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1. INTRODUCTION 
 
In this paper, we propose to study location of triangular points in the generalised photogravitational 
restricted three body problem. 
 
Radzievskii (1950) formulated the photogravitational restricted three body problem. This arises from 
the classical problem when one of the interacting masses is an intense emitter of radiation. He 
discussed it for three specific bodies: the sun, a planet and a dust particle. Chernikov (1970) extended 
his work by including aberrational deceleration (the Poynting-Robertson effect). He found that despite 
the absence of a Jacobi integral, the equations of motion admit of particular solutions corresponding to 
six libration points. He demonstrated the instability of the solutions by Lyapunov’s first method. 
 
Schueman (1980) generalized the restricted three body problem by including the force of radiation 
pressure and the Poynting-Robertson effect. The Poynting-Robertson effect renders the L4 and L5 
points unstable on a time scale (T) long compared to the period of rotation of the two massive bodies. 
For the solar system, T is given by T = [(1-β)2/3 / β] × 544 a2 year, where β is the ratio of radiation to 
gravitational forces, and a is the separation between the Sun and the planet in AU. He also discussed 
implications for space colonization and a mechanism for producing azimuthal asymmetries in the 
interplanetary dust complex. 
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Abstract 
 
We have found the locations of triangular equilibrium points in generalised photogravitational 
restricted three body problems. We suppose that both primaries are radiating and the bigger primary 
is an oblate spheroid. We obtain the locations of triangular points. These are affected by radiation 
and oblateness of the primaries. We find that the points L4, L5 form triangles with the primaries. 
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Sharma (1982) studied the linear stability of triangular liberation point of the restricted three body 
problem when the more massive primary is a source of radiation and an oblate spheroid as well. He 
found that the eccentricity of the conditional retrograde elliptic periodic orbits around the triangular 
points at the critical mass μc increases with the increase in the oblateness coefficient and the radiation 
force and becomes unity when μc

 is zero. 
 
Simmons et al. (1985) gave a complete solution of the restricted three-body problem. They discussed 
the existence and linear stabililty of the equilibrium points for all values of radiation pressures of both 
luminous bodies and all values of mass ratios. 
 
Ragos and Zagouras (1988) found two families periodic solutions about the ‘out of plane’ equilibrium 
points in the photogravitational restricted three-body problem.  
 
Shaboury (1990) gave a possibility of nine liberation points for small values of oblateness in the 
photogravitational restricted three-body problem when the infinitesimal mass is of an axisymmetric 
body and one of the finite masses be a spherical luminous body while the other be an axisymmetric 
non-luminous body. 
 
Todoran (1993) clamied that the “out of plane” equilibrium points (out of the orbital plane of the 
primaries) in the restricted three-body problem as concerned radiation pressure, do not actually exist. 
This question was answered by Ragos and Zagouras (1993). Liou and Zook (1995) investigated 
asteroidal dust ring of micron-sized particles trapped in the 1: 1 mean motion resonance with Jupiter. 
They with Jackson (1995) examined the effects of radiation pressure, Poynting-Robertson (PR) drag, 
and solar wind drag on dust grains trapped in mean motion resonances with the Sun and Jupiter in the 
restricted three body problem. Khasan (1996) studied the existence of libration points and their stability 
in the photogravitational elliptic restricted three body problem. 
 
The classical problem of three bodies was generalized by considering the various aspects such as the 
shape of the bodies, influence of the perturbing forces other than the forces of mutual gravitation etc., 
to make the problem more realistic. In the solar system, some of the planets, like Satum and Jupiter are 
sufficiently oblate. It has been seen that oblateness of the body plays an important role in the restricted 
three body problem. 
 
Hence, the idea of the radiation pressure forces together with oblateness of the body raises a curiosity 
in our mind to study the location of triangular points in the generalised photogravitational restricted 
three-body problem. The problem is photogravitational in the sense that both the primaries are sources 
of radiation. The problem is generalised in the sense that one of the primaries is taken as oblate 
spheroid.  
 
In section 2, we have established the equations of motion of the problem. We find that the mean motion 
of the primaries is affected by their oblateness. The potential and the kinetic energy for the third body 
are determined. By applying Lagrange’s equations of motion, we have deduced the equations of 
motion. These equations of motion are influenced by radiation and oblateness of the primaries.  
 
