, = $ ��� $��, = $�� . If all 

these maps are identity maps we say the theory is reduced.  

 

2.1 Algebraic characterization 
 The most general 2D open and closed Topological field theory, formulated as in the previous section, is 

given by the following algebraic data: 

1. (∁ , ./ , 1/0 is a commutative Frobenius algebra. 

2. �*+ and �+1 are collection of vector spaces for �, � ∈ ��  with an associative bilinear 

product                        ��� ⊗ ��� → ��� 

                                  ��� ⨂��  → ��                                                                      (2.3) 

3. The ��� , ��� , ��� , �   have nondegenerate traces 

                             .� : ��� → ℂ ,     .� : ��� → ℂ 

                             .� : ��� → ℂ ,       . : �   → ℂ                                                   (2.4) 

            In particular, each ���  is a not-necessarily commutative Frobenius algebra. 

4. Moreover,  

                        ��� ⨂  ��� → ���
2345  ℂ ,    ��� ⨂  ��� → ���

�→  ℂ , 

                        ��� ⨂  ��� → ���
26→  ℂ ,     ��  ⨂  � � → �  

2745  ℂ ,                     (2.5)       
are perfect pairings with     

                                         .�89
9,0 =  .�89,9
0 ,   .�89:9;0 =  . 89;9:0 ,               (2.6) 

                                         For  9
 ∈ ��� ,   9, ∈ ��� ,   9: ∈ ��� ,  9; ∈ ��� 

5. There are linear maps:   

   <�: � → ��� , <�: � → ���, <� : � → ���, < : � → �                                        

   <� ∶  ��� → �,   <� ∶  ��� → � ,   <� ∶  ��� → � ,   < ∶  �  → �                         (2.7) 

 

6.   <� ,  <� are a algebra homomorphism  

         <�8>
>,0 =  <�8>
0 <�8>,0 

        <�8>
>,0 =  <�8>
0 <�8>,0                                                                             (2.8) 

7. The identity is preserved  

 <�81/0 = 1� , <�81/0 = 1� , <�81/0 = 1�  , < 81/0 = 1  ,                                     (2.9) 

8. Moreover, <�  is central in the sense that 

     <�8>09 =  9<�8>0 ,     <�8>09 =  9<� 8>0 ,    

      <�8>09 =  9<�8>0 ,    < 8>09 =  9< 8>0 ,                                                                  (2.10) 

a 

a 

c 

c 

b 

b 

a 

d 

d 

a 

b 

b 

c 
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For all > Є C and 9 Є��� , �� .  

9. <�  and <�  , <� and <� , <� and <� , <  and <  are adjoints: 

./8<�890>0 =  .�89<�8>00 , ./8<�890>0 =  .�89<�8>00 

./8<�890>0 =  .�89<�8>00 , ./8< 890>0 =  . 89< 8>00                                    (2.11) 

            For all 9 Є���. 

10. The “Cardy conditions.”
3
 Define ?��: ��� → ��� , ?� : ��� → �   as follows. Since ���  

and ���  are in duality ( using .�  and .� ), if we let 9@ be a basis for ��� then there is a dual basis 9@ for ���  . 
Then we define  

            ?�� 890 = ∑ 9@9 9@@  , ? � 890 = ∑ 9@9 9@@ .                                            (2.12) 

            and we have the “Cardy condition”:  

               ?�� =  <� ∘  <� , ? � =  < ∘ <� .                                                                                (2.13) 
 

           

 

 

          

 

 

  

       C→ �                      � ∗ � → �                      � → � ∗ �                            � → ℂ 

 

Fig.2: Four diagrams defining the Frobenius structure in a closed 2d TFT. It is often more convenient to 

represent the morphisms by the planar diagrams. In this case our convention is that a circle oriented so that the 

right hand points into the surface is an ingoing circle. 
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                                               >,   

 

 

                       8>
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                                      ≅       

 

 

 

                          1/ . > =  > 

 

Figure 3: Associativity, commutativity, and unit constraints in the closed case. The unit constraint requires the 

natural assumption that the cylinder correspond to the identity map � → �. 
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2.2 Pictorial representation 

 

Let us explain the pictorial basis for these algebraic conditions. The case of a closed 2d Topological field theory 

is very well - known. The data of the Frobenius structure is provided by the diagrams in fig.2. The consistency 

conditions follow from fig.3. 

       

        b               

                           ��� 

 

      a 

      a 

      b                       a   D8Ʃ0: ���⨂��� → ��� 

                            c   

      b 

      c 

     a 

     b                                   ��: ��� → ℂ  

      

                 a 

                    b                D8Ʃ0: ℂ → ��� 

                                     1 → 1�  

 b                    b 

 a                      a    D8Ʃ0 = F�: ��� → ��� 

 

 

Figure 4: Basic data for the open theory. Constrained boundaries are denoted with wiggly lines, and carry a 

boundary condition a, b, c,…….∈  ��… 

 

 
 

Figure 5: Assuming that the strip corresponds to the identity morphism we must have perfect pairings in (2.5) 

 
Figure 6: Two ways of representing open to closed and closed to open transitions.  
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Figure 7: <� is a homomorphism. 

