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Abstract

We consider an MX/G(a,b)/1 with multiple vacations, optional re-service, closedown time, setup
time under a restricted admissibility policy of arriving batches is considered. A batch of customers arrive
according to Poisson with rate A, whereas the general bulk service is rendered by a single server with a
minimum batch size of ‘a’ and maximum of ‘b’. The service times follow a general distribution. At the
completion of an essential service, the leaving batch of customers may request for a re-service with
probability . After completing re-service or if no request for re-service with probability (1 — m) is made
the number of customers in the queue is less than ‘a’ then the server performs closedown work at its
closedown time C. After that, the server leaves for multiple vacation of a random length irrespective of
queue length. When the server returns from vacation and if the queue length is still less than ‘a’ he avails
another vacation so on until the server finds at least ‘a’ customers in the queue. At a vacation completion
epoch, if the server finds at least ‘a’ customers waiting for service, he requires a setup time to start the
service. On service completion or on re-service completion, if the server finds at least ‘a’ customers waiting
for service say & (§ =a), he serves a batch of min (& b )customers, where b = a. In addition we
assume restricted admissibility of arriving batches in which not all batches are allowed to join the system at
all time. The probability generating function of queue size at a random epoch is obtained. Some important
performance measures such as expected queue size, expected busy period and idle period are derived.
Along with the cost model, particular cases are discussed. Numerical illustration for particular values of
parameter is presented.

Keywords: General Bulk service, multiple vacations, optional re-services, setup time, closedown time
restricted admissibility policy.
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1. INTRODUCTION

The service rule is assumed to operate as follows: the server starts service only when a minimum of ‘a’
customers is in the buffer, and the maximum capacity is ‘b’ customers. Such a rule for bulk service, first
introduced by Neuts, may be called general bulk service rule. (Neuts (1967) introduced a general class of bulk
queues and studied the queue length and busy periods)

Madan and Baklizi (2002) considered an M/G/1 queueing model, in which the server performs first essential
service to all arriving customers. As soon as the first service is over, they may leave the system with the
probability (1- m) and second optional service is provided with probability m. Madan et al (2004) analyzed a
single server bulk arrival queue, in which the leaving batch of customers might opt for re-service. They obtained
various performance measures too. Hur et al (2005) studied single server bulk arrival queueing system with
vacations and server setup. Arumuganathan and Judeth Malliga (2006) analyzed a bulk queue with repair of
service station and set up time. Al-khedhairi and Lotfi Tadj (2007) discussed a bulk service queue with a choice
of service and re-service under Bernoulli schedule. Lotfi Tadj and Ke (2008) studied a hysteretic bulk quorum
queue with a choice of service and optional re-service.  Steady state analysis of a bulk queue with multiple
vacations, setup times with N-policy and closedown times is analyzed by Arumuganathan, and Jeyakumar
(2005). They derived the expected number of customers in the queue at an arbitrary time epoch.

In some queueing systems with batch arrival there is a restriction such that not all batches are allowed to join the
system at all time. Choudhuruy and Madan proposed an M*/G/1 queueing system with restricted admissibility
of arriving batches and Bernoulli schedule server vacation.

2. MATHEMATICAL MODEL

e Let X be the group size random variable of the arrival, A be the Poisson arrival rate when the server is busy,
gy be the probability that k customers arrive in a batch and X(z) be its PGF.

e The service follows a general (arbitrary) distribution with cumulative distribution function S(.) and density
function s(x). Let $(8) denote the Laplace -Stieltjes transform of S and S°(t) denote the remaining service
time of a batch at an arbitrary time t.

e The server’s vacation time follows a general (arbitrary) distribution with cumulative distribution function
V(.) and density function v(x). Let V(8) denote the Laplace -Stieltjes transform of V and V°(t) denote
the remaining service time of a batch at an arbitrary time t.

e The re-service follows a general (arbitrary) distribution with cumulative distribution function R(.) and
density function r(x). Let R(6) denote the Laplace -Stieltjes transform of R and R°(t) denote the remaining
re- service time of a batch at an arbitrary time t.

e The closedown time follows a general (arbitrary) distribution with cumulative distribution function C(.) and
density function c(x). Let C(6) denote the Laplace -Stieltjes transform of C and C°(t) denote the
remaining closedown time of a batch at an arbitrary time t.

e The setup time follows a general (arbitrary) distribution with cumulative distribution function U(.) and
density function u(x). Let T (@) denote the Laplace -Stieltjes transform of U and U°(t) denote the
remaining setup time of a batch at an arbitrary time t.

e There is a policy restricted admissibility of batches in which not all batches are allowed to join the system
at all times. During the essential service, re-service, setup period, the arrivals are admitted with probability
‘o’ whereas; with probability ‘B’ they are admitted when the server is in vacation or in closedown period.

