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1. INTRODUCTION 

 

Many times we encounter functions which cannot have antiderivatives, especially if integration is over regions 

with curved boundaries. Therefore we look forward to integrate them numerically rather than analytically. 
Integration formulae for numerical evaluation of integrals over the simplex in n-space have been given 

inductively by Hammer et al. [2]. In the same paper they derive certain affinely symmetric integration formulae 

for the triangle and tetrahedron. Using the theory proposed by Hammer and Wymore [3, 4], it is possible to 

extend the usefulness of the methods developed by transformations of the regions and by the use of Cartesian 

products. Over the years many authors like Cowper [1], Lyness and Jespersen [12], Lannoy [7], Laurie [9], 

Laursen and Gellert [10],  Lether [11], Hillion [5], Lauge and Baldur [8], were successful in deriving integration 
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Abstract 

A new mixed cubature rule is established for 2-simplexes (i.e., triangles). Extending anti-Gauss 3-point rule 

and Fejer’s second 3-point rule in two dimensions and then combining those the mixed cubature rule is 

formed which is of precision 5. Also an adaptive cubature algorithm is devised to boost up the mixed 

cubature rule. Some test integrals are also numerically evaluated to show the efficiency of the mixed rule in 

adaptive environment. 
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techniques over triangles. Many authors gave formula primarily for rectangular regions based on the formulas 

for the line. Some of the works like Rathod et al. [15], Shivaram [18] on triangular domain have evolved by 

taking the Generalized Gaussian-quadrature rules.  

 
In recent years, it has been proven that the Finite Element Method (FEM) is a powerful tool for approximate 

solutions to several phenomena in engineering and it has also found a wide range of applications in Science, 

Technology etc. For triangular finite elements there will be two dimensional integrals over triangular domain. 

For such domains there are not so much methods to accomplish that integration with accuracy. Finite Element 

Method was first appeared in Turner et al. [20] in 1956. Then after some authors Reddy, [16] and Reddy and 

Shippy [17], applied the Finite Element Method for numerical integration. 

 

Here in this paper we apply the mixed cubature methods to integrate functions over two simplexes in an 

adaptive environment. So far as known to us, no other authors have used mixed cubature rule(s) for the 

numerical integration of functions in two dimensions over triangular surface in an adaptive environment. 

 Let us discuss how we integrate a function numerically over a triangular domain. The basic approach is 

as follows. 

 
 

Figure 1: Triangulation of the Domain 

 

Suppose we are given a function in two dimensions over an arbitrary shape as in figure-1. As we can not 

integrate it directly by applying some cubature rules so our primary approach is to transform each finite element 

into a standard right triangle element ( ){ }, 0 1,0 1, 1st µ λ λ µ λ∆ = ≤ ≤ ≤ + ≤  by setting 
µ

λ

 
 
 

=

11 12

21 22

a a x a

a a y b

′     
= +     ′    

 where 11, 12 22, , ,x y a a a ∈∆  and ( ),a b st′ ′ ∈∆ .  The geometrical interpretation is 

shown in the figure-2. 

 
 

Figure 2: Co-ordinate Transformation of a General Triangular Element into a Standard Right Triangular 

Element 

  
But the domain of the standard right triangle is not compatible with the domain of our proposed mixed cubature 

rule. So we should go for another transformation 2T , which transforms a standard right triangle into a standard 

square i .e ., to say a standard right triangle domain will turn into a standard square domain 

( ){ }, 0 1,0 1St u v u v= ≤ ≤ ≤ ≤□ which is shown graphically in figure-3. 
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Figure 3: Co-ordinate Transformation of a Standard Right Triangular Element into a Standard Square Domain 

 

But, after this transformation the interval of integrals became [ ]0,1  for both the axes u and v. Again this fact is 

incompatible with the interval definition for our proposed cubature rules. So we do one last transformation 3T , 

in order to accomplish our intervals of integration i.e., [ ]1,1− . The standard square ( )St□  is now will be 

transformed into a standard 2-square ( ){ }
2

, | 1 1, 1 1St ξ η ξ η= − ≤ − ≤ ≤□  so as to apply our proposed cubature 

rules i.e., to say we can get the nodes of  our cubature rules only if we have a standard 2-square domain. This 

can be visualized from figure-4. 

 

 
 

Figure 4: Linear Transformation of a Standard Square Element into a Standard 2-square Element 
 

 Some authors like Jena and Dash [6], Patra et al. [13,14] have successfully applied mixed cubature 

rules to approximate integrals over triangular surfaces in non-adaptive environment. 

