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1. INTRODUCTION

In our day to day life queueing situations often arise in which service is rendered in bulk. Many
researchers have put their efforts in this area by considering various aspects, like, Madan,K.C.et.al.

(2003) have studied the steady state analysis of M *}/M #°/1 queueing model with random
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breakdown, Holman,D.F. et.al. (1981) have studied some results for the general bulk service queueing
system, Medhi,J. (1994) have studied batch arrival and bulk service, Neuts,M.F. (1967) have
studied a general class of bulk queues with Poisson input, Chaudhry, M.L.et. al. (1981) have studied
the queueing system M /G /1 and its ramifications. Some of them have discussed the single and batch
arrival with priority services, for example, Jain, M.et.al (2008) have studied a bulk arrival retrial
queue with unreliable server and priority subscribers, Chesoong Kim.et. al. (2016) have studied

priority tandem queueing system with retrial and reservation of channels as a model of call center,
Atencia, |. et.al. (2005) have studied a single-server retrial queue with general retrial times and

Bernoulli schedule. Further, Ayyappan, G.et.al. (2009) have studied the single server retrial queueing

system with non-pre-emptive priority service and single vacation-exhaustive service type. Deepak,
C.etal. (2014) have studied a delay analysis of a discrete-time non-preemptive priority queue with

priority jumps, Jinbiao Wu.et.al. (2013) have studied a single-server retrial G-queue with priority and
unreliable server under Bernoulli vacation schedule. Madan,K.C. (2011) have studied a

non-preemptive priority queueing system with a single server serving two queues M/G/1 and
M/D/1 with optional server vacations based on exhaustive service of the priority units, Rajadurai,P.

X
et.al. (2014) have studied an analysis of an M[ ]/(Gl,Gz)/l retrial queueing system with balking,

optional re-service under modified vacation policy and service interruption. Gautam Choudhury.et.al.
(2012) have studied a batch arrival retrial queue with general retrial times under Bernoulli vacation

schedule for unreliable server and delaying repair.

Now, we consider a single server queuing system with two types of batch arrivals and services under non
preemptive priority rule. Arrivals follow a compound Poisson process. The server provides single service
to the high priority customers and general bulk service rule to the low priority customers on a FCFS
discipline. The service rule for low priority customers is as follows: The server starts service only when a

minimum number of customers '@’ is present in the queue and the maximum service capacity is 'b’. If
the number of customers in the queue is less than '@’ the server becomes idle if more than 'b’

customers waiting in the queue the server serves first '’ customers in the queue and the remaining
customers wait in the queue. The service time follows a general(arbitrary) distribution. Using the
supplementary variable technique, the time dependent probability generating functions of the

distributions Pm’nlqm,n and Pntn,qr;'n under equilibrium, have been derived in terms of their Laplace

transforms and the corresponding steady state results are also derived. The average number of customers
in the queues and the average waiting time are derived. Numerical case has been worked out on the
assumption that the service time follows a specified exponential and Erlang-2 distributions.

The rest of the paper is organized as follows: Mathematical description of our model isdetailed in
section (2). The definitions and the equations governing of our model and the time dependent solution are
obtained in sections (3) and (4). The corresponding steady state results have been derived explicitly in
section (5).Relation to the imbedded Morkov chain is given in section (6). The calculation of basic

PoTk ) q&k and QO,k probabilities is given in section (7). Average queue size and the average waiting

time are computed in sections (8) and (9). Some particular cases have been discussed in section (10).
The numerical results are discussed in section (11) and the references to the paper are stated in section
(12).

2 MATHEMATICAL DESCRIPTION OF OUR MODEL
We assume the following to describe the queueing model of our study.

1. High priority and low-priority units arrive at the system in batches of variable sizes in a compound
Poisson process and they are provided one by one on a FCFS basis. Let ﬂ,lCi dt and
AZC, dt(' :1,2,3,-- be the first order probability that a batch of i customers arrive at the system

during a short interval of time (t,t +dt) , where 0 <¢, <1, Z:ilci =1,andj, >0, 4, >0 arethe
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average arrival rates for high-priority and low-priority customers and high-priority and low-priority
customers forms seperate queues, if the server is busy. The server must serve all the high-priority units
present in the system before taking up low-priority unit for service. In other words, there is no
high-priority unit present in the system at the time of starting the bulk service of a low-priority unit.
Further, we assume that the server follows a non-preemptive priority rule, which means that if one or
more high-priority units arrive during the service time of a low-priority unit, the current service of a
low-priority unit is not stopped and a high-priority unit will be taken up for service only after the current
service of a low-priority unit is completed.

2. Each customer under high-priority and low-priority service provided by a single server. The service
time for both high-priority and low-priority units follows general(arbitrary) distribution with distribution
functions B (v) and the density functions b(v).

3.Let p(x)dx be the conditional probability of completion of the high-priority and low-priority unit
service during the interval (X, x + dx], given that the elapsed service time is X, so that
u(x) =20
1-B(x)
and therefore,

S
u(x)dx

o) = e
Pr;n =Prob {The number of customers in the high priority queue is m and low priority queue is n just
after a depature epoch}

q;,n = Prob {The number of customers in the high priority queue is m and low priority queue is n just
after a depature epoch}

Pm’n =Prob {The number of customers in the high priority queue is m and low priority queue is n just
after a random epoch}

qn,n =Prob {The number of customers in the high priority queue is m and low priority queue is n just

after a random epoch}
where m,n=0,1,2,.. .

