Bulletin of Pure and Applied Sciences. Vol. 36E (Math & Stat.), No.2, 2017.P.197-201 Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2017.00021.2

Notions of Projective Bounded Sets in Sequence Spaces

Dr. Kusheshwar Prasad*

Author Affiliation:

*Department of Mathematics, Jai Govind Inter College, Dighwara (Saran), Chapra, Bihar-841207, India.

E-mail: drkusheshwarprasad@gmail.com

Corresponding Author:

Dr. Kusheshwar Prasad, Department of Mathematics, Jai Govind Inter College, Dighwara (Saran), Chapra, Bihar- 841207, India.

E-mail:drkusheshwarprasad@gmail.com

Received on 15.09.2017, **Accepted on** 06.10.2017

Abstract

In this article we generalise some notions in the context of "Infinite Matrices and sequence spaces" by Dr. R.G. Cooke [3], such as projective bounded sets. Examples are included to illustrate the theoretical results .In particular our purpose is to generalise some Lemma on projective bounded sets.

Keywords: Projective bounded sets, the smallest sequence space, P-convergence, P-limit, C-convergence.

AMS classification No......[46A45]

1. INTRODUCTION

The notion of projective bounded sets is quite old and can be s found in Cooke [3].

2. DEFINITIONS AND PRELIMINARIES

If $\phi \leq \beta \leq \alpha$, and if the set of projections of sequences in a set *X* in α on every fixed direction in

$$\beta$$
 is bounded, i.e., if $\left|\sum_{k=1}^{\infty} U_k^r X_k^r\right| \leq S(U)$ for every x in X and a fixed u in β , we say that X is

projective bounded (p-bd) relative to β , or $\alpha\beta$ -bd. When $\beta=\alpha$, we say that X is p-bd in α or α -bd.

Dr. Kusheshwar Prasad / Notions of Projective Bounded Sets in Sequence Spaces

Clearly every $\alpha\beta$ -cgt sequence is $\alpha\beta$ -bd. The projection of x on $e^{(k)}$ is X_k^r , and so, if X is $\alpha\beta$ -bd, then $\left|X_k\right|^r \leq S_k$ for every k and for every x in X. (since $\beta \geq \phi$, it contains $e^{(k)}$.)

Definition: We denote by $\left(X^{(n)}\right)^{S}$ the sequence represented by $\left\{\left(X_{k}^{(n)}\right)^{S}\right\}$ where s>0. Also if

the sequences $x^{(1)}$, $x^{(2)}$, ... are in α , we denote the smallest space containing the sequences

$$\left(x^{(1)}\right)^{S}$$
, $\left(x^{(2)}\right)^{S}$, ..., $\sum_{i=1}^{n} b_{i} \left(x^{(i)}\right)^{S}$, $\left(\sum_{i=1}^{n} b_{i} x^{(i)}\right)^{S}$ etc. and similar combinations as

 α^{S} where *n* is a positive integer. By $\alpha^{S}_{1/S}$ we denote the smallest sequence space which contains

sequences such as $x^{(1)}$, $x^{(2)}$, ..., $\left[\sum_{i=1}^{n} b_i \left(x^{(i)}\right)^{S}\right]^{\frac{1}{S}}$, $\sum_{i=1}^{n} b_i x^{(i)}$ and such other sequences which go in making a space.

It is clear that the sequence $\left[\sum_{i=1}^{n} b_i \left(x^{(i)}\right)^{S}\right]^{\frac{1}{S}}$ does not necessarily belong to α .

Hence $\alpha_{1/s}^S \ge \alpha$

There are some spaces where α^S coincide with $\alpha_1(S>0)$ e.g. $\sigma_1, \phi_2, \sigma_3$ of $\sigma_2, \sigma_3, \sigma_4$ and $\sigma_2, \sigma_3, \sigma_4$ coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 coincide with $\sigma_1(S>0)$ e.g. $\sigma_2, \sigma_3, \sigma_4$ of σ_3, σ_4 of σ_4, σ_5 of σ_4, σ_5 of σ_5, σ_4 of σ_5, σ_5 of $\sigma_5,$

Lemma: If $X^{(n)}$ in α is $\alpha\beta$ -bd, and $\sum \left|b_k\right|^r$ converges, then y defined by

$$(y_k^{(n)}) = \left[\sum_{i=1}^n b_i^r \left(x_k^{(i)}\right)^r\right]^{\frac{1}{r}} \text{ is } \alpha_{1/r}^r \beta \text{-cgt}$$

where
$$\phi \leq \beta \leq \left(\alpha_{1/r}^{r}\right)^{*} \leq \alpha^{*}$$

For
$$u$$
 in β , $\left|\sum_{k=1}^{\infty} U_k^r \left(x_k^{(n)}\right)^r\right| \leq R(u)$ for every n .