® Ng() and N, (t) are the number of customers in the service and number of customers in the queue
respectively.

The different states of the server at time t are defined as follows
0, if the server is on essential servic
1, if the server is on vacation service
Y(t) =< 2,ifthe server is on re — service
3,if the server is on setup work
4,if the server is on closedown work

To obtain the system of Equations, the following state probabilities are defined:
P (o t)dt = P{N,(®) =i, N,() =n,x <S°() <x+dt,Y(t) =0},a<i<bhn =0,

Qin(r,)dt = P{ Ny() =n,x V() Sx+dt,Y(t) =1,Z(t) =j},j=1,n>0,
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R,(x,)dt = P{ N,() =n,x <R%(t) <x+dt,Y(t) =2},n>0
Upy(x,0)dt = P{ N, =n,x <U°(t) < x+dt,Y(t) =3},n >0
C.(x,)dt = P{ N, =nx <U°(t) <x+dt,Y() =4},n>0
In steady state, let us define for x > 0, P, ;(x) = lim,, P, ;(x,t) fora<i<band j =0

3. STEADY STATE SYSTEM EQUATIONS
The model is then, governed by the following set of differential- difference equations

b
—Hd@=-%&d@+lﬂ—aﬂm@)+G—n)ih%ﬂmﬂ@+RA®ﬂ@+wmk@xaSisb

m=a

—P;(x) = =2P,;(x) + A1 — )P, ;) + Aa X)_ Pij k() gr;a<i<bhb-1&j =1,

J
—Py () = =P, () + AL = Py () + 22 ) Py (3) gy + Ry (0)5(0)

k=1

b
+ (- Z Poups  (0S() + Upy; (0)s(x),j = 1

m=a

—C,(x) = =26, (x) + A1 = B)C, () + (1 — 1) X5 P (0)c () + AX7_; G () g + R (0)c(x);
1<n<a-1,
G, () = —AC,(0) + 21 = F)C, () + AT G () gin = @

_Qi,o(x) = _AQLo(x) +1(1 - B)QLO(X) + Co(0)v(x);
=Q1, () = =2Q, , () + 11 = B)Qy, () + C, (v (x) + B 5o Quni(X)gr; n=1,
_Q},o(x) = _AQj,o(x) +A(1 - B)Qj,o(x) + Qj—1,0(0)17(x)i jz2,
0} () = =20, () + A0 = B)Qy0(O) + Q-1 (0100 + 38 Y Q)i
k=1

j=22 1<n<a-1,

~Q)n () = =20, () + A1 — F)Q;6 () + A8 Z Q@i j= 20240
k=1

b
“RY () = AR, () + A(1 — @Ry (x) + Z Poro(O)r(x)

m=a

b n
“RL(x) = —AR, (x) + A(1 — )R, (x) + 7 Z P (0)r(x) + A Z Ry () g 1<n<a—1,

m=a k=1
“UL (%) = AU, () + A1 — @)U, (%) + A Z U, () g + Z 0 Oux); n>a.
k=1 =1

The Laplace-Stieltjes transforms of P; ,,(x), Q;, (x) and Ry, (x) are defined as:
B.(6) = f e8P, (W)dx, 0;,(6) = f =050, (D) dx, C,(6) = f e-0%C, (x)dx.
0 0

0
U, = fowe‘a"Un(x)dx and R,(0) = fowe‘g"Rn(x)dx.
Taking Laplace-Stieltjes transform on both sides, we get
0P;0(6) — Py (0) = 4P,4(8) — A(1 — @) P, ,(6)

-1 =1 Xbeg P (0) + R;(0) + U (0)]S(0);a < i < b,

[461]

(1)
@

3)

“)
®)

(6)
)
®)

©

(10)

(an

(12)

(13)

(14)

(15)



