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1. INTRODUCTION 
 
Most of the real world problems are inherently characterized by multiple, conflicting and incommensurate 
aspect of evaluation. These area of evolution are generally operationalized by objective functions to be 
optimized in the framework of multiple objective non linear programming models. Furthermore, when 
addressing real world problems, frequently the parameters are imprecise numerical quantities. Fuzzy 
quantities are very adequate for modeling these situations. Bellmann and Zadeh [1] introduced the concept 
of fuzzy quantities and also the concept of fuzzy decision making. The most common approach to solve 
fuzzy non linear programming problem is to change them into corresponding deterministic non linear 
program. Some methods based on comparison of fuzzy numbers have been suggested by H.R. Maleki [10], 
A. Ebrahimnejad, S.H. Nasser[12]i, F. Roubens[7]. A. Munoz. Zimmermann [2,3] has introduced fuzzy 
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Abstract 
 
In this paper a Fuzzy Multi Objective Non Linear Programming Problem (FMONLPP) is first 
reduced to crisp MONLPP using ranking function. The crisp MONLPP is then solved by 
Zimmerman Technique using Exponential membership functions. The comparison of the results 
obtained using this method with those using trapezoidal membership function method is presented. 
 
Keywords: Multi Objective Non Linear Programming Problem; Fuzzy Multi-objective Non Linear 
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programming approach to solve crisp multi objective linear programming problem. H.M. Nehi et. al [11]., 
used ranking function suggested by Delgodo et.al [9]., to solve fuzzy MOLPP. Leberling [4] used a special 
type non-linear (hyperbolic) membership function for the vector maximum linear programming problem. 
Dhingra and Moskowitz [6] defined other type of non-linear (exponential, quadratic and logarithmic) 
membership functions and applied them to an optimal design problem. Verma, Bishwal and Biswas [8] 
used the fuzzy programming technique with some non-linear (hyperbolic and exponential) membership 
function to solve a multi objective transportation problem. R.B. Dash and P.D.P Dash [13] introduced a 
method in which a fuzzy MONLLP is first reduced to crisp MONLLP using ranking function suggested by 
F. Roubens [7].Then he solved crisp MONLPP using Zimmerman technique based on trapezoidal 
membership function. 
 
In this paper, following R.B. Dash [13] we reduce Fuzzy MONLPP to crisp MONLPP using Roben’s 
Ranking function. Then we solve The crisp problem applying exponential membership functions  and  
results obtained using this method are compared with those obtained using Trapezoidal membership 
function  method through a numerical study. 
 
2. MULTI OBJECTIVE NON LINEAR PROGRAMMING 
 
The problem to optimize multiple conflicting objective functions simultaneously under given constraints is 
called multi objective non linear programming problem and can be formulated by following optimization 
problem. 

1 2Max f (x) ( f (x), f (x).......f (x) )T
k  

s.t.  x X={x R | g (x) 0 , j 1, 2.....m}.........(2.1)n
j                 

1 2where f (x),f (x)......f (x) are k-distinct non linear objective fuctions of the decision variables k
and X is the feasible set of constrained decision  
 
Definition 2.1: 
          x* is said to be a complete optimize solution for (2.1) if there exist x* ϵ X 
             s. t. fi (x*)  ≥  fi (x), i = 1, 2, 3….k.    For all x ϵ X 
 
1. Exponential membership function for fuzzy numbers :- 
An exponential membership function is defined by  
 
   1   if p pZ L  
 
 

(x)E
pZ    =     

(x)

1

ps s

s

e e
e

  






   if p p pL Z U 
                  (3.1)

 

    
   0    if p pZ U  

 
 

 
Z (x) L

Where (x)
U L
p p

p
p p


 


 

P = 1, 2, 3…..p and s is a non-zero parameter prescribed by the decision maker  
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If the membership function (x)H
pZ is piecewise linear, then it is referred as trapezoidal fuzzy number 

and is usually denoted by 1 2 3 4(a ,a ,a ,a )A  . If 2 3a a then trapezoidal fuzzy number is turned into a 

triangular fuzzy number 1 3 4(a ,a ,a )A  
A fuzzy number A = (a, b, c) is said to be a triangular fuzzy number if its membership function is given by  
 

   
x a
b a



   a x b   

    

     
(x)E

A     =       1                                   x b  

                                    

x b
b c

    b x c   

  
    0                                    

Otherwise 
 
 
 
Assume that R: F → R. R is linear ordered function that maps each fuzzy number into the real number, in 

which F denotes the whole fuzzy numbers. Accordingly for any two fuzzy numbers a and bwe have. 
 