In section 3, the locations of the triangular equilibrium points are obtained. It is proved that the 
locations of the triangular points are affected by radiation and oblateness of the primaries. Further we 
find that the points L4, L5 form triangles with the primaries.  
 
2. EQUATIONS OF MOTION  
 
Let m1 and m2 be masses of the bigger and smaller primaries and m are the mass of third infinitesimal 
body. We assume that both primaries are radiating and bigger primary as an oblate spheroid. R be the 
distance between the primaries.  
 
We use A1 for oblateness coefficients of the bigger primary. 
 0 < A1 << 1 (Mc Cuskey, 1963) and  

 
2 2
1 1

1 2

AE APA
5R


  
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where AE1 is the equatorial radius and AP1 being the radius of bigger primary.  
 
We further denote the radiation factor by qi (i = 1, 2), which are given by the equation  
 

ip g iF F (1 q )    

Fg being the gravitational attraction force, 
iq 1  and so 

0 < 1 – qi << 1 
 
We have ignored the Poynting-Robertson drag effect. We have also neglected the perturbations in the 
potential between m1 and m2 due to the radiation pressure, because m1 is supposed to be sufficiently 
large.  
The potential V between m1 and m2 is given as  

 1
1 2 3

1 AV G m m
R 2R

    
 

        (1) 

where G is the gravitational constant.  
 
Let (X, Y) be the coordinates of m2 with respect to m1. Its equations of motion are  

 1 2

1 2

m m VX ,
m m X
 

 


  

 1 2

1 2

m m VY ,
m m Y
 

 


          (2) 

where 2 2R X Y   

Now, 1
1 2 2 4

V 1 3 A XGm m
X R 2 R R
        

 

and 1
1 2 2 4

V 1 3 A YGm m
Y R 2 R R
        

 

The above equations of motion become 

1
1 2 2 4

1 3 A XX G(m m )
R 2 R R
      

  

1
1 2 2 4

1 3 A YY G(m m )
R 2 R R
      

       

           (3) 
These equations of motion have the particular solution  
R = constant, X = R cos θ, Y = R sin θ, θ = nt, where n is the mean motion of the primaries. 

2X nRsin ,X Rn cos        
Putting these values in the first equations of (3), we have 

2 1
1 2 2 4

1 3 A R cosRn cos G(m m )
R 2 R R

        
 

 2 1 2 1
2 4

m m 1 3 An G
R R 2 R
          

       (4) 
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Let (x, y) be the coordinates of the third body in a rotating coordinate system with the origin at 0 and 
the line joining the primaries being the x-axis and the line perpendicular to it being the y-axis.  
 
The kinetic energy T of the third body is given as  

 2 21T m (x ny) (y nx)
2

        

 2 2 2 2 2 21 m x 2nxy n y y 2nxy n x
2

            

 2 2 2 2 21 1mn (x y ) mn(xy xy) m(x y )
2 2

          

= T0 + T1 + T2, 
with 

  2 2 2
0

1T mn (x y ),
2

   

  1T mn(xy xy),    

  2 2
2

1T m(x y )
2

           (5) 

The potential V   between m and m1 and m and m2 is given as  

  1 1 1 2
1 23 2

1 1

q A q qV Gm m m
r 2r r

           
   

    (6) 

where 

 
2 2 2

1 1r (x x ) y ,    

 
2 2 2
2 2r (x x ) y             (7) 

Here (x1, 0) and (x2, 0) are coordinates of m1 and m2 respectively. Let the modified potential energy be 

 0U V T   

 2 2 21 1 1 2
1 23

1 1 2

q A q q 1Gm m m mn (x y )
r 2r r 2

    
         

    
  

(8)
  

The Lagrangian can be put in the form 
 

 2 1L T T U     

 2 21 m(x y ) mn(xy xy) U
2

         

 
From this, we have  

 
L m(x ny),
x


 





 

 
L m(y nx),
y


 





 

 
L Umny ,
x x
 

 
 

  
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L Umnx
y y

 
  

 
  

Hence, the equations of motion of the third body are  

 
d L L 0,
dt x x

       
 

 
d L L 0
dt y y
  

    
 

i.e., 

 
Um(x ny) mny 0
x

   


    

 
Um(y nx) mnx 0
y


   


    

i.e.,  

 
1 Ux 2ny ,
m x
  


   

 
1 Uy 2nx ,
m y


  


         (9) 