G. Ayyappan et al. / A Batch Arrival Bulk Service Queue with Multiple Vacations, Optional Re-Service,
Closedown time and Setup time under Restricted Admissibility of Arriving Batches

j
6P, (6) = P, (0) = 2P, (6) = A1 — P, () —Aa ) Py (8) gpoa<i<bh—1;j21
- - N - (16)
9Pb,j(9) - Pb,j(o) = APb,j(Q) -1 - a)Pb,j(Q)

b J
- [(1 — ) Z Py (0) + Ry, ;(0) + Ub+j(0)] 56) —a Z Py ;-1 (0) Ags;
k=1

m=a

j=z1 (17)
b
0C(6) — C,(0) = 26, (6) — A(1 = B)C, (6) — [(1 - ) Z Bnn(0) + R, (0)| C(6)
~ABZhcs Cok(0) 916 1<n<a-1 (18)
0C,(0) — €, (0) = AC,(0) = A(1 = B)C,(O) = AB X, Coe (@) gis n=a (19)
0010(8) — Q,,(0) = 20,,(6) — (1 — B)04,,(6) + C,(O)V(6); ' (20)
001,2(60) = Q1,0(0) = 2Q01,1(8) = AL = B)Q1,2(6) — C,(OV(6) =B Xy, Qr1n-k () grim = 1 @1
28Q;0(6) = Q;,0(0) = 2Q;0(8) — A(1 = B)Q;,0(6) — Qo (OIV(8); j =2 22)

J
0Q;n(0) = Qjn(0) = 20, () = 2(1 = $)Q;n(6) — Q; n, (OV(6) — 28 Z Qjn-1(0) g1
k=1

' j>21<n<a-1, (23)
GQj,n(g) —Q;n(0) = AQj,n(g) -1 - B)Qj,n(g) - B prl Qj,n—k(g) J J=2Zn=a (24)
OR,(8) — Ro(0) = AR, (8) — A(1 — @)R((0) —  Xh—y Prm o (0) R(6); (25)

OR,(0) — R,(0) = AR, (6) — A(1 = @) R,y (0) = T XL1eg Pro(0) R(O) —AX,_ Roi(®) gi; 1<n<a-1,

, (26)
80, () — U, (0) = 20, (8) — 2(1 — )T, (8) =2 X %, Un_i(8) gy + X721 Qun(0)T(6) ; n = a. (27)
4. PROBABILITY GENERATING FUNCTIONS

Lee (1991) developed a new technique to find the steady state probability generating function (PGF) of the
number of customers in the queue at an arbitrary time epoch. To apply the techniques, first the following
probability generating functions are defined.

P(2,6) = X7, P, j(6)7 ; P(z,0) = X7, Pij (0)z/; a<i<h,
Qi(z6) = X0 Q,; (02 5  Q;(z0) = X£,Q, (025 j =1,
R(z,0) = X570 R.(0)z" ;  R(z,0) = X3-,R, (0)z";
(28)
U(z,60) =X5-.U,(0)z" ; U(z0) = X5, U, (0)z";

C(Z, 9) = ﬁ:o Cn (Q)Zn C(Z, O) = ﬁ=0 Cn (O)Zn;

Multiply (20) by z° and (21) by z™ (n = 1) and summing up from n = 0 to « and by using (28), we get

Zn

b
[0 - (A - 2X()]0:(2,6) = Q.(z0) - V() [(1 =) D Pyn(0) + R, 0)

29)

Multiply (22) by z%(23) by z" (1 <n < a — 1) and (24) by z" (n > @) and summing up from n = 0 to ®
and by using (28), we get
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[0-p(1- XD = GO -T®) Y Qurn@z"; j22.

(30)
Multiply (18) by z° (19) by z™ (n = 1) and summing up from n = 0 to « and by using (28), we get
[0 — B(1 - AX(2))|C(z,6) = C(z,0) — EO)(1 — 1) [Z Z P (0) 2" + Z R,(0)z" ]
n=0m=a (31)
Multiply (25) by z° (26) by z™ (n = 1) and summing up from n = 0 to « and by using (28), we get
a-1 b
[0 - a(2 - X@)]R(0) = Rz, 0) = RO Y. Y Pryn(®) 2"
n=0m=a (32)
Multiply (27) z™ (n > a) and summing up from n = a to « and by using (28), we get
0 a—-1
[0 - a(A - 1X@)]0 6) = Uz, 0) - T®) Y ( UG = ) Quu(0)z" );
=1 n=0
(33)

