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1.  INTRODUCTION 

The quadratic Diophantine equations with three unknowns offer an unlimited field for research because of their 

variety [1-3]. For an extensive review of various problems on ternary quadratic Diophantine equations 

representing specific 3-dimensional surfaces, one may refer to [4-13]. In this communication, we search for non-

zero distinct integer solutions satisfying the homogeneous cone represented by the ternary quadratic equation
222 2583 zyx =− . A few interesting relations among the solutions are presented. A general formula for 

generating sequence of integer solutions to the given cone based on a given solution is illustrated. 

 

2.  NOTATIONS 

 

1. 12 −= nGNOn  - Pentagonal pyramidal number of rank n. 

2. ( )1+= nnPRn - Pronic number of rank n. 

3. 
( )( )






 −−
+=

2

21
1,

mn
nt nm - Polygonal number of rank n with size m.
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Abstract: 
This paper aims at determining non-zero distinct integer solutions satisfying the homogeneous cone 

represented by the ternary quadratic equation 
222 2583 zyx =− . A few interesting relations among the 

solutions are presented. A general formula for generating sequence of integer solutions to the given cone 

based on a given solution is illustrated. 
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4. 166 2 +−= nnSn - Star number of rank n. 

5. 
( )

2

1
,3

+
=

nn
t n -triangular number of rank n. 

 

3.  METHOD OF ANALYSIS 

 

Consider the homogeneous cone represented by the ternary quadratic equation  

2 2 23 8 25 .x y z− =          (1) 

We present below different methods of solving (1) and thus, obtain different sets of integer solutions to (1). 

Method 1: 

Introducing the linear transformations  

TXyTXx 3,8 +=+=         (2) 

222
245 TzX =+          (3) 

Assume 

( ) 22 5, babaTT +==          (4) 

write the positive integer 24 as 

( ) ( )52252224 ii −+=         (5) 

Using (4), (5) in (3) and employing the method of factorization, define 

( ) ( )2

55225 biaiziX ++=+  

Equating the real and imaginary parts in the above equation, one obtains 

( ) abbabaXX 20102, 22 −−==        (6) 

( ) abbabazz 4102, 22 +−==         (7) 

Substituting (4) and (6) in (2), we have 

( )

( ) 





−+==

−+==

abbabayy

abbabaxx

2055,

203010,

22

22

       (8) 

Note that (7) and (8) represent the non-zero distinct integer solutions to (1). 

Properties: 

• ( ) ( ) btbybx ,340,12,1 =+  

• ( ) ( )5mod025101, ,3 ≡+− atay n  

• ( ) 016641, =++++ aa GNoPRaaz  
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• ( ) ( ) btbzbz ,640,15,1 =−  

• ( ) ( ) ( )3mod0101,21, ≡−− aGNoayax  

Method 2: 

(3) is written as  

1245 222 ∗=+ TzX
         (9) 

Assume 
( )( )

9

5252
1

ii −+
=                                  (10) 

Substituting (4), (5) and (11) in (10) and employing the method of factorization, define 

( ) ( ) ( )( )2

5522
3

52
5 biai

i
ziX ++

+
=+                   (11) 

Equating the real and imaginary parts in (11), we have 

( ) abbabaXX 20102, 22 −+−==                   (12) 

( ) abbabazz 4102, 22 −−==                   (13) 

Substituting (12) and (4) in (2), 

( )

( ) 





−+==

−+==

abbabayy

abbabaxx

2025,

20506,

22

22

                 (14) 

Thus, (13) and (14) represents the integer solutions to (1). 

Properties: 

• ( ) 05, 14, =−− ataax a  

• ( ) ( ) ( )11mod03311,5, ≡−−− aa GNoSaazaay  

• ( ) ( ) 0151530,, =++−− aa GNoPRaayaax  

• ( )aay , is a nasty number 

• ( ) 0166241, ,3 =++++ bn GNotbbz  

Note: It is to be noted that, in addition to (10), 1  may also be represented as shown below: 

Way 1:
( )( )

81

541541
1

ii −+
=                               (15) 

Way 2:
( )( )

49

532532
1

ii −+
=                 (16) 
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Following the procedure as above, the corresponding integer solutions to (1) for (15) and (16) are presented 

below: 

Solutions for (15): 

( )

( )

( ) ABBABAzz

ABBABAyy

ABBABAxx

68445090,

900292599,

9004950306,

22

22

22

−−==

−+−==

−+==

 

Solutions for (16): 

( )

( )

( ) ABBABAzz

ABBABAyy

ABBABAxx

36435070,

700164535,

7002870210,

22

22

22

−−==

−+−==

−+==

 

Generation of solutions 

Here we obtain the formula for generating sequence of integer solutions to (1) based on its initial solution. 

