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1. INTRODUCTION 

 

In the beginning of 1980's the notion of semiderivation was introduced by Bergen [1] as follows: let � be an 

endomorphism of a ring � and � be a mapping of � into itself. Then � is called a semiderivation of  � associated 
with g, if it satisfies 

i. �(� + �) = �(�) + �(�) 

ii. �(��) = �(�)�(�) + ��(�) = �(�)� + �(�)�(�) 

iii. �(�(�)) = �(�(�))  
 

for all �, � ∈ �. If � is a non vanishing semiderivation of a prime ring �, then it is shown by Chang [2] that the 

associated mapping must necessarily be a ring endomorphism of �. Obviously, a derivation is a semiderivation 

(when � is identity) but the converse is not true in general; for example,  � = 
 − � is a semiderivation which is 

not a derivation, where 
 denotes the identity mapping of �. It is also remarked that a semiderivation which is not 

necessarily additive is called a multiplicative semiderivation. In [4], Chuang proved that every semiderivation of a 

prime ring � is either an ordinary derivation of � or takes the form � = �(
 − �) for some � ∈ �, the extended 

centroid of �. At the same time Brešar [3] proved that every multiplicative semiderivation of a prime ring � is 

either a multiplicative derivation of � or takes the form � = �(
 − �) for some � ∈ �. Recall that, a mapping � 

(not necessarily additive) of a ring � into itself is called a multiplicative derivation of � if �(��) = �(�)� +

��(�) for all �, � ∈ �. And if � is necessarily additive, then it is called a derivation of �. An additive mapping 

�: � → �  is said to be a generalized derivation of �  if there exists a derivation �  of �  satisfying �(��) =
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Abstract 

Recently, Filippis et al. introduced the notion of generalized semiderivation [[5], Definition 1.2] in prime 

rings. Accordingly, let �  be a prime ring and �: � → �  be an additive mapping. If there exists a 

semiderivation �  associated with an endomorphism �  of �  such that �(��) = �(�)�(�) + ��(�) =

�(�)� + �(�)�(�) and �(�(�)) = �(�(�)) for all �, � ∈ �, then � is called a generalized semiderivation 

of �. We prove that every generalized semiderivation of a prime ring � is either an ordinary generalized 

derivation of � or a semiderivation of �. 
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�(�)� + ��(�) for all �, � ∈ �. Further, if �  is any mapping (not necessarily additive) of �  associated with 

another mapping � (not necessarily additive) such that �(��) = �(�)� + ��(�) for all �, � ∈ �, then � is called 

a multiplicative (generalized)-derivation of �. For more details of multiplicative (generalized)-derivations of 

rings, one may see [7]. Moreover, it is known that the mapping � associated with a multiplicative (generalized)-

derivation � of a semiprime ring must necessarily be a multiplicative derivation of �. Recently, Filippis et al. [5] 

introduced the notion of generalized semiderivations of prime rings as: let �  be an endomorphism of �  an 

additive mapping �: � → � which is uniquely determined by a semiderivation � of � associated with � is called 

a generalized semiderivation of � if  

 

i. �(��) = �(�)�(�) + ��(�) = �(�)� + �(�)�(�) 

ii. �(�(�)) = �(�(�)) 
 

for all �, � ∈ �. Intuitively, one may think of a multiplicative (generalized)-semiderivation of ring � as follows: 

let �  be a ring and �  be an endomorphism of �.  A mapping �: � → �  (not necessarily additive) is called 

multiplicative (generalized)-semiderivation of � if there exists a mapping �: � → �(not necessarily additive) 

such that �(��) = �(�)�(�) + ��(�) = �(�)� + �(�)�(�)  and �(�(�)) = �(�(�))  for all � ∈ �.  After 

Chuang [4] and Brešar [3], it is natural to obtain the structure of generalized semiderivations and multiplicative 

(generalized)-semiderivations of prime rings. In this note, we show that a generalized semiderivation (resp. 

multiplicative (generalized)-semiderivation) of a prime ring � is either a semiderivation (resp. multiplicative 

semiderivation) of � or a generalized derivation (resp. multiplicative (generalized)-derivation) of �. 
 

2. RESULTS 

 

Proposition 1: Let �  be a semiprime ring and �  be a multiplicative (generalized)-semiderivation of � 

associated with a mapping �  and an endomorphism �  of � . If �  is an epimorphism of  � , then �  is a 

multiplicative semiderivation of �. 