Multiply (15) by z°, (16) by z" (n > a) and summing up from n = 0 to « and by using (28), we get
b

[0 — a(2— 1X(2)]B,(2,6) = P(z,0) — 5(6) [(1 —n) Z P, :(0) + R;(0) + U;(0) | z

a<i<b-1

(34)
Multiply (15) byz® with i=b (17) z/(j > a) and summing up from j = 0 to oo and by using (28), we get
~ 3(0) C < .
[0 - a1 - X@)|P,0) = P20 —= 2|1 —m) Z P (2,0) - Z Py (0)2
m=a j=0
b-1 b-1
+ (R(Z, 0) - Z Rn(0)2"> + (U(Z, 0) Z U, (0) 2" )]
n=0 n=0 35)
By substituting 8 = B(A - AX(Z)) in (29) - (31), we get
0:(2,0) = 7 (B(1 - X (2)) C(z,0);
(36)
0,0 =7 (p(A- %) Z ROGHEY
(37)
b
C(z,0) = ¢ (B2~ 21X (@) Z [(1 —n) Z Pon(0) + R(0) |z
m=a (38)

By substituting 8 = a(1 — 1X(2)) in (32) - (35) and we get

a-1 b
R(z0) = & (a2 - X(@))) ZZPm_n(O)Z";

n=0m=a
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(39)
U0 =0 (a(A- X)) ). ( U0 =) Quu(0)z" )
=1 n=0 (40)
Pi(z,0) = § (a(A = 2X(2)) ) [(1 = 1) Zhica Prg(0) + R(0) + U;(0)]; a<i<h-1, (41)
b-1 b b-1
2'Py(2,0) = § (a(A - X (@))) [(1 S Z (Pm(z, 0) + P,(2,0) — Z Z Pm_j(())zf>
L m=a o m=a j=0
+ (R(z, 0) - Z Rn(0)2"> + (U(Z, 0) - Z Un(0)2">]
Let us define the following, " "
b 0
p; = Z P, (0); q; = Z Q,:(0); r; =R(0); w, =U;(0); ¢;=(A—mp; +q;+71;;
and m=a =1
ki=A-mp+q+w; di=0-mp;+q;
$(ar-x@)) 1@
Pb(Z, O) = ]
(2 - 1 =05 (a2 - 1x@)) = 78 (e(2 - X)) R (a(2 - AX(Z))))
(42)
where
f@ =1 -1 + R (a(2-2X(2))| 852 Pulz,0)
+0 (a2 - X (@) ) [Li1 Q2 0) = 582 g 2] — [E2H[A —mhp; + 712" + Nozh 2]
43)
From equations (29) to (35) and (36) to (43), we have
) [7(8(2 - 1x(@)) - (0] c(z.0)
Q1(Z' 0) = )
(6 -p(1-1x(2)))
(44)
v A—4 s 4C, ?L;(l) i~1(0 "
0,0 = [7 (82—~ 2x(@)) — V()] 238 Q-1 (0)2 s
(6 -p(1-1x(2))
(45)
o) (¢ (a(a - %)) - €@) T4 - 0p, + 72"
C(z,60) =
‘ (6 -a(r- %))
(46)
) <R' (a(z-1x@)) - R‘(e)) Yol on
R(z,0) =
‘ (6 - a(2-21x(2)))
47)
) (0 (a2 - 1x@)) - 1@ ) i 0.2 0) - T3 0,(0)2)
U(z,0) = ,

(6 - a(r- %))
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(48)

(8 (2 - ) - 5(9)) G

P(z,6) = (9 —a(A- ,1X(z)))

,a<i<bhb-1
49)

(s(a(r-2x@))-5®)rc2)

by(2,6) = (0-a(1-1x @) (20 -(1-m)3(a(1-2x@))-78 (e(A-1X () )R (a(A-1X ()

(50)
Let P(z) be the PGF of the queue size at an arbitrary time epoch be

P(z) = Z B,(2,0) + B,(2,0) + C(z,0) +ZQ1(Z 0) + &(z,0) + U(z0).