Let ( )000 ,, zyx  be the initial solution of (1). 

Formula 1: 

Let ( )111 ,, zyx  be the second solution of (1), 

where 010101 33,33,33 zhzyhyxx −=−==                              (17) 

Substituting (17) in (1) and simplifying, we get 

00 5016 zyh +=  

Thus, the second solution ( )111 ,, zyx  to (1) is given by 

00100101 1716,5017,33 zyzzyyxx +=+−==  

Express 1y  and 1z  in the form of 22 ×  matrix as follows: 









=









0

0

1

1

z

y
M

z

y
   where  







−
=

17

50

16

17
M  

Repeating the above process, the general values of y and z are given by 









=









0

0

z

y
M

z

y
n

n

n
 

If βα ,  are the eigen values of M , then 
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( )
( )

( )
( )IMIMM

nn
n α

αβ

β
β

βα

α
−

−
+−

−
=  

( )

( )

( )

( )















+

−

−

+
=

nn

nn

nn

nn

n
M

βα

βα

βα

βα

8
33

25
33

25

33

8

258
33

1

 

Hence, the general values of zyx ,,  satisfying (1) are given by  

( ) ( )

( ) ( ) 00

00

0

8
33

25

33

8

33

25
258

33

1

33

zyz

zyy

xx

nnnn

n

nnnn

n

n

n

βαβα

βαβα

++−=

−++=

=

 

Formula 2: 

Let ( )111 ,, zyx  be the second solution of (1), 

where 010101 ,,3 zhzyyxhx +==−=               (18) 

Substituting (17) in (1) and simplifying, we get 

00 259 zxh +=  

Thus, the second solution ( )111 ,, zyx  to (1) is given by 

00101001 269,,7526 zxzyyzxx +==+=  

Express 1y  and 1z  in the form of 22 ×  matrix as follows: 









=









0

0

1

1

z

x
M

z

x
   where  








=

26

75

9

26
M  

Repeating the above process, the general values of x and z are given by 









=









0

0

z

x
M

z

x
n

n

n
 

If βα ,  are the eigen values of M , then 

( )
( )

( )
( )IMIMM

nn
n α

αβ

β
β

βα

α
−

−
+−

−
=  
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( )

( )

( )

( ) 

















+

−

−

+

=
nn

nn

nn

nn

n
M

βα

βα

βα

βα

2

1
6

35

16

3
2

1

 

Hence, the general values of zyx ,,  satisfying (1) are given by  

( ) ( )

( ) ( ) 00

0

00

2

1

16

3

6

35

2

1

zxz

yy

zxx

nnnn

n

n

nnnn

n

βαβα

βαβα

++−=

=

−++=

 

Formula 3: 

Let ( )111 ,, zyx  be the second solution of (1), 

where 010101 5,5,5 zzyhyhxx =−=+=      (19) 

Substituting (17) in (1) and simplifying, we get 

00 166 yxh +=  

Thus, the second solution ( )111 ,, zyx  to (1) is given by 

01001001 5,116,1611 zzyxyyxx =+=+=  

Express 1x  and 1y  in the form of 22 ×  matrix as follows: 









=









0

0

1

1

y

x
M

y

x
   where  








=

11

16

6

11
M  

Repeating the above process, the general values of x and z are given by 









=









0

0

y

x
M

y

x
n

n

n
 

If βα ,  are the eigen values of M , then 

( )
( )

( )
( )IMIMM

nn
n α

αβ

β
β

βα

α
−

−
+−

−
=  
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( )

( )

( )

( )


















+

+

−

+

=

52

6

52

6

54

3

52

6

nn

nn

nn

nn

nM
βα

βα

βα

βα

 

Hence, the general values of zyx ,,  satisfying (1) are given by  

( ) ( )

( ) ( )

0

00

00

5

52

6

54

3

52

6

52

6

zz

yxy

yxx

n

n

nnnn

n

nnnn

n

=

+
+

−
=

+
+

+
=

βαβα

βαβα

 

 

4.  CONCLUSION 

 

In this paper, an attempt is made to obtain non-zero distinct integer solutions to the cone represented by the 

ternary quadratic equation 222 2583 zyx =− . It is well known that quadratic equations with three unknowns are 

rich in variety. To conclude, one may search for integer solutions to other choices of cone. 
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