 A comparative study between the constituent rules and the mixed rule is shown only in adaptive 

cubature routines with the aid of some test integrals in table-1. 

 

 

2. DOUBLE INTEGRALS OVER TRIANGLE 

 

We consider the integral of an arbitrary function f  over the surface of a triangle T as 

( ) ( ) ( )
11 1 1

0 0 0 0

, , ,
St

yx

I f x y dx dy dx f x y dy dy f x y dx

−−

∆= = =∫ ∫ ∫ ∫ ∫ ∫     (2.1) 

Now we need to approximate (2.1) by a suitable cubature formula 

( )
1

,
N

m m m

m

I W f x y
=

=∑          (2.2) 
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where 
mW are the weights associated with specific points ( ),m mx y  and N  is the number of pivotal points 

related to the required precision. 

 Now we transform the double integral over the triangle in the equation (2.1) to the standard square 

( ){ }, 0 1,0 1St u v u v= ≤ ≤ ≤ ≤□ by substituting x u=  and ( )1y u v= − . Thus we have 

I ( ) ( ) ( )( )
1 1 1 1

0 0 0 0

, , , ,

x

f x y dy dx f x u v y u v J du dv

−

= =∫ ∫ ∫ ∫       (2.3) 

where 

( ), 1

x y

u u
J u v u

x y

v v

∂ ∂

∂ ∂
= = −

∂ ∂

∂ ∂

 

From equation (2.3), we have 

   ( )( )( )
1 1

0 0

, 1 1I f u u v u du dv= − −∫ ∫      (2.4) 

Again in order to get the nodes of our proposed cuabature rules we have to transform the integral I of equation 

(2.4) into an integral over the standard 2-square as 

  ( ){ }
2

, | 1 1, 1 1St ξ η ξ η= − ≤ ≤ − ≤ ≤□ by substituting 
1 1

,
2 2

u v
ξ η+ +

= =    (2.5) 

Then clearly the determinant of the Jacobian and the differential area are 

( )
( )

, 1 1 1
0 0

, 2 2 4

u v u v u v

n n nξ ξ ξ

∂ ∂ ∂ ∂ ∂  
= − = − × = 

∂ ∂ ∂ ∂ ∂  
 

  
( )
( )

, 1

, 4

u v
du dv d d d d

n
ξ η ξ η

ξ

∂
= =

∂
      (2.6) 

Now on using equations (2.5) and (2.6) in equation (2.4) we have 

( ) ( )( )( )
1 1 1 1

0 0 0 0

, , 1 1

x

I f x y dy dx f u u v u du dv

−

= = − −∫ ∫ ∫ ∫  

( )( )1 1

0 0

1 11 1
,

2 4 8
f d d

ξ ηξ ξ
ξ η

 − + + − 
=   

  
∫ ∫         (2.7) 

Equation (2.7) represents an integral over the surface of standard 2-square: 

  ( ){ }
2

, | 1 1, 1 1St ξ η ξ η= − ≤ ≤ − ≤ ≤□  

From equation (2.7), we can write 

  ( ) ( )( )
1 1

1 1

1
, , ,

8
I f x y d d

ξ
ξ η ξ η ξ η

− −

− 
=  

 
∫ ∫  

  ( ) ( )( )
1 1

1
, , ,

8

n n
i

i j i j i j

i j

I f x y
ξ

ω ω ξ η ξ η
= =

− 
=  

 
∑∑       (2.8) 

where ,ξ η  are the Gaussian points in the ,ξ η  directions respectively, and ,j iω ω  are the corresponding 

weights. 

We can write equation (2.8) as 

   ( )
1

,
N n n

k k k

k

I w f x y
= ×

=

= ∑        (2.9) 

where , ,k k kw x y  are obtained from the relation 
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( )( )

1

8

1

2

1 1

4

i
k i j

i
k

i j

k

w

x

y

ξ
ω ω

ξ

ξ η

− 
=  
  

+
= 


− +
=


               (2.10) 

where 

1,2, ,k n= ⋯  

1,2, ,i n= ⋯  

1,2, ,j n= ⋯  

The weighting coefficients 
kw  and sampling points ( ),k kx y  of various orders can now be easily computed by 

formulae (2.9) and (2.10). We have shown a numerical verification with some test integrals in table-1. 

We now go for our mixed cubature rule to approximate (2.7) in the next section. 