4.Let M q (t) and Nq (t) be the high-priority and low-priority queue size(defined here to denote the

number of customers waiting for service, not including those in service respectively) and X (t) be the
elapsed service time of the customers undergoing service at time t. The supplementary variable X (t)

is introduced in order to obtain a bivariate Markov Process (Mq (t), Nq (t), X (t)) Let we define the
joint probabilities:
Q,, () =Prob{N, (t) =n andtheserverisidlg, 0<n<a,

Pmn=Prob {Mq(t)=m, N4(t)=n and the server is busy with high priority customers}, x,t>0, m,n=0,
gmn= Prob {Mq(t)=m, N4(t)=n and the server is busy with low-priority customers}, x,t>0, m,n=0,

5. Various stochastic process involved in the system are assumed to be independent of each other.

3 DEFINITIONS AND NOTATIONS

1. Pm,n (X, t) = Probability that at time {, the server is active providing service and there are
m (m > 0) priority unitsand n (n > 0) non-priority units in the queue excluding the one priority unit

in service with elapsed service time for this customer isX. Accordingly, Pm,n(t) :J:Pmyn(x,t)dx

denotes the probability that at time [ there are m (m > 0) priority units and n(n=>0)
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non-priority units in the queue excluding one priority unit in service without regard to the elapsed service
time Xof a priority unit.

2. qm,n(X,t) = Probability that at time t, the server is active providing service and there are
m (m > 0) priority units and n (n > 0) non-priority units in the queue excluding one batch of
low-priority customers being served and the elapsed service time for this batch of customers is X.

Accordingly, (4 (t) =14 (X,t)dX denotes the probability that at time t there are m (m > 0
m,n o Im,n

priority unitsand n (n>0) non-priority units in the queue excluding one batch of low-priority unit
in service without regard to the elapsed service time Xof a low-priority unit.

3. QO,n (t) = Probability that at time t, there are (a —1) customers in the system and the server is
idle but available in the system.

4. EQUATIONS GOVERNING THE SYSTEM

The system is then governed by the following set of differential-difference equations:

%Qo,o () = =(2 + 23)Qu0 (1) + [ oo (X D)) + [ "0 (X, 1) (X)X, &)

Q)=+ 2)Qu 0+ D€ Q0+ [ P (1 D10
+ j: G (6D (X)dX, N=1,2,...2-1. @

% F)m,n (Xv t) +§ F)m,n (Xv t) = _(/,{1 + /’{2 + :u(x))Pm,n (X1 t) + i/,{lcl F)m—i,n (X1 t)

+> A,CP, i (xt), mn>1 @)
i=1

2 Buo(()+ 2 Pro(X0) =~ 2o+ OPao (X D)+ SACPrisKD, mx1 @

0 0 4

P Fon(X:t) 5 P (1) ==+ 4, + u(¥))Py (X, ) + D ACR, i (Xt),  n21 (5
i=1

0 0

—Poo (X 1)+ — Py (X,1) = =(A, + 4, + 1(X)) Py (X, 1), (6)

ox ot ~ ’

(042 G060 ==+ 0 (%0 + Y210 (XD

+ 2.Ci0n i (X, 1), mn>1 %
i=1
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2 o (0) - G (K =+ 0o (40 + Y AC o XD 1 0

%qo,n(x,mgqo,n(x,t):—(M+u(x)>qo,n(x,t>+i@ciqo,ni(x,t>,n21 ©

i=1

o o _
& qo,o (X, t) + E qo,o (X, t) - _(2'1 + Az + :U(X))qo,o (X, t)- (10)
Equations (1) — (10) are to be solved subject to the following boundary conditions:

Ro(0) = ACQM) + || Ro0x () [ 0 o t)u(x)dx, 1
Po(08) = AC, Q) + [ Prys s DX+ [ Gy o6 DX m>1 @)
Ra(0) = [ R, (x D))+ [, (x, D)% n>1 13)

Pan(00) = [ P 00000 [ s, (XD (¥)dx, Min>1 14

b a-1 0 o0

G00(0.) = D> 2:Cr Quie )+ [ o (6 ) (X)dx+ [ 0y, 1), a<n<b (5)

m=ak=0

a-1 00 00
on(0) = 324G Qo 0+ [ Porso (K DD [ Qoo (kDI m21. 19
k=0

We assume that initially there are no sufficient customers in the system, that is the server is idle. So that
the initial conditions are

Q,(0)=1,R,.(0)=0,q,,(0)=0for m,n=0,1,2,.. 17)

5. PROBABILITY GENERATING FUNCTIONS OF THE QUEUE LENGTH: THE TIME
DEPENDENT SOLUTION

In this section we obtain the transient solution for the above set of differential-difference equations.

THEOREM:

X X
The system of differential difference equations to describe an M l], M 2]/Gl,G(a'b)/l queueing
system with priority servics are given by equations (1) — (16) with the initial conditions (17) gives
the probability generating functions of the transient solution.