By substituting 8 = 0 on the equations (43) to (50) then the PGF of a queue size
P(z) at an arbitrary time epoch as

(s(a(a-1x())-1)
[+n[§(a(A—AX(z)))—1]§(a(A—AX(z)))
[ 1—(§(a(A—AX(z))))
—n[ﬁ(a(A—AX(z)))—1]S(a(A—AX(z)))
+80(a(1-2x(2)) )7 (B(A-2X () ) €(B(A-1X(2))) 5223 dnz" (2P -1)
+80(a(2-2x(2)))(7(B(1-2x(2)))-1) £4Zd anz" (2P~ 1)
_[ b—(ﬁ(a(a—ax(z))))
—nR(a(2-2x(2)))-1]$((2-2x(2))
b_(s‘(a(A—AX(Z)))) ]
—n[R(a(2-2x(2)))-1]$(a(2-2x (2)))
7(B(1-2%(2))) £428 gnz™
[+17([3 (1-2X(2)))¢(B(1-2%(2))) £E=§ dpz™ ]
(aB(-2+2x(@))(20-(1-m5(e(21-2x(2)))-75(e(1-2x(2)) )R (e(2-2x(2))))

Zn a(Z z™)en

Z%;(l)[(l_n)pn"'rnlzn

54 (akn~Ban)z"
>]

+(@-p)

P(z) =

(G
This represents the probability generating function customers in queue at an arbitrary time epoch.
The above equation (51) has b + 2a unknowns pg, P, - Pa—1,T0,T1r > Ta—1, 900 G1s = » Qa-1
and cg,Cqy1, ) Cp_1. We express q; and 1;; i =0toa—1 in terms of p;; i=0toa—1. Hence, the
equation (51) involving only b unknowns  pg,P1,-)Pa—1,Ca Cas1s -+»Cp—1- By Rouches’s theorem the
expression z” — (1 — m)§ (a(& — AX(Z))) —nS (a(l — AX(Z))) R (a(l — AX(Z)))
Has b-1 zeros inside and on the unit circle |z| = 1. Since P(z) is analytic with in and on the unit circle, the

numerator of (51) must vanish at these point, which gives b equations and b unknowns. These equations can be
solved by suitable numerical techniques.

The probability generating function P(z) has to satisfy P(1) = 1. Applying L’Hospital’s rule in (51), then p <1
is the condition to be satisfied for the existence of steady state for the model under consideration, where

_ alE(X)(E(S) + nE(R))

= > :

5. PERFORMANCE MEASURES

In this section, some useful performance measures of the proposed model like, expected number of customers in
the queue E(Q), expected length of idle period E(I), expected length of busy period E(B) are derived which are
useful to find the total average cost of the system. Also, probability that the server is on setup work P(U),
probability that the server is on vacation P(V) and probability that the server is busy P(B) are derived.
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5.1 Expected Queue Length
The expected queue length E (Q) (i.e. mean number of customers waiting in the queue ) at an arbitrary time
epoch, is obtained by differentiating P(z) at z=1 and given by

limP(2) = E(Q)

+ XL BA;[fa(X,S,RV,C)+ife (X,S,RV,O)+ X ad;[f3(X,S,RV,C)+if5(X,SRV,0)]
+ 2820 Bailfe(XS.RV) +if10 (XSRS aqilfy (X.SRV)+ifo (X,SRV)]
20B[AE(X)(b—S1+mR1)]?

( Yoo pb-i)cifi (XS R+ XS L BIb(b-1)~i(i—D]cify(X.S.R) )

E(Q =
where
T1 = AE(X)(b — S1 + mR1); T2 = X" (1) (b — T1) + AE(X)[b(b — 1) — T4]
T3 =S1+nR1; T4 =S2 +nR2 + 2nR1S51;

S1=AaEX)E(S); S2=2AaX"(1)E(S) + A2a?E*(X)E(5?);

V1=ABEX)E(V); V2=218X"(DEW,) + A*B2E?(X)E(V?);
Ul =EX)EWU); U2=2aX"(DEW) + 22a?*E*(X)EU?);
C1=ABEMEC); €2 = 18X (VEW) + 2B2E*(X)E(U?);
R1 = AaE(X)E(R); R2=2aX'(1DE(R) + 212a?E*(X)E(R?);
El=(B-T3)(V2+2V1iC1+C2)+ (BB -1)—-T4) (V1 - C1);
E2 = bU2 +2bU1V1 + 2bU1C1 + b(b — 1)U1 + T3(V2 + 2V1C1 + C2) + T4(V1 + C1)
E3=((b-T3)(V1-C1); E4=bU1+T3(V1-C1)
E5=((b-T3)V2+ (b(b—1)—T4)V1; E6=bV2+ 6bUIV1+T3V2+T4V1
E7=V1(b—-T3);E8 =V1T3
fi(X,S,R) =[T1T4 — T3T2]; f,(X,S,R) =T3T1; f3(X,S,R,V,C) = T1E1 —T2E3;
f(X,S,R,V,C) =T1E2 —T2E4; fs(X,S,R,V,C) =T1E3; f¢(X,S,R,V,C) = T1E4;
f(X,S,R,V) =T1E5 — T2E7; f3;(X,S,R,V) =T1E6 — T2ES;