 

3. CONSTRUCTION OF THE MIXED CUBATURE RULE OF PRECISION FIVE 

 

 The mixed quadrature rule blending anti-Gauss 3-point rule and Fejer’s second- point rule (see Singh and Dash 

[19]) is given by 

( ) ( ) ( )
3 3 3 32 2

1
3 8

11
aG F aG FR f R f R f = +          (3.1) 

 ( )
1 15 13 48 15 13

0
11 13 15 13 13 15

f f f
    

= − + +       
    

 

   ( )
16 1 16 16 1

0
3 3 32 2

f f f
   

+ − + +    
   

       (3.2) 

where 

( )
3aGR f =  Anti-Gauss 3-point rule in one dimension 

( )
32FR f =  Fejer’s second 3-point rule in one dimension 

Applying mixed quadrature rule (3.2) to the double integral 

 ( ) ( )( )
1 1

1 1

1
, , ,

8
f x y d d

ξ
ξ η ξ η ξ η

− −

− 
 
 

∫ ∫  

we have 

 ( ) ( )
36 36

1 1

, ,mix k ij ij k k k

k k

I w f x y w f x y
= =

≈ =∑ ∑        (3.3) 

where 

   

1

8

and

i
k ij i j

k ij k ij

w w

x x y y

ξ
ω ω

− 
= =  

  
= = 

       (3.4) 

The weighting coefficient 
kw  and sampling points ( ),k kx y  of various orders can be easily computed by using 

the equation (2.10). 

 

4. ERROR ANALYSIS 

 

 The error term of the mixed rule given in equation (3.2) in two dimensions is given by Patra et al. [13,14] 

  ( ) ( )
( ) ( )

3 3

6 6
2 2

6 6

0,0 0,011

141750
mix aG F

f f
E f E f

x y

 ∂ ∂
= = + + 

∂ ∂  
⋯  

which can be written in a simpler notation as 
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  ( ) ( ) ( ) ( )
3 3

2 2
6,0 0,6

11
0,0 0,0

141750
mix aG FE f E f f f = = + +  ⋯    (4.1) 

Theorem 4.1: Let ( ),f x y  be a continuously differentiable function in [ ] [ ]1,1 1,1− × − .Then the error 

( )
3 3

2
aG FE f  associated with the rule ( )

3 3

2
aG FR f  is given by 

( ) ( ) ( )
3 3

2
6,0 0,6

11
0,0 0,0

141750
aG FE f f f ≈ +   

Proof. Directly follows from equation (4.1). 

 

Theorem 4.2: The bounds for the truncation error ( ) ( ) ( )
3 3 3 3

2 2
aG F aG FE f I f R f= −  is given by 

( )
3 3

2
2 1 2 1

2

495
aG F

M
E f ξ ξ η η≤ − × −  

 where ( ) ( )5,0 0,5
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

= +  

Proof: The error term of anti-Gauss 3-point rule in two dimensions Patra et al. [13,14] is given by 

( ) ( ) ( ) ( ) [ ] [ ]
3

2
4,0 1 1 0,4 1 1 1 1

2
, , , , 1,1 1,1

135
aGE f f fξ η ξ η ξ η ≈ − + ∈ − × −   

Similarly the error term of Fejer’s second 3-point rule in two dimensions Patra et al. [13,14] is given by 

( ) ( ) ( ) ( ) [ ] [ ]
3

2
2 4,0 2 2 0,4 2 2 2 2

1
, , , , 1,1 1,1

180F
E f f fξ η ξ η ξ η ≈ − + ∈ − × −   

We know that ( ) ( ) ( )
3 3 3 3

2 2 2
2 2

1
2 8

11
aG F aG FE f E f E f = +   

   ( ) ( ){ } ( ) ( ){ }4,0 1 1 0,4 1 1 4,0 2 2 0,4 2 2

1 2 2
,0 , ,0 ,

11 45 45
f f f fξ ξ η ξ ξ η

 
≈ − + + +  

 

   ( ) ( ){ } ( ) ( ){ }4,0 2 0,4 2 4,0 1 0,4 1

2
,0 0, ,0 0,

495
f f f fξ η ξ η = + − +   

   ( ) ( )
2 2

1 1

5,0 0

2
,0 ,5 0,

495
f x f y dxdy

η ξ

η ξ

 = + ∫ ∫  (assuming 1 2ξ ξ<  and 1 2η η< ) 

Hence ( ) ( ) ( )
2 2

3 3

1 1

2
2 5,0 0,5

2
,0 0,

495
aG FE f f x f y dxdy

η ξ

η ξ

 ≈ + ∫ ∫  where ( ) ( )5,0 0,5
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

= +  

  ( ) ( )
2 2

1 1

5,0 0,5

2
,0 0,

495
f x f y dxdy

η ξ

η ξ

 ≤ + ∫ ∫  

 ( ),f x y∵  is defined on a closed and bounded rectangle [ ] [ ]1,1 1,1− × − hence compact and ( ),f x y  

attains its maximum over the domain [ ] [ ]1,1 1,1− × − . 