PROOF:
The probability generating functions are

P(4,2,2,,0) = 3 > 2/'23P0 s (DX, 21,25, 8) = DD 220, (X,1)

m=0n=0 m=0n=0
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C(z)=>z'C, and C(z,) = > z;C,
n=1 n=1

(18)

We also define the VVq (Zl, Zz) to be the probability generating function of the number of customers in

the queue, regardless of whether the server is busy or not. Then,

a-1
W,(2,,2,) = P(2,2,) +0(%, 2,) + > Qs
n=0

(19)

which are convergent inside the circleis givenby | z, |<1,|z, |< 1 and define the Laplace transform of

a functions

f(s)= J: e f ()dt, R(s) >0

Now taking the Laplace transform of equations (1) — (16) and using (17) we get

(54 +22)Qo(8) ~1= [ Poo(x ) a(x)cx-+ [ o(x, ) (X,
(54 72 Qun(5) = 2Cs Qo5+ Pon ()

+ J:Daoyn(x,s)u(x)dx n=1.2,..a-1.
- Pun(u8) (54 + Ay + ()Prn (%9 = Y 4G P ()

+> 2,C Pnai(x,s), mn1

i=1
%Em,o(x, S)+(s+ A+, +u(X)P, o(x,8) = izlci P io(Xs), m>1
i=1
%EO,n (%,S) + (S+ A, + Ay + 1(X))Pon(X,S) = iﬂ?q Poni(x,s), n>1
i=1
g%ﬁqus)+(s+ﬂi+iz+u(@)5m(xs):0,

G (05) (5 2 00 (X9 = DG B ()

+ 3 2,Ci G (%, 5), MmN21

i=1

2 Qo8+ 5+ A+ o+ HO0Nns(X9) = Y G o(% ), M>1

i=1

2 Goa(X5) (5 o+ o (6,9) = Y20, (X9, D21

%ao,o(x, §)+ (5 + 4y + 2y + (X))o (X,5) = 0,

(20)

(1)

(22)

(23)

(24)

(25)

(26)

@7)

(28)

(29)
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Poo(0,5) = 4,C,Q(s) + jfpl,o(x, 8) u(X)dx+ ijlyo(x, 8)u(X)dx, (30)

Pro(0.8) = £,Cys Q)+ [ Proao(X (et [ G o I m=1 a1

Pon(0.8) = [ Pen(x, 9)u(x)dx+ [ 0, (x 8)u(x)dx 01 @
Pria(0,8) = [ Pmaan (% )u()dx+ [y, (6,5) () m,n>1 39)
000(0.9)= 373 24 Qs (5)+ [ Pon(x () [ T, (x, )X

a<n<b (34)

_ a-1 . cO— 00—
001 (0,5) = D 7:Co.n 1 Qo (8)+ [, Pomsn (X, S)u(x)lx+ [l 5 (X, ) ()%
k=0
n>1. (35)

Now multiply equation (21) by ZS summing over n from 0 to (a —1) and then add to equation
(20) , we get

pYACERVRNCORES 32) yYX MG

n=l k=1
Lal Lal
+J.0 7 PO,n(X,S)ILt(X)dX-‘rJ.O D 2000, (X, S)p(x)dx, n=1,2,...a-1. (36)
n=0 n=0

Next, we multiply equations (22), (23), (26) and (27) by Zlm summing over m fromlto « , and
add the resulting equations to the equations (24), (25), (28) and (29) , we get

%En(x, Z,S)+(S+ A+ 4, + H(X))En(x, Z,,8) = A.lC(zl)En(x, z,,9)

+> 4GP, (% 2,,9), 21 (37)
P
%Bo(x, 2,,8)+ (5 + Ay + A, + u(X))Po(X, 2,,5) = 4,C(2,)Po(X,2,,5) (38)

;ﬁxan(x,zps)usmmz (X)), (% 20,5) = 4C(2)d, (X, 2,.5)

+> 2,Ci0,4(%,2,,9), 21 (39)
i=1
§—Xao(x, 2,,8) + (54 2n + 2 + (X)) Qo (%, 21,5) = HC(2)0 (X, 2,.5). 40)

Next, we multiply equations (37) and (39) by ZQ summing over n from 1 to « , and add the
resulting equations to the equations (38) and (40), we get
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%E(X, 2,,2,,8) + (s + A,[1- C(2)]+ A,[1- C(2,)] + u(x)P(X,2,,2,,8) = 0 (41)

0 — —
46225, 8) + (s + A[1=C(z)]+ A[1- C(2,)]+ p(x))a(x, 2, 2,,5) = 0. (42)
Integrating equations (41) and (42) between O to x, we get

X
—(5+L1[1—C (z1 )]+12 [1-C (22 )] x—J.O u(t)dt

P(x,2,,2,,8) = P(0,2,,2,,5)e (43)
a(X, Zl, 22 | S) _ a(O’ Zl, 22 | S)e—(s+ﬂl[1—c(zl)]+12[1—c(22)]) x—J.Op(t)dt. (44)
Again integrating equation (43) and (44) by parts with respect to X, yields
5 _5 1-B,(s+ A[1-C(z)]+ 4[1-C(z,)])
P(z,,z,,5) =P(0,2,,2,,5)[—2 - ] (45)
o T (s Al-C(@)]+ A,[1-C(2,)])
= = 1-B,(s+A4[1-C(z)]+ A,[1-C(z,)])
0(2,2,,5) = 0(0,2,,2,, S)[— T 2] (46)
v v (s+A4[1-C(z)]+ 4,[1-C(2,)])
now multiply equations (43) and (44) by u(x) and then integrate with respect to X, we get
[ P02, 2, 9)u(x)dx= P(0,2,,2,,8)By(5+ A[1-C(@)]+ A,[1-C(z,)]) @)
[ a(x.2,2,, 9 (9= 0(0.2,,2,,9)B, (5+ A [1-C(2)]+ L[1-C(z,)]). ()