 

 
  

Figure 8:  <�  preserves the identity. 

 
 

Figure 9: <� maps into the center of�� �. 

 
 

Figure 10: <� is the adjoint of< �. 

 

 

In the open case, entirely analogous considerations lead to the construction of a non - necessarily commutative 

Frobenius algebra in the open sector.  

 

 

 

>
 

>, 

a 

a 

a 

a 

ϩ�8>
0. ϩ�8>,0 

ϩ�8>
>,0 

     ≅ 
a 

a 

a 

a 
ϩ�(1/0 = 1�  

ǁ 

≅ 

ϩ�8>0. 9 = 9.ϩ�8>0 

  a 

a 

./8ϩ�890. >0 = .�89. ϩ�8>0 

≅ 
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Figure 11: The double - twist diagram defines the map ?��  : ��� → ���  

 
 

Figure 12: the (generalized) Cardy – condition expressing factorization of the double - twist diagram in the 

closed string channel.   
 

The fact that (2.5) are dual pairings follows from fig.5.The essential new ingredient in the open / closed theories 

are the open to closed and closed to open transitions. In 2d topological field theory<� , < �.The are represented by 

fig.6.These are five new consistency conditions associated with the open/ closed transitions. In fig .7 to fig.12. 

 

2.3 The category of boundary conditions  

The category � of boundary conditions of an open and closed Topological field theory is an additive category. 

We can always adjoin new objects to it in various ways. For example, we may as well assume that it possesses 

direct sums, as we can define for any two objects a and b a new object a ⊕ b by        

                                       �*⊕+,1 ∶ �*1 ⨂ �+1 ..                                                                                 (2.14) 

 

                                      �1,*⊕+ ∶ �1* ⨂ �1+ ..                                                                                  (2.15) 

 

and hence                 

                                   �*⊕+,*⊕+ : =   J��� ���
��� ���

K                                             (2.16)   

 
With the obvious composition laws, and  

                                          .*⊕+: �*⊕+,*⊕+ → ℂ                                                                       (2.17) 

 

Given by    

                                                 

               .*⊕+ Lψ** ψ*+
ψ+* ψ++

M = θ*Nψ**O P θ+89�� 0.                                    (2.18) 

 

 The new object is the direct sum of a and b in the enlarged category of boundary conditions. If there 
was already a direct sum of a and b in the category B then the new object will be canonically isomorphic to it. In 

the opposite direction, if we have a boundary condition a and a projection Q ∈ ���(i.e. an element such 

a 

a 

b 

b 

?�� : ��� → ��� 

≅ 

≅ 

a 
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that Q, = Q) then we may as well assume there is a boundary condition � = FR�S$8Q0 such that for any c we 

have   
��� = TU ∈ ���: QU = UV and    

��� = TU ∈ ���: UQ = UV. Then we shall have � ≅ FR�S$8Q0 ⨁   
Image (1 − Q0;. 
 

One very special property that the category B possesses is that for any two objects a and b the space ���of 

morphisms is canonically dual to ���, by a pairing which factorizes through the composition in either order. It is 

natural to call a category with this property a Frobenius category, or perhaps a Calabi-Yau category.5 It is a 

strong restriction on the category: for example the category of finitely generated modules over a finite 
dimensional algebra does not have the property unless the algebra is semisimple. 

 

Example: Probably the simplest example of an open and closed theory of the type we are studying is one 

associated to a finite group G.The category B is the category of finite dimensional complex representation M of 

G, and the trace .Y: �YY = Z��8[0 → ℂ takes 9:[ → [ �� 1 |]|^  �_�`$890. The closed algebra ∁ is the 

center of the group algebra ℂ [G], which maps to each End (M) in the obvious way. The trace ./: � → ℂ takes a 

central element ∑ ab S  of the group – algebra to   
a
 |]|^ . 

 

In this example the partition function of the theory on a surface Ʃ with constrained boundary circles 

�
, �,, … … … . �d  labelled [
, [,,……….. [d is the weighted sum over the isomorphism classes of principal G 

- bundles P on Ʃ of  

eY
NℎQ8�
0O … ….   eYdNℎQ8�d0O, 
 

     Where eY: G→ g is the character of a representation M, and ℎQ8�0 denotes the holonomy of P around a 

boundary circle C.Each bundle P is weighted by the reciprocal of the order of its group of automorphisms. 