fo(X,S,R,V) =T1E7; fi,(X,S,R,V) = T1E8

(52)

5.2 Expected waiting time
The expected waiting time is obtained by using the Little’s formula as

_ EW@)
EW) = AE(X)
(53)
where E(Q) is given in(46)

5.3 Expected Length of Idle Period
Let I be the idle period random variable, then the expected length of the idle period is given by
E(l) = E(;) + E(C) + EQ),
where [,is the random variable denoting ‘ idle period due to multiple vacation process’ E(C) is the expected
closedown time and E(U) is the expected length of setup time.
To find E(/;), another random variable U; is defined as,

U = { 0, if the server finds at least ‘a’ customers after the first vacation
1 7 |1, if the server finds less than‘a’ customers after the first vacation
Now, the expected length of idle period due to multiple vacations E(1), is given by
E(ly) = E(1;/U; = 0)P(U; = 0) + E(I/U; =1)P(U; = 1)
= E(V)P(U1 =0)+ (E(V) + E(I1))P(U1 =1)
and since P(U; =0) + P(U; = 1) = 1, solving for E(I,), we have

E(V)

B =5, =0

(54)
To find P(U; = 0), we consider the equation (44)

Ql(Z; 0) = Z Ql,n(o) 4 (B(/1 - M(Z))) Z_:[(l - T[)pn + rn]Zn
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0

= B (QZ_I[G — P, + rn]z")

n=0
Equating the coefficients of z* (n = 0,1,2,...,a — 1) on both sides, we get

Qun () = > A1 = Dy + 7]

Therefore,

PU; = 0) = 1= 01,(0)

=1- az_:l (Zn: Bil(1 — mp,_; + rn—i])

(55)
Using (48) and (49), the expected length of idle period E(]) is obtained as
E(V)
E() = — + E(U) + E(C
O = TS CL Al - T T S T EO
(56)

5.4 Expected length of busy period;
Let B be the length of busy period random variable. Let T be the residence time that the server is rendering
service or under re-service. Therefore, T=S with probability (1 — ) and T=S+R with probability 7.

Another random variable J is define as,
= { 0, if the server finds less than'a’customers after a residence time
1, if the server finds at least 'a’customers after a residence time

Then expected length of busy period E(B) is given by

EB)=E(B/] =0)P(J=0)+EB/]=1)P(J =1)
=E®PJ=0)+(E®) +EMB)PJ=1)
where E(S) is the mean service time.
Solving for E(B) we get,

E(S)

E(B) = ——=+=ER
®) = 5=y + R
Thus, the expected length of busy period is obtained as
ECS)

E(B) = +E(R)

?1;%)[(1 - T[)pn + rn]
(57)

where E(R) is the expected re-service time and E(S) is the expected service time.
6. PARTICULAR CASES

In this section, some of the existing models are deduced as a particular case of the proposed model.
Case (i) When the closedown time is zero (i.e. c (a(l - X (Z))) = 1), if all arrivals allowed to join the

system, i.e., o=1 and =1, then the equation (51) becomes
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n=a(z” —2")cy

[ ((-x@)-1)
+n[R(A - AX(2)) — 1]$(2 — X (2))
1-5(1-2X(2))
* [—n[E(A _X@) - 1501 - X (@)
+ ST - X @) (V(2 - X @)ky = 0) 272 = 1)
[z - (1 -mS(A - 1X(2)) —nS(A — 2X(@))R(1 — X (2))]| T¢=ik, — q,) 2"
(—2+ 2X(@) (22 — (1 - W51 - X (D)) — 75(A - AX()R(2 - 1X(2)))
which coincides with the result A batch service queuing with multiple vacations , setup time and no server’s

choice of admitting re-service Haridass.M , Armuganathan.R (2012)
Case (ii): If no request for re-service (i.e. 1 =0 ), if all arrivals allowed to join the system, i.e., o = 1 and B=1

and if there is no setup time ( i.e., U (a(l —AX (Z))) = 1),then the equation (51) becomes

n=ol(1 = mpy + 112"