At z, =0, equations (47) and (48) gives,
[ Po(x 2,,5)1(¥)dx= Po(0,2,,5)B (s + 4 + A[1-C(2,)]) (49)
[0 2, 9(X)dx=0,(0.2,,9)B, (s + 4 + A[1-CZ,)]).  (50)
However by its definition, a(O,Zl,ZZ,S):aO(O,ZZ,S) the equation (48) becomes
[ a0 2,,2,,8)u()dx= 05(0,2,,9)B, (s + A[1-C(@)]+ A[1-C(Z)]).

Next, we multiply the boundary conditions (31) and (33) by Zlm summing over m from 1 to «
and then add the resulting equations to z, x (30) and z, x (32)

v:jl_izt(’o,zl, s) = 4C(z,)Q(s) +£T°o(x, 2,, ) p(X)dx— J:T’o,o(x, s)p(x)dx

+ [ 0062, 9) (x| "G o(x, 9) (Xl (52)
2,P1(02,,5) = [ P(x,2,,8) ()X~ [ Poa(x,5)u(x)dlx

+ﬁn (X,2,,9) ,u(X)dX—foﬂ (%, s)u(x)dx (53)

now multiply equation (53) by ZS summing over m from 1 to « and then add the resulting
equation to (52) , we get.

1P(0.2,2,,9) = AC(2)Q(S) + [ P(x 2,2, ) ()X [ Po(x,2,,5)u()dx
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+Jjﬁ(x, 2,1,,5) u(x)dx—J;W0 (X, 2,,S)u(x)dx (54)

now multiply equation (35) by ZS summing over mfrom 1to « and then add the resulting equation
(34), we get

00(0.2,19) = 2,2,"3 S C, Q)2 ~22") ~2Cots” S (22240, 9
- Aycbflz;b azl:ao,k (S)(Zg - Z;eril) T Aycbfazzibao,afl (5)(23 - nga)
AT MOLED 3OS ICE

[ P (x e 232 24)] G 1 00

+Z, J:I?’o(x, Z,,5) u(x)dx+ Z, JTO (%, 2,,8)u(X)dx
—I:E’o,o +Pos1+...4+ Poai(X s)u(X)dx

~ [ oo+ oy +on o (X, S)(X)0IX (55)
using equations (20) and (21) into equation (55), we get

b a-1

2504(0,2,,5) =24, )Y C,Qq,(8)(Z5 —257) - @cbz(zz 25"*)Qu (9)

- Aycbliao,k (5)(23 - Z;HH) T AZCb—a Qo,a—l (5)(23 - nga)
#AaC(2) Y Quy (925 + Y (22 ~2)] Pox ()X
328 29[ G, (0 )00 [ Po(x,2,,5) ()

o a-1 _
+ [ 0% 25, 9) 1) dx= 230D (5+ 2+ 2,)Qq () -1} (56)
k=0
Now substitute equations (47), (50), (51) into (54) and (56), we get

{z,-B,(#(z,93P(0,2,,2,,5) = AC(2,)Q(S) + 4 (0,2, ){B, (4 (2.5))

~B,(1,(2,9))}Po(0,2,,9)B,(1(z,5)) (57)
2200(0.22:8) = 4,23 £ Qy (5)(22 ~25™) - @CbZ(zz 23")Qui(5)

ACeD Q@ -2 = 4.C, L0y ()@ -2

£ 2,C(2)3 0y (124 + 32~ 24)[ Pos(x ()
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+ (2 -23)[ Uy (% ) u()dx+Po(0,2,,9)B (14 (2,9))

k=0

_ _ a-1 _
+09(0,2,,9)B, (1,(2.9) ~ 2D (5 + 4 + 4,)Qu, () -1} (59)
k=0
by using Rouche’s theorem, let 7, = 9(z,) into equation (57) , we get

Po(0,2,,5)B,(w,(2,9)) = 4C(9(2,))Q(S) + o (0,2,, SH{B, (¢,(2,5)) — B, (w,(,9))}- (59)

Now substitute equation (59) into equation (58), we get
Nl

R T AT

(60)

where
b a-1

N, = 4C(9(2:))Q06) + 2.3 ) Qo ()23 ~25™) = 2.C, :Z_:(ZS —~25")Qq(5)

n=1k=0

DY NOCEA RO
£ 2,C(2)3 sy (124 + D (2 28)[ Pos )
20022 G (0 00 B (54,205, (5)-1)

Next, we substitute equation (59) and (60) into equation (57), we get

{1-(s+ AL-C@)]+ A [1-C(2)IR(E)}
IB(O 2,2,,5) = +qo(012213){|32(ﬁ(2,8)—Bz(yll(z,s)}}
o 21_B1(¢1(Zas)

Again, we substitute equations (61) and (60) into equations (45) and (46) thus we get the