But from (8), we have  
 

21 1 1 1 2 2
1 22 4 2

1 1 1 2 2

q A q x x q x xU 3Gm m m mn x
x r 2 r r r r

       
                  

 

and 21 1 1 2
1 22 4 2

2 1 1 2 2

q A q qU 3 y yGm m m mn y
y r 2 r r r r

    
               

 

using these in (9) we have  

 21 1 1 1 2 2
1 22 4 2

1 1 1 2 2

q A q x x q x x3x 2ny G m m n x
r 2 r r r r

        
           

      
    

21 1 1 2
1 22 4 2

1 1 1 2 2

q A q q3 y yy 2nx G m m n y
r 2 r r r r

    
         

    
                                     (10) 

 
Now, we choose the unit of mass equal to the sum of the primary masses. For this we taken m1 = 1 – μ 
and m2 = μ, where μ is the ratio of the mass of the smaller primary to the total mass of the primaries 
and     0 < μ < 1/2. The unit of length is taken as equal to the distance between the primaries and the 
unit of time is so chosen that the gravitational constant G is unity.  
 
Let the origin be the bary-centre of mass m1 at (x1, 0) and m2 at (x2, 0). Then we have m1x1 + m2 x2 = 0 
 
This gives x1 = μ and x2 = – (1 – μ). So, the coordinates of the masses 1– μ and μ are (μ, 0) and (–(1– 
μ), 0) respectively. 
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m
 (x,y)

r1r2

m2 ( -1,0)m 0 ( ,0)mm1

x
 

 
Synodic Co-ordinate System 
 
Hence, in the dimensionless variables, the equations (10) of the third body become. 

21 1 1 2
2 4 2 2

11 1 2

q A q q3 x x 1x 2ny (1 ) n x,
2 rr r r r

     m   m    m   m        
     

   

 21 1 1 2
2 4 2

1 21 1 2

q A q q3 y yy 2nx (1 ) n y,
2 r rr r r

   
   m    m     

   
   

i.e., 
Ux 2ny ,
x


 


   

 
Uy 2nx
y


 


                              (11)  

with  

 2 2 2 1 2 1 1
3

1 2 1

(1 )q q A q (1 )1U n (x y ) ,
2 r r 2r

 m m  m
      

 2 2 2
1r (x ) y  m   

 2 2 2
2r (x 1 ) y   m                          (12) 

             
 2

1
3n 1 A
2

                                                                                                               (13) 

 
Thus, we find that the equations of motion are different from the classical case due to radiation and 
oblateness of the primaries. 
 
Multiplying the first equation by 2x  and second equation by 2y of (11) and then adding them, we have  

 
U U2x x 2y y 2 x y
x y

  
     

       

 2 2d U(x y ) 2
dt dt


    

Its integration gives  
 2 2x y 2U C                                                                                                        (14) 
 
Here C is the Jacobian constant. 
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3. LOCATION OF TRIANGULAR POINTS  
 
The locations of triangular points are the solutions of 

 
U U0, 0, y 0
x y

 
  

 
 

i.e.,  
 m  m m  m   m  m

  2 1 2 1 1
3 3 5

1 2 1

(1 )(x )q (x 1)q A (1 )(x )q3n x
2r r r

 

and 
 m m  m

  2 1 2 1 1
3 3 5

1 2 1

(1 )q y q y A q (1 )y3n y
2r r r

 

i.e., 
  m m m m m m m m m

      
 

2 1 2 1 1 1 2
1 13 3 5 3 3 5

1 2 1 1 2 1

(1 )q q A q (1 ) (1 ) q (1 )q3 3 (1 )x n A q
2 2r r r r r r

  

and  2 1 2 1 1
3 3 3

1 2 1

(1 )q q A q (1 )3y n
2r r r

  m m  m
   

 
                                                            (15) 

The second equation of (15) gives either  

 2 1 2 1 1
3 3 5

1 2 1

(1 )q q A q (1 )3n
2r r r

 m m  m
    

or y = 0                        (16)
  
 
Triangular points are the solutions of both the first equation of (15) & (16) 
 
Making use of the first equation of (16), the first equation of (15) gives 

 
 m m m  m m  m

  1 2
1 13 3 5

1 2 1

(1 ) q (1 )q 3 (1 )A q 0
2r r r

 

which gives  

   1 2 1 1
3 3 5

1 2 1

q q A q3 0
r r 2 r

                (17) 