So ( )
2 2

3 3

1 1

2
2

2

495
aG FE f dxdy

η ξ

η ξ

≤ ∫ ∫  where ( ) ( )5,0 0,5
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

 = +   

 ( ) ( )2 1 2 1

2

495

M
ξ ξ η η= − × −  

which gives only a theoretical error bound as ( )1 1,ξ η  and ( )2 2,ξ η  are unknown points in [ ] [ ]1,1 1,1− × − . It 

shows that the error in the approximation will be less if the points ( ) ( )1 1 2 2, , ,ξ η ξ η  get close to each other. 

Corollary 4.1: The error bound for the truncation error ( )
3 3

2
2aG FE f  is given by 

( )
3 3

2
2

8

495
aG F

M
E f ≤  

Proof: We know from theorem (4.2) that 
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( ) ( ) ( ) ( ) ( ) [ ] [ ]
3 3

2
2 2 1 2 1 1 1 2 2

2
, , , , 1,1 1,1

495
aG F

M
E f ξ ξ η η ξ η ξ η≤ − × − ∈ − × −  

where ( ) ( )5,0 0,5
1 1
1 1

max ,0 0,
x
y

M f x f y
− ≤ ≤
− ≤ ≤

 = +   

choosing ( )2 1 2ξ ξ− ≤  and ( )2 1 2η η− ≤
 
we get ( )

3 3

2 8
.

495
aG F

M
E f ≤  

 

5. ADAPTIVE CUBATURE ALGORITHM FOR EVALUATION OF DOUBLE INTEGRALS 

 

To evaluate double integrals over any rectangle using adaptive cubature, we adopt the following four steps 

algorithm. 

Input: Function [ ] [ ]: , ,f a b c d× →ℝ  and the prescribed tolerance ε . 

Output: An approximation ( )Q f  to the integral ( ) ( ),

b d

a c

I f f x y dxdy= ∫ ∫  such that ( ) ( )Q f I f ε− ≤ . 

Step-1: The mixed cubature rule ( )
3 3

2
2aG FR f is applied over the rectangle [ ] [ ], ,a b c d×  having corner points 

( ) ( ) ( ), , , , ,a c b c b d  and ( ),a d  to approximate the double integral ( ) ( ),

b d

a c

I f f x y dxdy= ∫ ∫ . The 

approximated value is denoted by [ ] [ ]( )3 3

2
2 , ,aG F a b c d

R f ×
. 

Step-2: The rectangle of integration [ ] [ ], ,a b c d×  is split into four equal pieces of rectangles 1 2 3 4, , ,A A A A  

having the following corner points:  

( ) ( ) ( ) ( ){ }1 1 2 2, , , , , , ,a c m c m m a m , ( ) ( ) ( ) ( ){ }1 2 1 2, , , , , , ,m c b c b m m m , ( ) ( ) ( ) ( ){ }1 2 2 1, , , , , , ,m m b m b d m d  

and ( ) ( ) ( ) ( ){ }2 1 2 1, , , , , , ,a m m m m d a d  respectively, where 1
2

a b
m

+
=  and 2

2

c d
m

+
= . The mixed cubature 

rule ( )( )
3 3

2
2aG FR f  is applied over each small rectangle to approximate the double integrals 

( ) ( )
1 2

1 ,

m m

a c

I f f x y dxdy= ∫ ∫ , ( ) ( )
2

1

2 ,

mb

m c

I f f x y dxdy= ∫ ∫ , ( ) ( )
1 2

3 ,

b d

m m

I f f x y dxdy= ∫ ∫ , 

( ) ( )
1

2

4 ,

m d

a m

I f f x y dxdy= ∫ ∫  respectively. The approximated values are denoted by 

[ ] [ ]( )
3 3

2

2 1 2, ,aG FR f a m c m× , [ ] [ ]( )
3 3

2

2 1 2, ,aG FR f m b c m× , [ ] [ ]( )
3 3

2

2 1 2, ,aG FR f m b m d×  and 

[ ] [ ]( )
3 3

2
2 1 2, ,aG FR f a m m d×  respectively. 