(61)

complete solution for the following states, P(Zl, ZZ,S) and Q(Zl, ZZ,S) are

B(1,2,.5) = P(0,2,.2,, L= B T Al -C@)]+ A[1-C(z,))),

(62)
(s+4[1-C(z)]+A,[1-C(z,)])
0(2.2,,5) = 4(0,2,,2,, §) L2 (+A[-C(z)]+ £[1-C(z,)]), ©3)

(s+A4[1-C(z)]+ 4,[1-C(2,)])
6. STEADY STATE RESULTS

In this section, we derive the steady state probability distribution for our queueing model.
By applying the well-known Tauberian property,

lim s f(s) = lim f (t).
to the equations (62) and (63) . In order to determine Q we use the normalizing condition
Q+P(11) +q(1,1) =1 (64)

The steady state probability generating function for the no.of customers in the queue when the server is
busy with high priority and low priority customers are
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P(2,,2,)= P(0.2,.2,)[t= B C @)+ A[1-C(z))), -
(u[1-C(2)]+ 2,[1-C(2,)])

and

1—8_2(11[1—C(zl)]mz[l—c:(zz)])]
(L[1-C(z)]+ A,[1-C(z,)])

(2, 2,) =4y(0,2,)[ (66)

where

~(a[1-C @)1+ Z,[1-C(z,))Q + 6y (0. 2,48, (4,(1) =B, (v, )}
Z — Bl(¢1(z) ’

N,
25 -B,(4(2)

N, = AC(OENQ+ Y D €00 (2 -2) - 4G, 3 (22 -25)Q,

n=1k=0

P@©, z,,2,) =

0(0,2,) = (68)

- ﬂzcblaZ:Qo,k (23 -2 = = 4G Quas (3 - 257%)
#AaC(2) Qs + 3 (28 ~28) [ Py, ()0

32 0, 00000 250, + 2)Q,.)

The steady state equations corresponding to equations (20) and (21) becomes,

0= (A, +2,)Q+ [ Py () (cx+ [ cy () u(X)clx (69)
G200 = 370 Q00+ [ Prp 0010000 [0, 0000 =12, 01

(70)

Further discussion of this will be taken up in a later section. It is of considerable interest to note that the
equations (65) and (66) expression has no dependence on a, the quorum. It agrees exactly with the

similar expression found by Chaudhry and Templeton (1981) for the system M/G ®/1.

7. RELATION TO THE IMBEDED MORKOV CHAIN

Next we wish to relate the probability generating function in equations (65) and (66) to P+(Z) and
q+(Z), are the probability generating function of the number in the system immediately after departure
epochs of high and low priority customers or equivalently just before commencement of service epochs:
P™(z) = Z:ioPi*zi,q*(z) = Z:O:Oqi*zi , Where F,r and q+ are probabilities that the number is 1,

F{ and q§ are related to R(X),%(X) are as follows. This procedure is new and has been used for

the first time by Chaudhry and Templeton (1981) for analyzing bulk service queues. For
computational results, this allows us to use the steady-states imbedded Markov chain probabilities,

which can be calculated as shown below. We note from Chaudhry and Templeton (1981) that PJr(Z)

and q+(Z) are related to P(z) and q(z) as follows:
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R =d[ R, (0u(x)dx )
65, = [ 0 () 1(¥)dx @)

where d is a normalizing constant. Then equation (71) and (72) is based on the definitions of
P.09:6, (%) and 4 (x) -
The probability generating function PJr(Z) and q+(Z) can be seen to be

R () =d[ R, ( 2)u(x)dlx ™)

G5 (2) = [ o (X, 2)a(x)dx 74)
using equations (43) and (44), we get

P*(2) =dP(0,2,,2,)B,(¢(2)) (79)
and

q"(2) = da,(0,2,)B,(.(2)) (76)

where we have used the definition of 4 (x) . Now taking P (0, z,,z,) and ,(0,,) from
equations (67) and (68), we get
dg, (0, 2,){B, (4, (2)) — B, (¢, (2))} — d{A[1- C(z,)]+ 4,[1 - C(z,)]}

P (z)=1[ 2 _B.(4.(2)) 1B, (4, (2))
(77)
9" (2) = dg, (0, 2,)B; ((2) = {%} )
where
b a-1
N, = d{%c(g(zz))Q"‘ﬂzzzCnQo,k (Zg n+k) 2,C, Z(Zz - Z;+b)Qo,k
n=1k=0

oD QB2 AGy Q- 2)
FAC(E)3 Quuth 23 (e + 2)Qub+ (2~ 20)Py,

b
bk
+ Z(Zz —2,)0ox
k=0

Now, by using equation (68) , we, get

N,
G (2) = dg (0, z)m
It needs to be pointed out here that equation (77) and (78) may be compared with equation (67)
and (68) of Neuts with Hi(.): H() , 1=0,1,2,..., B . Nextwe can evaluate the constant ’d” by
applying the normalizing condition, P+(1)+q+(1)=l , to equation (75) and (76) . We get
=(P(0,1,1)+,(0.1))". (79)
Now, we evaluate (P(O,l,l)FqO(O,l))l from equations (64) and (65) , by applying the
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normalizing condition to this equation, recalling from (19)

a-1
P(1,1)+q(1,1)=1->Q,, (80)
n=0
this is the total probability that the server is busy.Finally, we get
PO,11) =PA1) u (81)
and
%(0,1Fq(1,1)p 82)

a result which is intuitively appealing and may be obtained by the conservation principle. This gives

d=[{1-3 Q1" )