Given $\epsilon > 0$, we can choose p so that $\sum_{i=p+1}^{\infty} |b_i|^r \leq \frac{\epsilon}{R}$; Then if m > n > p, we have

$$\begin{vmatrix} \sum_{k=1}^{\infty} u_k^r \left[\left(y_k^{(m)} \right)^r - \left(y_k^{(n)} \right)^r \right] = \begin{vmatrix} \sum_{k=1}^{\infty} u_k^r \left[\sum_{i=1}^{m} b_i^r \left(x_k^{(i)} \right)^r - \sum_{i=1}^{n} b_i^r \left(x_k^{(i)} \right)^r \right] \\ = \begin{vmatrix} \sum_{k=1}^{\infty} u_k^r \left[\sum_{i=n+1}^{m} b_i^r \left(x_k^{(i)} \right)^r \right] = \begin{vmatrix} \sum_{i=n+1}^{m} b_i^r \sum_{k=1}^{\infty} u_k^r \left(x_k^{(i)} \right)^r \\ i = n+1 \end{vmatrix} \text{ changing the order of }$$

$$\leq \sum_{i=n+1}^{m} \left| b_i^r \left[\sum_{k=1}^{\infty} u_k^r \left(x_k^{(i)} \right)^r \right] \right| = \sum_{i=n+1}^{m} \left| b_i \right|^r \left| \sum_{k=1}^{\infty} \left(u_k x_k^{(i)} \right)^r \right|$$

$$\leq R \sum_{i=n+1}^{m} \left| b_i \right|^r \leq R \cdot \frac{\epsilon}{R} = \epsilon$$

Hence as given in [5] y^n is $\alpha_1^r \beta$ -cgt.

So The Lemma has been proved.

Now
$$\left| x_k^{(n)} \right|^r \le S_k$$
 for every n ;

Hence
$$\sum_{n=1}^{\infty} \left| b_n x_k^{(n)} \right|^r$$
 converges for every k .

If c-lim
$$y^{(n)} = y$$
,

Then
$$y_k = \left[\sum_{n=1}^{\infty} \left(b_n x_k^{(n)}\right)^r\right]$$

and we then write

$$y = \left[\sum_{n=1}^{\infty} \left(b_n x^{n} \right)^r \right]$$

For example, suppose that $X_k^{(n)} = (-1)^{k+1}$ for $1 \le k \le n$ and $X_k^{(n)} = 0$ for k > n.

Then $\chi^{(n)}$ is in ϕ . It is also ϕC -bd.

Take
$$b_k = \frac{1}{\left\lceil k(k+1)\right\rceil^{1/r}}$$
, clearly $\sum \left|b_k\right|^r$ is convergent.

By the lemma,
$$\left[\sum_{S=1}^{n} \left\{ \frac{1}{\left(S(S+1) \right)^{\frac{1}{r}}} . x^{(S)} \right\}^{r} \right]^{\frac{1}{r}} = y^{(n)}$$

is
$$\phi_1^r C$$
 -cgt i.e ϕC -cgt.

Also
$$y_k^{(n)} = \left[\sum_{s=1}^{n} \left\{ \frac{1}{(s(s+1))^{1/r}} . x_k^{(s)} \right\}^r \right]^{1/r}$$

$$= \left[\sum_{s=1}^{k-1} \left\{ \frac{1}{(s(s+1))^{1/r}} . x_k^{(s)} \right\}^r + \sum_{s=k}^{n} \left\{ \frac{1}{(s(s+1))^{1/r}} . x_k^{(s)} \right\}^r \right]^{1/r}$$

According to the supposition,

$$X_k^{(S)} = (-1)^{k+1}$$
 for $1 \le k \le S$ i.e $S \ge k \ge 1$ $X_k^{(S)} = 0$ for $k > S$ i.e $S < k$.

When s varies from 1 to k-1, s < k and $X_k^{(S)} = 0$

When s varies from k to n, $S \ge k$ and $X_k^{(S)} = (-1)^{k+1}$

$$\therefore y_k^{(n)} = (-1)^{k+1} \left[\sum_{s=k}^n \frac{1}{s(s+1)} \right]^{1/r}$$

$$= (-1)^{k+1} \left[\sum_{s=k}^n \left(\frac{1}{s} - \frac{1}{s+1} \right) \right]^{1/r}$$

$$= (-1)^{k+1} \left(\frac{1}{k} - \frac{1}{n+1} \right)^{1/r}$$

$$\therefore \left[y_k^{(n)} \right]^r = (-1)^{r(k+1)} \left(\frac{1}{k} - \frac{1}{n+1} \right)$$
hence $y_k = \lim_{n \to \infty} \left[y_k^{(n)} \right]^r = \frac{(-1)^{r(k+1)}}{k}$
In this case, $\sum_{k=1}^\infty |y_k|^r = \sum_{k=1}^\infty \frac{1}{k^r}$ which converges.

Hence c-limit is in $C^* = \sigma_{\Gamma}$, and so satisfies the condition (i) necessary for ϕC -limit, It also satisfies condition (ii) for ϕC -Lt, as can be easily verified.

REFERENCES

- Allen, H.S.: "Projective convergence and limit in sequence spaces" P.L.M.S., (2), 48, (1944), 310-338.
- 2. Chandra, P. and Tripathy, B.C.: "On generalized Kothe-toeplitz duals of some sequence spaces", Indian J. Pure and Applied Math 33(8) Aug. 2002, 1301-1306.
- Richard G. Cooke: Infinite matrices and sequence spaces; Macmilan and Co. Limited, St. Martin's Street, London 1950.

Bulletin of Pure and Applied Sciences / Vol. 36E (Math & Stat.) No.2 / July-December 2017

- 4. G. Kothe and O. Toeplitz: Lineare Raume mit, unendlichvielen koordinaten und Ringe unendlicher martizan. Crelle, 171,193-226(1934).
- 5. Prasad Kusheshwar and Chandra P.: "Notions of convergence and limits in sequence spaces". Global J. Pure and Applied math volume 13, Number 9 (2017), PP.6051-6060.