෤ܽ	

R
 	 ෨ܾ				݂݂݅		ܴ( ෤ܽ) ≥ ܴ( ෨ܾ) 

෤ܽ	
R
 	 ෨ܾ				݂݂݅		ܴ( ෤ܽ) > ܴ( ෨ܾ) 

෤ܽ	
R
 	 ෨ܾ				݂݂݅		ܴ( ෤ܽ) = ܴ( ෨ܾ) 

We restrict our attention to linear ranking function, that is a ranking function R such that 

(ka b) k (a) (b)R R R      For any a and b in F and any kR. 
 
Rouben’s ranking function: 
 
The ranking function suggested by F. Roubens is defined by  
 

1

0

1(a) (inf  a sup  a )
2

R d       

This reduces to  
1
2

1(a) (a a ( ))
2

L UR       

For a trapezoidal number  
(a a,a ,a ,a )L L U Ua     

 
3. SOLVING FUZZY MULTI OBJECTIVE NON LINEAR PROGRAMMING (FMONLP) 
 
A fuzzy multi objective non linear programming problem is defined as followed  
 

pMax Z pj jj
c x      p=1, 2…….q 



Priyadarsini Rath & Rajani B. Dash / Solution of Fuzzy Multi Objective Non-Linear Programming 
Problem (Fmonlpp) Using Fuzzy Programming Techniques Based on Exponential Membership 

Functions 
 

 
136 

s.t.                                   1,2......ij jj
a x b i m     ……… (3.2) 

where 0jx    
  
 ෤ܽ௜௝  and   ܿ̃௣௝  are in the above relation are in trapezoidal form as  
 
 ෤ܽ௜௝  = (ܽ௜௝ଵ ,ܽ௜௝ଶ , ܽ௜௝ଷ ,ܽ௜௝ସ ) 
  
 ܿ̃௣௝= (ܿ௜௝ଵ , ܿ௜௝ଶ , ܿ௜௝ଷ , ܿ௜௝ସ ) 
 
 
Definition 3.2: 
x X  is said to be feasible solution to the FMONLP problem (3.2) if it satisfies constraints of (3.2). 
 
Definition 3.3: 

*x X is said to be an optimal solution to this FMONLP problem (3.2) if there does not exist another x ϵ 
X such that   ̃ݖ௜(ݔ) 	≥ 			  for all i =1, 2…q. Now the FMONLP can be transformed to a classic form  (∗ݔ)௜ݖ̃
of a MONLP by applying ranking fuction R as follows.  
 
௣൯ݖ൫ܴ̃	ݔܽܯ  = 	∑ ܴ൫ܿ̃௣௝൯ݔ௝	௝        p = 1, 2…q 
 
s.t. ∑ ܴ൫ ෤ܽ௜௝൯ݔ௝	௝ ≤ ܴ൫ ෨ܾ௜൯      I = 1, 2…m 
  
 xj   ≥ 0 
 
So we have  
  
′௣ݖ	ݔܽܯ  = 	∑ ܿ௣௝′௝ ௝ݔ       p=1, 2…q 
 
s.t.  ∑ ܽ௜௝′௝ ௝ݔ ≤ ܾ௜′        i=1, 2…m  
 (3.3)  
  
   xj  ≥ 0          
 
Where ܽ௜௝′ 	, ܾ௜′ 	, ௝ܿ

′ are real numbers corresponding to the fuzzy numbers ෤ܽ௜௝ 	, 	 ෨ܾ௜ , ܿ̃௝   respectively which are 
obtained by applying the ranking fuction R. 
 
Lemma 3.4: 
 
The optimum solution of (3.2) and (3.3) are equivalent. 
 
Proof: 
 
Let M1, M2 be set of all feasible solutions of (3.2) and (3.3) respectively. 
 