Now compare equations (65) and (66) to (77) and (78) and using (83) we get the relation

1-B,(42) 1-B,(4(2)
P 11 <2 11 =2 11 2 11 2
oz Al z) =l PB4 o B ey )]

x p(1- Z_’,Qo,k) (84)

8. CALCULATION OF BASIC Py, 0 AND Qp, PROBABILITIES

We next discuss the calculation of the unknown probabilities P0,+k and qak, k=0,1,2,...b and

then these are related to the server’s idle probability, QO,k ,k=0,1..a-1.
The characteristic equation of this queueing system is, from the denominator of (78),

20 -B,(4(2))=0 ©5)

The equation (85) has b zeros inside and on C . There is a simple zeroat z, = 1, and therefore,

there are b—1 other zeros inside the unit circle. Let us call them Z; 1=0,1,..0—1 consider again
the equation (75) . Since it must converge inside and on the unit circle, the numerator must vanish at all
the zeros of the denominator which are inside and on the unit circle. The zeroat z, =1 clearly cancels

from both numerator and denominator, leaving b—1 other equations,
b a-1

d{AC(Q(2)Q+ 2.2 D CiQ (22 -2~ %CbZ(Zz 2;")Qux

n=1k=0

e D QB2 AGy Q- 2)

wc:(zz):ZQo,kz: z@w)czwz(zz 2P, +z<z2 2, =0. (@9)

To this we add the normalization condition, { (1 1): which gives
b a1

%E(l)E(ll)ZQowﬂzzzCQOk(b n-— k)+ﬂszZQ0k

n=1k=0

- /’{2Cb—l ZQO,k (1_ k) T /’{2Cb+lQ0,a—l + ﬂz E( I )ZQo,k

+/’{22Q0kk ﬂ?ZQOkb+ﬂ(1 kZQOk)Z(b K)(Fo + Qo)
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a-1

= p(1- Z(;Qo,n)(b —p,)- (87)
Together, the system of eqlr;a_tions (86) and (87) formasetof b linear independent equations in the
b unknowns P0,+k and q&k. Therefore, the Po,+k and q&k can be found from the zeros of the
characteristic equation inside and on the unit circle. Thus the probability generating function Po,+k and

qak is completely determined. We now wish to relate the Po,+k and qak to the QO,k
Recall equations (71) and (72) and using the value of d from (83), we have,

J-:F%J,n (x)dx= pu(1- aZ:Qo,n)F{,rn

and

[ (0= (- 30, )05,

This relationship is substituted into equations (69) and (70), gives

U 22)Qu0 = 1 3 Qu)Pi+ (1~ 3 Qs )i @
Ua+ 22)Qu, = (1= 3 Qup)Piy + (13 0y, )0, 1SN <21, @

Multiplying equation (88) by a and adding it to the equation (89) multiplied by (a —r) and
summed over N =1 to a—1, we get an equation which gives

{(ﬂﬁfl) (AM)ZQO (42§, (a-n)
/l n=0 "

y7i
Sa-nye,.,
(1-2Q) = ’ 0)
i=0 (/’Ll—i_/’L ) +Z(a n)( +q8—,n)
y7i

since P+(21,Zz) and (21,22) is already fully determined, (90) together with the equation

(84) is sufficient to give VVq(Zl, Zz) completely. However, it is still necessary to find the values of

individual Qo,i touse in (19) . First substituting (90) into (88)
a-1
{(Aw) (mzz)ZQ (A;ﬂz)myn(a_n)

u

_ (Poo"'qoo),u
Z(a n)ZQOnk L } 21_'_12 ] | -

“1”2)+2(a )Py, +,)

Rewrite the equations (88) and (89) for n=r, we get

U+ 22)Qu0 = (1~ 3 Qu, MRS + ik

Qo,o =
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i+ )y, = SC.Qup o + (1 QMR +03.}, 17 <AL

summing these two equations for r=1 to n gives an equation which, with the use of equation (90) gives,

_{Q00+Q01+Q02+ +Q0n 1}4_[1,1 A?]{A’Z 1ZQOr

+2C, "iQo,r wcgniqo,r bt G0}

21 A?](l %:Qo.);{ -+, ). (92)

We now wish to evaluate the term Z::zzQQo,n to complete the determination of VVq(Zl, Zz) in

equation (19) . From (92), we get

ZzzQw Z(l Z )

— ;1 +4,
+/’{2C2 ZQO,n +/’{2CSZQO,n +..t+ XZCaleO,O}
o /1 ng.)Z( 2 LBy o, (93)
Finally, this gives the expression for VVq( 10 2) :
a-1
W, (z,2,) = P(Zl122)+q(zl1ZZ)+ZZ;QO,n' (94)

n=0

9. AVERAGE NUMBER OF CUSTOMERS IN THE QUEUES

The average number of customers in the queues, LD1 and qu is found as usual by taking the first

derivative of equation (94) at z, =1 and z, =1 respectively.

d
L, = an (Z, D)0 (95)
_d
Ly, =gy Wa (L) et (%6)
2

Now
L, =5 100~ S0, HAEOP (WDETB-2(E[B])) + 2EBIP (1Y)
+LE(1)d; (1)(E[B;1-2(E[B,])*)}+ a{—iQo,n,1
[U]{}%C ZQOn+/’LZC ZQOn"'}‘QC ZQOH
C 10,0
ot 4,0 Qo3 1 ﬂi