P(z) =

b
) [S(1-1x(2) - 1] Z (2° = 2™) (P + qn)
P@) = (-1 +1X(2)) ( b — §(1— AX( ))) &
- Z zZ7 — - Z
[P(2- @) -1] Z @ =Dy + gn)z™

which exactly coincides with the result MX /G(a,b) /1 and multiple vacations without setup time and N-policy of
Krishna Reddy et al (1998).

Case (iii): Considering single service (i.e. a = b = 1), if no request for re-service (i.e. n=0 ) , if all arrivals
allowed to join the system, i.e., 0=1 and f=1 and if there is no setup time

ie, U (a(l - AX (Z))) = 1, then the equation (51) becomes
V(2 - 1X(2) — 1](Z - Dk,
P(z) = "
(-2 + X)) (2 - 5(2 - 2% (2)) )

where ko =py + qo

which coincides with the result M¥ /G /1 queueing system and multiple vacations without N-Policy of Lee
et al (1994).

7. COST MODEL

Cost analysis is the most important phenomenon in any practical situation at every stage. Cost involves startup
cost, operating cost, holding cost, setup cost, re-service cost and reward cost. It is quite natural that the
management of the system desires to minimize the total average cost and to optimize the cost. Addressing this,
in this section, the cost model for the proposed queueing system is developed and the total average cost is
obtained with the following assumptions:

Cs : Startup cost per cycle

C, : Holding cost per customer per unit time
C, : Operating cost per unit time

C., : Reward cost per cycle due to vacation
Cps Re-service cost per unit time

C, : Closedown cost per unit time

Cq Setup cost per unit time

since the length of the cycle is the sum of the idle period and busy period, expected length of the cycle E(T,) is
given by

E(T.) = E(D) + E(B)
E(V) E®)
E(T.) = — + E(U) + E(C) + 5=
SRR Y Y [ e M Y = (o Teey
Now, the total average cost per unit time is obtained as

+ nE(R)

Total average cost = Start-up cost per cycle + holding cost of number of customers in the
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queue per unit time + Operating cost per unit time * p+ re-service cost per unit time + closedown time cost +
Setup cost per cycle— reward due to vacation per cycle

E(V
TAC = (Cs - C, (ﬁ) + C,E(C) + CgE(U) + CrsE(R)n)
_ AaEX)[E(S)+mE(R)]

b

1
E(Tc)

+ GLE(Q + Cop (58)

where p

It is difficult to have a direct analytical result for the optimal value a* (minimum batch size in M*/G(a,b)/1
queueing system) to minimize the total average cost. The simple direct search method to find optimal policy for
a threshold value a* to minimize the total average cost, is defined.
Step 1: Fix the value of maximum batch size ‘b’
Step 2: Select the value of ‘a’ which will satisfy the following relation
TAC(@@x) <TAC(a), 1<a<b

Step 3: The value a* is optimum, since it gives minimum total average cost.

Using the above procedure, the optimal value of ‘a’ can be obtained, which minimizes the total average
cost function. Some numerical example to illustrate the above procedure is presented in the next section.

8. NUMERICAL EXAMPLE

The above queueing model is analysed numerically with the following assumptions:

(i) Service time distribution is Erlang-k with k =2

(ii) Batch size distribution of the arrival is geometric with mean 2

(iii) Vacation, re-service time, closedown time and setup time are exponential with parameters
v=10,0=6,y=7andn =8

(iv) a = 0.5 and B = 0.6 respectively

(v) Service capacity with minimum a = 2 and maximumb =4

The zero of the function z? — (1 — n)f(& — AX(Z)) — 715(/1 — AX(Z))R'(A — /1X(Z))are got using MATLAB
software professional and the simultaneous equations are solved. Results are presented for the service rate u =5
and the arrival rate ranging from 1.0 to 3.5 in the following data.