Then x ϵ M1  iff  ∑ ൫ ෤ܽ௜௝൯ݔ௝				 ≤		 ( ෨ܾ௜)௝    i=1, 2…m 
 
By applying ranking function we have  
 
 
 ∑ ܴ൫ ෤ܽ௜௝൯ݔ௝				 ≤ 		ܴ( ෨ܾ௜)௝    i=1, 2…m 
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  	 ∑ ܽ௜௝′ ௝ݔ 			≤ 			ܾ௜′௝
  

 
Hence x ϵ M1 
 
 Thus M1=M2 
  
Let  x* ϵ X be the complete optimal solution of (3.2) 
 
Then  ̃ݖ௣(ݔ∗) 		≥ 		  for all x ϵ X  (ݔ)௣ݖ̃
 
Where ‘X’ is a feasible set of solutions. 
Thus 

 ܴ ቀ̃ݖ௣(ݔ∗)ቁ 	≥ 		ܴ ቀ̃ݖ௣(ݔ)ቁ 
ܴ(∑ ܿ̃௣௝ݔ௝∗) 		≥		 ܴ(∑ ܿ̃௣௝ݔ௝)     
∑ܴ(ܿ̃௣௝	)ݔ௝∗ 		≥		 ∑ ܴ(ܿ̃௣௝)ݔ௝                 ∀ j=1, 2..q 
∑ܿ௣௝′ ∗௝ݔ 	≥		 ∑ ܿ௣௝′  ௝      ∀ j=1, 2..qݔ
ݖ௣′ (∗ݔ) 		≥ 		 ′௣ݖ  x  ∀      (ݔ)
 
 
 
 
4. FUZZY PROGRAMMING TECHNIQUE 
 
To solve MONLLP  
 
′௣ݖ	ݔܽܯ 	= 		∑ ܿ௣௝′ ௝௝ݔ        p=1, 2,…l 
s.t. ∑ ܽ௜௝′ ௝௝ݔ ≤	ܾ௜′   
   xj  ≥ 0                                   i=1, 2,…n 
 
We use fuzzy programming technique suggested by Zimmermann. This  method is presented briefly in the 
following steps. 
 
Step-1: 
Solve the multi objective non linear programming problem by considering one objective at a time and 
ignoring all others. Repeat the process ‘q’ times for ‘q’ different objective functions. 
Let X1, X2,….,Xq be the ideal situation for respective functions. 
 
Step-2: 
Using all the above q ideal solutions in the step-1 construct a pay-off matrix of size q by q. Then from pay-
off matrix find the lower bound (Lp) and upper bound (Up) for the objective function. 
 
′௣ݖ   as   :ܮ௣ ′௣ݖ	≥ 	≤ 	 ௣ܷ      p=1, 2,…q 
 
 
Step-3: 
If we use the exponential membership function as defined (3.1) then an equivalent crisp model for the 
fuzzy model can be formulated as follows:  
 
 Min λ 

(x)

,   p = 1,2,...q
1

ps s

s

e e
e




 






  
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       s.t.∑ܿ௣௝′ ௝ݔ + ൫ ௣ܷ − ௣൯λܮ ≥		 ௣ܷ     p=1, 2…q 
 
           ∑ܽ௜௝′ ௝ݔ 	≤ 		 ܾ௜′        i=1, 2...m 
 
     λ ≥ 0 ,  xj ≥0,        j=1, 2…n 
 
       The above problem can be further simplified as: 
      Min x4 
s.t 
൛1ݏ −߰௣(ݔ)ൟ ≥ 	xସ	      p=1, 2…q 
∑ܿ௣௝′ ௝ݔ + ൫ ௣ܷ − ௣൯xସܮ ≥		 ௣ܷ     p=1, 2…q 
      ∑ܽ௜௝′ ௝ݔ 	≤ 		 ܾ௜′        i=1, 2...m 
       xସ  ≥ 0 ,  xj ≥0,        j=1, 2…n 
 
   
Step-4: 
Solve crisp model to find the optimal compromise solutions. Evaluate the values of objective functions at 
the obtained compromise solution. 
 