 

3. COCHAIN LEVEL THEORIES 
 

The most important “generalization” however, of the open and closed topological field theory we have 

described is the one of which it is intended to be toy model. In closed string theory the central object is the 

vector space � = �hi of states of a single parameterized string. This has an integer grading by the “ghost 

number”, and an operator Q: C→ � called the “BRST operator” which raises the ghost number by 1 and satisfies 

j, = 0.In other words, C is a cochain complex. If we think of the string as moving in a space - time M then C is 
roughly the space of differential forms defined along the orbits of the action of the reparametrization group 

Diff
+8k
0  on the free loop space  

Lℳ. 8[�_$ Q_$`Fk$<m, kno�_$ − F��$S$_�< U�_Rk �U k$RF − F�UF�F�$ �$S_$$. 0   

 

Similarly, the space C of a topologically -twisted N = 2 supersymmetric theory , as just described, is a cochain 

complex which models the space of  semi - infinite differential forms on the loop space of a Kähler manifold - in 

this case, all square-integrable differential forms, not just those along the orbits of Diff
+8k
0. In both kinds of 

example, a cobordisms Ʃ from p circles to q circles gives an operator  UƩ,µ : � ⊗s → � ⊗t   which depends on a 

conformal structure u on Ʃ. This operator is a cochain map, but it’s crucial feature is that changing the 

conformal structure u on Ʃ changes the operator  UƩ,µ  only by a cochain-homotopy. The cohomology 

H8C0=ker8Q0/im8Q0 - the “space of physical states” in conventional string theory – is therefore the state space 
of a topological field theory. (In the usual string theory situation the topological field theory we obtain is not 

very interesting, for the BRST cohomology is concentrated in one or two degrees, and there is a “grading 

anomaly” which means that the operator associated to be a cobordisms Ʃ changes the degree by a multiple of the 

Euler number& 8Ʃ0 .In the case of the N = 2 supersymmetric modeles, however, there is no grading anomaly, 

and the full structure is visible.) 

 

A good way to describe how the operator UƩ,µ  varies with u is as follows. 

 

If ℳƩ is the moduli space of conformal structures on the cobordisms Ʃ, modulo diffeomorphisms of Ʃ which are 

the identity on the boundary circles, then we have a cochain map    

                                                       xƩ: �⊗y → z8ℳƩ; �⊗ t0                                                       (3.1) 

 

where the right-hand side is the de Rham complex of forms on ℳƩ with values in �⊗ t . The operator UƩ,µ is 

obtained from UƩ by restricting from ℳƩ  �� TuV. The composition property when two cobordisms ∑ 1  and  ∑ 2   

are concatenated is that the diagram     
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                           �⊗y     →                              z8ℳƩ
; �⊗ t0 

                            ↓                                                 ↓ 

       z8ℳƩ, ° Ʃ
; �⊗ }0 → z8ℳƩ
 &  ℳƩ,; �⊗ }0 = z8ℳƩ
; z8ℳƩ,; �⊗ }00                 (3.2) 
 

Commutes, where the lower horizontal arrow in induced by the map  ℳƩ
 &  ℳƩ, → ℳƩ, ° Ʃ
 which expresses 

concatenation of the conformal structures. 

 

        Many variants of this formulation are possible. For example; we might to give a cochain map 

xƩ: �. 8 ℳƩ
0 →  8�⊗y0∗ ⊗  �⊗ t, 

Where �. 8 ℳƩ
0 is, say, the complex of smooth singular chains of ℳƩ. We may also prefer to use the moduli 

spaces of Riemannian structures instead of conformal structures. 

 

There is no difficulty in passing from the closed-string picture just presented to an open and closed theory. We 

shall not discuss these cochain-level theories in any depth in this work, but it is important to realize that they are 
the real objective. We shall now point out a few basic things about them. A much fuller discussion can be found 

in Costello [10]. 

 

For each pair a, b of boundary conditions we shall still have a vector space - indeed a cochain complex – ���, 

but it is no longer the space of morphisms from b to a in a category. Rather, what we have is, in the terminology 

of Fukaya, Kontsevich, and others, an �∞ − `��$S�_m. This means that instead of a composition law ��� X ��� 

→ ��� we have a family of ways of composing, parameterized by the contractible space of conformal structures 

on the surface of fig.1.In particular, any two choices of a composition law from the family are cochain – 

homotopic. Composition is associative in the sense that we have a contractible family of triple compositions   

���  X ��� X ��  → �� , which contains all the maps obtained by choosing a binary composition law from the 

given family and bracketing the triple in either of the two possible ways.                                                    

 

4. CONCLUSION   

 

          We conclude that the spacetime and closed strings are fundamental and category of boundary conditions 

is compatible with that background. We find that the Frobenius category of boundary conditions and derive the 

closed strings and the spacetime. Thus, our treatment is in harmony with the philosophy of matrix theory. We 

obtain the closed string algebra from the string algebra by taking the center of the open string algebra Z (�) 

 ≅ �.   A more sophisticated version of this idea is that the closed string algebra is obtained from the category of 

boundary conditions. 
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