u=35
Table 1.1: Computed values of various queue characteristics
A P EQ ED) E(B) E(W)
1.0 0.1714 0.0932 0.3962 3.8054 0.0466
15 0.2572 0.4374 0.3960 3.8637 0.1458
2.0 0.3429 1.1972 0.3957 4.0008 0.2982
2.5 0.4287 2.6072 0.3956 4.0246 0.5214
3.0 0.5143 4.8856 0.3955 4.1047 0.8143
3.5 0.6000 8.0872 0.3950 4.1132 1.1553
n=06

Table 1.2: Computed values of various queue characteristics

L2 P E@Q) E®D EB) E(W)
1.0 | 0.1448 | 0.0976 | 0.3963 | 3.0808 | 0.0488
1.5 | 0.2171 | 0.4634 | 0.3962 | 3.0808 | 0.1545
20 | 02895 | 1.3862 | 0.3960 | 3.1994 | 0.3464
25 | 03619 | 2.8235 | 0.3956 | 3.2427 | 0.5647
3.0 | 04343 | 54817 | 03955 | 3.2995 | 0.9136
3.5 0.5067 9.5805 0.3950 3.3634 1.3686
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The Table 1.1 and 1.2 clearly shows as long as increasing the arrival rate A, the expected length of idle period
decreases while the utilization factor, the expected queue length, expected waiting time, expected length of busy
period of our queueing model are all increases.

9. CONCLUSION

An MX/G(a,b)/1 queue with multiple vacations, optional re-service closedown time and setup time under
restricted admissibility of arriving batches has been studied. The PGF of queue size at arbitrary time epoch is
obtained. Some performance measures are also derived. Tablel.1 and 1.2 shows that the effect of arrival rate A
over E(Q). From the table 1.1 and 1.2, it is clear that the average number of customer in the system increase as
arrival rate A increases.

10. REFERENCES

[1].

[2].

[3].

[4].

[5].
[6].
[7].
[8].
[9].
[10].
[11].

[12].

Arumuganathan, R. and Judeth Malliga, T. “Analysis of a Bulk Queue with repair of service station and
setup time”, International Journal of Canadian Applied Math Quarterly, Vol. 13, No. 1,pp. 19-42,
2006.

Arumuganathan, R. and Jeyakumar, S. “Steady state analysis of a bulk queue with multiple vacations,
setup times with N-policy and closedown times”, Appl. Math. Modell., Vol. 29, No. 10, pp. 972-986,
2005.

Al-khedhairi, A. and Tadj, L. “A Bulk service queue with a choice of service and re-service under
Bernoulli Schedule”, International Journal of Contempt Math. Sciences, Vol. 2, No. 23, pp. 1107-
1120, 2007.

Haridass, M. and Arumuganathan, R. “A batch service queueing system with multiple vacations, setup
time and server’s choice of admitting re-service”, International Journal of Operation Res., Vol. 14 iss
2, pp. 156-186 ,2012.

H.S. Lee, Steady state probabilities for the server vacation model with group arrivals and under control
operation policy, J. Korean OR/MS Soc. , 16, 36-48, 1991.

H.W. Lee, S.S. Lee, J.O. Park, K.C. Chae, Analysis of the M*/G1 queue with N-policy and multiple
vacations, J. Appl. Probab., 31,476-496, 1994.

Hur, S. and Ahn, S. “Batch arrival queues with vacations and server setup”, Applied Mathematical
Modelling, Vol. 29, No. 12, pp.1164-1181, 2005.

Krishna Reddy, G.V. Nadarajan, R. and Arumuganathan, R., “Analysis of a bulk queue with N-policy
multiple vacations and setup times” Computer &OR, Vol.25 No.11, pp. 957-967, 1998.

Lotfi Tadj and Ke, J.C. “A hysteretic bulk quorum queue with a choice of service and optional re-
service”, Quality Technology & Quantitative Management, Vol. 5, No. 2, pp. 161-178, 2008.

Madan, K.C. and Baklizi, A. “On an M/G, G /1 1 2 queue with optional re-service”, Stochastic
Modeling and Applications, Vol. 5, No. 1,pp. 27-39, 2002.

Madan, K.C. and Choudhury, G. “An M /G/1 x queue with Bernoulli vacation schedule under restricted
admissibility policy”, Sankhaya,Vol. 66, pp. 175-193, 2004.

Neuts, M. F. A general class of bulk queues with Poission input, Ann.Math. Statist.,38, 759-770, 1967.

[470]