5. NUMERICAL EXAMPLE  
  
ݔܽܯ  ∶ 	 (ݔ)ଵݖ̃ = 	2෨ݔଵ + 	3෨ݔଶ −	2෨ݔଵଶ 
ݔܽܯ  ∶ 	 (ݔ)ଶݖ̃ = 	3෨ݔଵ + 	4෨ݔଶ −	5෨ݔଵଶ     … (5.1) 
 
S.t  1෨ݔଵ + 	4෨ݔଶ ≤		4෨  
 1෨ݔଵ + 	1෨ݔଶ ≤		2෨  
,ଵݔ  ଶݔ 	≥ 0 
Where 
 2෨ = (1.9, 2.1, 2.2, 2.6) 
 3෨ = (2.2, 2.3, 3.3, 3.8) 
 2෨ = (1.2, 1.3, 2.3, 2.8) 
 3෨ = (2.3, 2.5, 3.3, 3.5) 
 4෨ = (3.2, 3.4, 4.2, 4.8) 
 5෨ = (4.3, 4.4, 5.2, 5.7) 
 1෨ = (0.8, 0.9, 1.1, 1.5) 
 4෨ = (3.2, 4.0, 4.4) 
 1෨ = (0.7, 0.9, 1.1, 1.3) 
 1෨ = (0.6, 0.8, 1.3, 1.7) 
 4෨ = (3.3, 3.4, 4.1, 4.4) 
 2෨ = (1.8, 1.9, 2.2, 2.5) 
Using ranking function suggested by Ruben [7] the problem reduces to  
 
ݔܽ݉  ∶ 		 ʹଵݖ (ݔ) = 	ܴ൫2෨൯ݔଵ + 	ܴ൫3෨൯ݔଶ − 	ܴ൫2෨൯ݔଵଶ 
ݔܽ݉  ∶ 		 ʹଶݖ (ݔ) = 	ܴ൫3෨൯ݔଵ + ଶݔ(4)ܴ	 − 	ܴ൫5෨൯ݔଵଶ 
 
 
s.t 
ܴ൫1෨൯ݔଵ + 	ܴ൫4෨൯ݔଶ ≤ ܴ(4෨) 
ܴ൫1෨൯ݔଵ + 	ܴ൫1෨൯ݔଶ ≤ ܴ൫2෨൯ 
ଶݔ,ଵݔ ≥ 0       
 
 ⇒ ݔܽ݉ ∶ 		 ʹଵݖ (ݔ) = ଵݔ2.2	 + ଶݔ2.9	 −  ଵଶ          (5.2)ݔ1.9	
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ݔܽ݉      ∶ 		 ʹଶݖ (ݔ) = ଵݔ2.9	 + ଶݔ3.9	 −  ଵଶ     (5.3)ݔ4.9	
 
s.t 
ଵݔ1.1 + ଶݔ3.9	 ≤ 3.8 
ଵݔ1.1 + ଶݔ1.1	 ≤ 2.1       (5.4) 
       
 
Solving (5.2) and (5.4) by Wolf’s method we get 
ଵݔ                           = ହଷଽ

ଵସ଼ଶ
= 0.3637	, ଶݔ = ହ଴ଷ଼଻

ଶହ଻଻ଽ଼
= 0.8718 

 
Solving (5.3) and (5.4) by Wolf’s method we get 
ଵݔ                                 = ଽ

ସଽ
= 0.1837	, ଶݔ = ଵ଻ଷ଺

ଵଽଵଵ
= 0.9226 

 
The lower bound (L.B.) and upper bound (U.B.) of objective functions 1z and 2z have been computed as 
follows 
 
  Function     LB      UB 
 1z   3.0655   3.00770 

 2z   3.8065   3.9653 
 
If we use exponential membership function with the parameter s=1, an equation crisp model can be 
formulated as  
 
Min 4x  
Subject to 
[(ݔ)ଵݖ]ܵ      + )ସݔ ଵܷ − (ଵܮ 	≥ ܵ( ଵܷ) 
[(ݔ)ଶݖ]ܵ      + )ସݔ ଶܷ − (ଶܮ 	≥ ܵ( ଶܷ) 
 

     ∑ܽ௜௝ ௝ݔ ≤ ܾ௜ʹ                          1, 2...i   

 
As per Step-4, let us solve the problem which is used by exponential function and the problem reduced to  
  