Step-3: [ ] [ ]( ) [ ] [ ]( )
3 3 3 3

2 2

2 1 2 2 1 2, , , ,aG F aG FR f a m c m R f m b c m× + × + [ ] [ ]( )
3 3

2

2 1 2, ,aG FR f m b m d× +

[ ] [ ]( )
3 3

2

2 1 2, ,aG FR f a m m d×   is compared with [ ] [ ]( )
3 3

2

2 , ,aG FR f a b c d×  to estimate the error in 

[ ] [ ]( ) [ ] [ ]( )
3 3 3 3

2 2
2 1 2 2 1 2, , , ,aG F aG FR f a m c m R f m b c m× + × + [ ] [ ]( )

3 3

2
2 1 2, ,aG FR f m b m d× +

[ ] [ ]( )
3 3

2

2 1 2, ,aG FR f a m m d×  

Step-4: If ( )estimatederror termination criterion
2

ε
≤ then [ ] [ ]( )

3 3

2
2 1 2, ,aG FR f a m c m× +

[ ] [ ]( )
3 3

2

2 1 2, ,aG FR f m b c m× + [ ] [ ]( ) [ ] [ ]( )
3 3 3 3

2 2

2 1 2 2 1 2, , , ,aG F aG FR f m b m d R f a m m d× + ×  is accepted as an 

approximation to the double integral ( ) ( ),

b d

a c

I f f x y dxdy= ∫ ∫ .  Otherwise the same procedure is applied to 
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each of the four rectangles allowing each piece of rectangles a tolerance 
2

ε
.  If the termination criterion is not 

satisfied on one or more of the rectangles, then those rectangles must be further split into four sub-rectangles 

and the entire process is repeated. When the process stops, the addition of all accepted values yields the desired 

approximate value ( )Q f  to the double integral ( )I f  such that ( ) ( )Q f I f ε− ≤ . 

 N.B.: In this algorithm we can use any cubature rule to evaluate real definite integrals in two dimensions in 

adaptive integration scheme. 

 

6. NUMERICAL VERIFICATION 

 

Table 1: Comparative Study of the Cubature/Mixed Cubature Rule for Approximation of Some Surface 

Integrals Using Adaptive Cubature Routine 

 
Integrals Exact Value 

Approximate Value ( )( )Q f  

( )
3

2
aGR f  

#Steps ( )
3

2
2FR f  

#Steps ( )
3 3

2
2aG FR f  

#Steps 

( )
1
2

1 1

0 0

x

x y dxdy

−

+∫ ∫  

0.40000… 0.39998886 09 0.4000041725 09 0.39999735 01 

( )
1
2

1 1

0 0

x

x y dxdy

−
−

+∫ ∫  
0.66666666… 0.66670024 25 0.666636553 21 0.666642019 05 

( )
2

1 1

0 0

cos

x

y
e xy dxdy

−
−

∫ ∫
 

0.4284998849 0.4285027338 05 0.428498815911 05 0.428499816496 01 

1 1

0 0

sin
x

x
dxdy

x

−

∫ ∫  

2 2.000011063 21 1.999995854 21 2.0000001454 05 

 

Note: 

Here the prescribed tolerance 0.0001ε =  

# Steps: Number of steps 

( )
3

2
aGR f = Anti-Gauss 3-point rule in two dimensions 

( )
3

2
2FR f = Fejer’s second 3-point rule in two dimensions 

( )
3 3

2
2aG FR f = Mixed cubature rule blending anti-Gauss 3-point rule and Fejer’s second 3-point rule in two 

dimensions 

All the computations are done using ’C’ program. 

 

7. CONCLUSION 

 
From the table it is observed that 

(i)  if the mixed cubature rule ( )
3 3

2
2aG FR f  is used as the base rule of two dimensional adaptive integration 

scheme to evaluate the surface integrals, the number of steps are reduced significantly in comparison to its 

constituent rules ( )
3

2
aGR f  and ( )

3

2
2FR f  and also 

(ii)  the result came much better than their constituent rules. 

(iii) Since the mixed rule is of open type it evaluates the surface integral I2 with singularity (0, 0), 

successively. 

 That is why we say that the mixed rule is more efficient than its constituent rules not only theoretically but also 

practically. 
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