Proof: By our hypothesis, we have 
 �(��) = �(�)�(�) + ��(�)                      (1) 

   

and 

 �(��) = �(�)� + �(�)�(�)                       (2) 

   

for all �, � ∈ �. We first consider the equation (1). For any �, �, � ∈ �, we have 

 �(���) = �((��)�) = �(��)�(�) + ���(�) = �(�)�(��) + �(�(�)�(�) + ��(�))         (3) 

On the other hand 
 �(���) = �(�(��)) = �(�)�(��) + ��(��)                 (4) 

On combining (3) and (4), we obtain �(�(��) − �(�)�(�) − ��(�)) = 0  for all �, �, � ∈ �.  Since �  is 

semiprime, we get �(��) = �(�)�(�) + ��(�) for all �, � ∈ �. Analogously, from (2) we find that �(��) =

�(�)� + �(�)�(�) for all �, � ∈ �. Further, since �(�(�)) = �(�(�))  for all � ∈ �. Replacing �  by �� , we 

find that �(�(�)�(�)) = �(�(��)) for all �, � ∈ �. i.e.; 

�(�(�))��(�) + �(�)�(�(�)) = �(�(�))��(�) + �(�)�(�(�)) 
for all �, � ∈ �. It implies that �(�)(�(�(�)) − �(�(�))) = 0 for all �, � ∈ �. Now, let us suppose that � is an 

epimorphism of �, we get �(�(�(�)) − �(�(�))) = (0) for all� ∈ �. Hence, semiprimeness of � completes 
the proof.                                                                                                  □ 

By repeating the same arguments, we can obtain the following result: 

 

Corollary 2: Let � be a semiprime ring and � be a generalized semiderivation of �. If � is an epimorphism of 

�, then the associated map � is a semiderivation of �. 

 

Moreover, we now show that the notion of multiplicative semiderivation (resp. semiderivation) cannot be 

extended to multiplicative (generalized)-semiderivation (resp. generalized semiderivation)  in prime rings. In 

order to prove this claim, the following lemma is essential. 

 

Lemma 3: Let �  be a prime ring and �, �, � ∈ � such that ��� = ���  for all � ∈ �. Then, either � = �  or 

� = 0. 

Proof: Let us replace � by – � in Lemma 1 of [6], we see that the condition ��� = ��� for all � ∈ � implies that 

(� − �)�� = 0 for all � ∈ �. Since �  is a prime ring, the last relation yields that either � = �  or � = 0, as 

desired. 
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Theorem 4: Let � be a prime ring and � be an epimorphism of �. Suppose that �: � → � is a multiplicative 

(generalized)-semiderivation of � associated with a multiplicative semiderivation � of �. Then either � = � or 

� = 
. 

 

Proof: For any �, � ∈ �, our hypothesis yields 

 �(�)�(�) + ��(�)  =  �(�)� + �(�)�(�) 

 �(�)(�(�) − �)  =  (�(�) − �)�(�) 

 �(�)(� − 
)(�) =  (� − 
)(�)�(�)  (5) 

for all �, � ∈ �. Replacing � by ��, we obtain 

  �(�)(� − 
)(��)  =  �(�)(�(��) − ��) 

        = �(�)(�(�) − �)�(�) + �(�(�) − �) 

       = �(�)(� − 
)(�)�(�) + �(�)�(� − 
)(�) 

Using (5), we find that 

 �(�)(� − 
)(��) = (� − 
)(�)�(�)�(�) + �(�)�(� − 
)(�)                                           (6) 

for all �, �, � ∈ �. On the other hand 

 (� − 
)(�)�(��) = (� − 
)��(�)�(�) + (� − 
)���(�)                          (7) 

for all �, �, � ∈ �. In view of (6) and (7), relation (5) implies that �(�)�(� − 
)(�) = (� − 
)(�)��(�) for all 

�, �, � ∈ �.  In particular, we have �(�)�(� − 
)(�) = (� − 
)(�)��(�)  for all �, � ∈ � . With the aid of 

Lemma 1, we find that either �(�) = �(�) or (� − 
)(�) = 0 for all � ∈ �. That means, either � = � or � = 
 

as desired.                                                                                                              □ 

 

We conclude with the following result, which is easy to obtain by repeating the similar arguments as in the 

Theorem 4. 

 

Theorem 5: Let � be a prime ring and � be an epimorphism of �. Suppose that �: � → � is a generalized 

semiderivation of � associated with a semiderivation � of �. Then either � = � or � = 
. 
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