Min X4 
 
ଵݔ2.2  + ଶݔ2.9 − ଵଶݔ1.9 + ଷݔ0.115 	≥ 3.0770 
ଵݔ2.9  + ଶݔ3.9 − ଵଶݔ4.9 + ଷݔ0.1588 	≥ 3.953 
ଵݔ1.1  + ଶݔ3.9 ≤ 3.8     ……. (5.5) 
ଵݔ1.0  + ଶݔ1.1 ≤ 2.1 
ଶݔ,ଵݔ  	≥ 0 
 
Due to presence of non-linear term 2

1x in the constraint (5.5), the problem is too complex to solve. To avoid 
the situation taking advantage of  

10.1837 0.3637x     
We have     ݔଵଶ = ܽଵ଴ݔଵ଴ଶ + ܽଵଵݔଵଵଶ + ܽଵଶݔଵଶଶ + ܽଵଷݔଵଷଶ  
 
Where  
 10 0.1837x   

 11 0.2437x   
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                12 0.3037x   

                13 0.3637x   
Then the problem reduces to  
 
ଵݔ2.2       + ଶݔ2.9 − 1.9(ܽଵ଴ݔଵ଴ଶ + ܽଵଵݔଵଵଶ + ܽଵଶݔଵଶଶ + ܽଵଷݔଵଷଶ ) + ଷݔ0.115 	≥ 3.0770 
ଵݔ2.9       + ଶݔ3.9 − 4.9(ܽଵ଴ݔଵ଴ଶ + ܽଵଵݔଵଵଶ + ܽଵଶݔଵଶଶ + ܽଵଷݔଵଷଶ ) + ଷݔ0.1588 	≥ 3.953 
ଵݔ1.1       + ଶݔ3.9 ≤ 3.8        ……. (5.6) 
ଵݔ1.0   + ଶݔ1.1 ≤ 2.1 
   ܽଵ଴ + ܽଵଵ + ܽଵଶ + ܽଵଷ = 1 
ଶ,ܽଵ଴,ܽଵଵ,ܽଵଶ,ܽଵଷݔ,ଵݔ   ≥ 0 
 
  Solving (5.6) the optimal solution of the problem is obtained as: 
  *

1 0.4518x   

  *
2 0.8469x   

 
Now the optimal value of the objective functions of FMONLPP (5.6) becomes 
 
∗ଵݖ = 2෨ݔଵ∗ + 3෨ݔଶ∗ − 2෨ݔଵ∗

మ  
					= (1.9, 2.1, 2.2, ∗ଵݔ(	2.6 + (2.2, 2.3,3.3, ∗ଶݔ(3.8 − (1.2, 1.3, 2.3, ∗ଵݔ(	2.8

మ  
					= (	2.4767,2.6313,3.31925,3.8214) 
 
∗ଶݖ = 3෨ݔଵ∗ + 4෨ݔଶ∗ − 5෨ݔଵ∗

మ  
					= (2.3, 2.5, 3.3, ∗ଵݔ(		3.5 + (3.2, 3.4, 4.2, ∗ଶݔ(4.8 − (4.3, 4.4, 5.2, ∗ଵݔ(5.7

మ  
					= (2.8715,3.1108,3.9865,4.4829	) 
 
 
 
The membership functions corresponding to the fuzzy objective function are as follows. 
 
   0    2.4767x   
    

     
      

2.4767
0.1546

x 
   2.4767 2.6313x   

 

 1
(x)E

Z   =
 

1    2.6313 3.3192x 
 

 

   
3.8214

0.5022
x

   3.3192 3.8214x   

    
   0     3.8214x   
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   0    2.8715x   
    

     
      

2.8715
0.2393

x 
   2.8715 3.1108x   

 

 2
(x)E

Z   =
 

1    3.1108 3.9865x 
 

 

   
4.4829

0.4964
x

   3.9865 4.4829x   

    
   0     4.4829x   
 
 
 
 
CONCLUSION 
 
On comparison we see that the result obtained in this paper is very close to that obtained in [13] using 
trapezoidal membership function in Zimmerman’s  algoritm.Thus one can use exponential in place of 
trapezoidal membership function in the Zimmerman’s algorithm. 
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