Re-writing the first equation of (16), we have  

 2 1 1 1 1 2 1 1
3 5 3 3 5

1 1 1 2 1

q A q q q A q3 3n 0
2 2r r r r r

 
   m    

 
 

Making use of (17), we have  

 2 1 1 1
3 5

1 1

q A q3n 0
2r r

                   (18) 

Combining (17) & (18), we have  

 2 2
3
2

qn 0
r

                             (19) 

r1 and r2 are given by the equations (18) & (19). 
  Knowing r1 and r2, the co-ordinates of the triangular points are found by solving the equations 
of (12) for x and y. 
  Subtracting the two equations of (12), we have  
 2 2 2 2

2 1r r (x 1 ) (x )    m   m  
 (x 1 x )(x 1 x )   m   m   m   m  
 2x 2 1  m  
 2 2

2 12x 2 1 r r  m     

or, 
2 2
2 1r r1x

2 2


 m                         (20) 

Putting the value of x in (12), i.e, 
 2 2 2

1y r (x ) ,   m  
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we have  

 
22 2

2 2 2 1
1

r r1y r
2 2

 
   

 
 

or, 
         
   

1/222 2 2 2
1 2 2 1r r r r1y

2 4 2
                                                                       (21) 

 
The exact coordinates of the triangular points corresponding to L4 and L5 are given by (20) & (21). 
That is 

 
2 2
2 1r r1x

2 2


 m    

 

1/222 2 2 2
1 2 2 1r r r r1y

2 4 2

         
   

 

 
When the primaries are neither radiating nor oblate spheroids i.e., Ai = 0, qi = 1 (i = 1, 2), the solutions 
of the equations (18) & (19) are ri = 1 
 
Therefore, we can assume that the solutions of (18) & (19) are  
 i ir 1                         (22)
  
Where i  are very small 

       


3
i i3 3

i i

1 1 (1 ) 1 3 .....
r (1 )

 

 5
i i5

i

1 (1 ) 1 5 .......
r

       

Putting these values in (18) and (19) and putting the value of n2 from (13) and neglecting the second 
and higher order terms in i , Ai, we have 

        1 1 1 1 1 1
3 31 A q (1 3 ) A q (1 5 ) 0
2 2

 

i.e.,      1 1 1 1 1
3 31 A q 3 A q 0
2 2

 

or,        
 

1 1 1 1 1
3 33 q 1 A q 1 A
2 2

 

or, 
       

 

1

1 1
1

3 A1 323 1 A
q 2

 

or, 

  
    

 
  

1

1 1
1

3 A11 3 21 A
3 2 q

 

          
  

1
11

1 3 3 A1 A 1 (1 )
3 2 2

 

where         1p
1 1

g

F
q 1 1 so tha 1 q 1.t

F
 

 
          

  
11 1

1 3 3 A1 A 1 (1 )
3 2 2
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          

  
1 11

1 3 3 3A A1 A 1
3 2 2 2

 

On putting 11 q ,    

 
            

  
1 1 1 1 1 1

1 3 3 31 A 1 A 1 q (1 q )A
3 2 2 2

 

         
1 1 1 1 1

1 3 3A 1 q A q
3 2 2

, neglecting A2 (1 – q1)              (23) 

Similarly, we have 
       

2 1 2
1 1 A 1 q
3 2

 

Putting the value of i  found by (23) in (22), we have 

 


   1 1 1 1
1

A 1 q A qr 1
2 3 2

 

 


  1 2
2

A 1 qr 1
2 3

                                                                                      (24) 

Putting the value of r1 & r2 from (24) in (20) & (21), we have 

 2 1
1x
2

 m     

  m    2 1 1 1
1 1 1(q q ) A q
2 3 2

 

and 

 
 

     
  

1 2
3 1y ( )
2 3

 

 
 

      
  

1 1 2 1 1A q q A q3 2
2 3 3 3 2 3 3 3

 

 
        

1 1 2
1 1

A q q1 1 23 A q
2 3 9 6 9

 

 
         

1
1 1 1 2

(1 q )1 1 1 13 A A q (1 q )
2 3 6 9 9

 

           
2

1 1 1 1 2
3 4 2 4 4y 1 A A q (1 q ) (1 q )
4 3 9 9 9

        

(25) 
 
 
Here, we observe that the locations of triangular equilibrium points are affected by radiation pressure 
forces and oblateness of the primaries. 
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