](1 ZQO.)Z{ R (97)
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where

R HAE(M) +9,(0.DE[B, 1}, - N,
P (1,1)= , PP (1,1)= ,
D=t 1-4E(DE[B,] bRy {{2—%E(|)E[51]}2}

N, = da, (0, 1){@&E(1))* E[B;]+ E[B,1AE(I[1 ~1])+2E[B ]E[B,] (4 E(1))’
—(AE(1)) EIBIE[B,1-2E[B,ILE(I[ -1]) 4E(1)EIB 1) + E[B,]
(AE)YEBTHHAENN -1])+2GE()Y E[B]-2GLE(1)Y
(E[BIY +(AE(YEBID,

N5

0o (1)=dg,(0,1)= b E[B,JE()2,

b a-1

—d{ﬂiE(l)E(ll)ZQoﬁﬂzzzCQOk(b n— k)+ﬂszZQ0k

n=1k=0

_izcb—lZQO k (1_ k) _"'_;{QCbJrlQO a-1 +/12E(| )ZQO k

+/’{22Q0kk ﬂ?ZQOkb}—i_,u(l kZQOk)Z(b K)(Pok + o)

and
u(l- aLz_lQo
|_qz = 7 E(I) {{(A E(I)) E[B ]+E[B]l E(I[I -1D}IPT(1,2)

+2E[BJLE(NP (1,1)-E[B]P" (1, 1)&E(I[1 -1])
+2(LE(1)) EIBIH{(LE()) E[B; 1+ E[B,1ALE(I[1 -11) ), (1)
+2E[B, ]ﬂzE(l)QS'(l) E[B,]o (1){%'5('[I 1])+2(/12E(|))2 E[B,1}}

28D S ZQW [ﬂi ]{ACZQOMC ZQOMC ZQoﬁ +24,C, Qb

”@ux £ _a_zlqo )Z<a(a 0Dy, g, @9

where

(1210 (HAEME()a,O.DETB,1- LE)} N,

P (1,1 1,1 .
o= PEOEEY B DG ey

N, = c{A,E(1) —AE()E(1,)0 (0, DE[B,IHE[B ILE(I[I -1])+(4E(1))*E[B']}
~E[BJAE(1){day(0,1){&,E(1)) E[B; 1+ E[B,JLE(I[I -1])-E[B;]
{AEME) +AEW)Y +E[BHATEALN -1]E(,) + E(NE(L[1, -1]);

+AE([N =113} dAEAN 1]+ 2E[B JLE(1){dg (0,1 EB,JLE(DE(,)
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+d4,E(1)}-2dg, (0,1F[B,14E(DE(1)},

N7
b—E[B,IE(1)2,

b a-1

‘d{ﬂlE(l)E(ll)ZQoﬁﬂzzzCQOk(b n-— k)+ﬂszZQ0k

n=1k=0

0o (1)=dg,(0,1)=

o /’J‘QCb—l ZQO'k (1_ k) T /’{2Cb+lQ0,a—l + ﬂ? E( I )ZQo,k
#2033 QubH S0 -K) (P, +G3,),

N8
2{o-E[B,JE(NAY

day(0,1)=

Ng ={b—E[B,]E(I )%}{d{—az_l:Qo,k%[E(l [ -1DE1))*
+E(DE(L[L, -1])+ ZE(l)E(ll)b]+%Zb:§CnQo,k (b(b-1)

n=1k=0

—(n+k)(n+k—1))—/12Cbazil:Qo'k (b(b—1)—(k+b)(k +b-1))
—%belaZil’,QOk(b(b —1)=(k+b-1)(k+b-2))~..=£C; Qa1

—b(b- 1)/12ZQ0k}+Z(b(b D—k(k=1)Fx +%,)}
~{b(b-1)-(ALE(1)) E[B;]-E[B JLE(I[! 1])}@{—215(')

b a-1

E(ll)ZQOkJFAQZZCQOk(b n- k)"‘ﬂ?CbZQOk

o /’J‘QCb—l ZQO'k (1_ k) T /’{2Cb+lQ0,a—l + ﬂ? E( I )ZQo,k
#20 Quk =103 Qu, b3+ Y b KRy + 5,1,

bdg
2{o-E[B,JE(NA}"

g (1)=

N ={b— E[BZ]E(l)ﬂg}{d{—:Z_l:Qo,kﬂl[E(l[l ~IDE(,)Y
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b a-1

+E(DE(L[1L,~11)+2E(NE(1)b]+ 2, D> C,Qy, (b(b-1)

n=1k=0

- %Cblaz_l:Qo,k (bb-1)-(k+b-1)(k+b-2))-..=4,C, 1 Qs
(b(b—1)—(b-1))+ A[E(I[1 -1])+2E(1)k +k(k _1)]§Q0,k

—b(b-1)4, af,Qo,k}+ Z(b(b ~1)—k(k-1)) Ry + ) +2{d{-AE(1)

E(ll)ZQow/lzZZC Qox(b—n-— k)+ﬂszZQ0k

n=1k=0

- /12be1 ZQO,k (1_ k) T AQCbJrlQO,a—l + /12 E( I )ZQO,k

+ %ng,kk —%:Z::):Qo,kb}+ kZ:;(b —K)(Fox + 00, ) JE[B]E(1) 4.}
—{b(b —1)—(32 E(1))E[B,1-E[B,JALE(! —1])}5{—/115(')

b a-1

E(ll)ZQow/lzZZC Qox(b—n-— k)+ﬂszZQ0k

2GS (1K) 4G Qs +HEN)S Qs
#20 Quk 203 Quubh+ Y (0 K)(Py, + G5

10. THE AVERAGE WAITING TIME IN THE QUEUE

By using Little’s formula, the average waiting tim of a customers in the high priority queue is

Lq
W, =— (99)
LA
and average waiting time of a customer in the non-priority queue is
qu
0, = l_z (100)

where qu and qu have been found in equations (97) and (98).

11. PARTICULAR CASES

Case I:
If there are no priority arrival and no batch arrivals for low priority customers that is, 2, =0 and

C(z,) = z, then our model is reduced to M/G /1 queueing systems. Now,

p(l- ZQ)

L =0
% - 2/12

{(2,)*E[B;1a" (1) + 2E[B,14,0" (1) - 2E[B,]q" (1)(4,)*
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EIB.I}+ 15, 102 Q)3 (ala-D)-n0-1)a)

where
Z(b—k)QE)
T e E
{b— E[le/lz}{Z[b(b —1)—-k(k -1)]a,) + 2Z_‘,(b —k)a)}
x E[BZ]/IZ—Z(b—k)QE){b(b—l)—/lz)zE[BZZ]}
0" ()=

2{b - E[BQ:MQ}2
this result is coincide with Holman. D.F. (1981) .

Case II:
If there are no priority arrival, no bulk service and no batch arrivals for low priority customers that is,

2,=0,a=b=1and C(z,) = z,then our model is reduced to M/G/1 queueing systems. Now,

L, =) e 1)+ 2618, () 2ELBJ0" (DG (5.

2%,

where

Y1) =1 q* {2E[B, 14,0, +(4,)° E[B;]1d,
1)=1, 1

q'(1)=1,9"(1)={ 2{1-E[B,1L} }

this result is coincide with Medhi.J (1994) .

12. NUMERICAL RESULTS

The above queueing model is analysed numerically with the following assumptions. We consider the
single arrival and single service for both priority and low-priority customers. Service time for both
high-priority and low-priority customers follows the exponential and Erlang-2 distributions that is,

- _ A 22,1
C(z)=12,C(z,) = 2,,a=b=1,E(l, E(1,[1,-1 ;
(z)=2,C(z)=2,,a= ()uﬂl([ ]){( %)}

We assume arbitrary values to the parameters such that the stability condition is satisfied. MATLAB
software has been used to illustrate the results numerically. Note that the exponential distribution is

f (X) =ve ", x>0, Erlang-2 stage distribution is f(X) :szefvx, x>0,

In table 1 and 2 shows that increasing the arrival rate of high priority customers decrease the idle time and
also increase the busy period and queue lengths for the values of ZZ =0.8, Zl =1.2,1.4,1.6,1.8,2.
u=6

In table 3 and 4 shows that increasing the arrival rate of low-priority customers decrease the idle time
and queue length of high priority customers, and also increase the busy period, queue length of
low-priority customers for the values of 4, =1, 4,=1.2,1.41.61.82. ;1 =6

All the trends shown by this tables are as expected.
Results are presented for the values of 4, and A, in the following tables with their corresponding

graphical representations of the system performance measures of both exponential and Erlangian-2
distributions.
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Table 1: Effect of 4, on various queue characteristics

Exponential Distribution
WoloQ p L, L,
1.2 | 0.6667 | 0.3333 0.7528 0.2840
1.4 | 0.6333 | 0.3667 0.7673 0.3229
1.6 | 0.6000 | 0.4000 0.7997 0.3593
1.8 | 0.5667 | 0.4333 0.8546 0.3921
2.0 | 0.5333 | 0.4667 0.9374 0.4199

Table 2: Effect of 4, on various queue characteristics

Erlang-2 stage Distribution
Ay Q P qu qu

1.2 | 0.6667 0.3333 0.7406 0.2606
1.4 | 0.6333 0.3667 0.7467 0.2988
1.6 | 0.6000 0.4000 0.7670 0.3344
1.8 | 0.5667 0.4333 0.8048 0.3662
2.0 | 0.5333 0.4667 0.8642 0.3930

Table 3: Effect of 1, on various queue characteristics

Exponential Distribution
A Q P qu L 6,

1.2 | 0.6333 | 0.3667 | 0.6892 | 0.7460
1.4 | 0.6000 | 0.4000 | 0.6568 | 1.1473
1.6 | 0.5667 | 0.4333 | 0.6238 | 1.6643
1.8 | 05333 | 0.4667 | 0.5902 | 2.3039
2.0 | 05000 | 0.5000 | 0.5559 | 3.0681

Table 4: Effect of 2, on various queue characteristics

Erlang-2 stage Distribution
A Q P LD1 L

1.2 | 0.5500 | 0.4500 | 0.5802 0.5306
1.4 | 0.5000 | 0.5000 | 0.5290 0.8055
1.6 | 04500 | 0.5500 | 0.4772 1.1369
1.8 | 0.4000 | 0.6000 | 0.4249 1.5073
2.0 | 0.3500 | 0.6500 | 0.3721 1.8873
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