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Abstract According to intuition, two spaces X and Y are equivalent if they may be
bent, shrunk, or expanded into one another. Spaces that are homotopy-equivalent to a
point are called contractible. A vector space can be equipped with more than one norm.
In this paper, the necessary and sufficient conditions for n-norms to be completely equiv-
alent on linear n-Banach spaces are obtained.
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1 Introduction

Functional analysis as an independent mathematical discipline started at the turn of the 19th century
and was finally established in the 1920s and 1930s, it contains various kinds of mathematical concepts,
from these concepts we will focus on n-normed and n-inner product spaces.
In [3, 4] Gähler introduced an attractive theory of n-norm and 2-norm on linear spaces. Konca and
Idris [10] studied on two known 2-norms defined on the space of p-summable sequences of real numbers.
Systematic development of linear n-normed spaces have been extensively made by Kim and Cho [9],
Malceski [12], Misiak [13], and Gunawan [5]. Recently, the equivalence of n-norms in n-normed spaces
is studied by Kristiantoo et al. [11]. This paper is devoted to obtaining some necessary and sufficient
conditions for n-norms to be completely equivalent in a linear n-Banach space. For recent studies of
the sections of functional analysis we refer to [1,2], [6–8], [14–16].
For this work, we need the following definitions:
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Definition 1.1. [11] Let X be a real vector space of dim ≥ n. An n-norm on X is a mapping
∥·, . . . , ·∥ : Xn → R, which satisfies the following four conditions:
nN 1: ∥x1, . . . , xn∥ = 0, if and only if x1, . . . , xn are linearly dependent,
nN 2: ∥x1, . . . , xn∥ = ∥xi1 , . . . , xin∥ , for every permutation (i1, . . . in) of (1, . . . , n),
nN 3: ∥αx1, . . . , xn∥ = |α| ∥x1, . . . , xn∥ for α ∈ R,
nN 4: ∥x1 + x́1, x2, . . . , xn∥ ≤ ∥x1, x2, . . . , xn∥ + ∥x́1, x2, . . . , xn∥ , for all x1, x́1, x2, . . . , xn ∈ X. The

pair (X, ∥· . . . , ·∥) is called an n-normed space.

Example 1.2. [5] Let X = Rn. Let us define the function ∥·, . . . , ·∥ on X by: ∥x1, . . . , xn∥ =
|det(xij)| , for each i, j = 1, . . . , n. Then (X, ∥· . . . , ·∥) is a linear n-normed space.

Definition 1.3. [11] A sequence (xk) in an n-normed space (X, ∥·, . . . , ·∥) is said to be converge to
some l ∈ X if for every y2, . . . , yn ∈ X,

lim
k→∞

∥xk − l, y2, . . . , yn∥ = 0. (1.1)

Definition 1.4. [11] A sequence (xk) in an n-normed space (X, ∥·, . . . , ·∥) is said to be Cauchy if for
every y2, . . . , yn ∈ X,

lim
k,m→∞

∥xk − xm, y2, . . . , yn∥ = 0. (1.2)

Definition 1.5. [5] If every Cauchy sequence in X converges to some x ∈ X, then X said to be
complete where X is an n normed space, every complete n-normed space is said to be an n-Banach
space.

Definition 1.6. [11] ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 are equivalent (in short, E1) if for every x2, . . . , xn ∈ X
there are constants such that:

A∥x1, x2, . . . , xn∥1 ≤ ∥x1, x2, . . . , xn∥2 ≤ B∥x1, x2, . . . , xn∥1,

for every x1 ∈ X, (especially for x1 ∈ X \ span {x2, . . . , xn} ).

Theorem 1.7. [11] ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 are sequentially equivalent (in short, SE1) if for every
x2, . . . , xn ∈ X, we have

lim
k→∞

∥xk − x, x2, . . . , xn∥1 = 0 ⇔ lim
k→∞

∥xk − x, x2, . . . , xn∥2 = 0 ,

such that the vectors x2, . . . , xn must depend on k.

2 Main results

In this section we prove necessary and sufficient conditions for n-norms to be completely equivalent on
linear n-Banach spaces.

Definition 2.1. Two n-norms ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 on a linear n-Banach space X are said to be
equivalent (in short E2), if there are positive constants A < B such that:

A∥xk − xm, x2, . . . , xn∥1 ≤ ∥xk − xm, x2, . . . , xn∥2 ≤ B∥xk − xm, x2, . . . , xn∥1,

for every x2, . . . , xn ∈ X and k,m ∈ N.

Theorem 2.2. ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 are completely equivalent (in short, CE2) if for every x2, . . . , xn ∈
X, we have

lim
k,m→∞

∥xk − xm, x2, . . . , xn∥1 = 0 ⇔ lim
k,m→∞

∥xk − xm, x2, . . . , xn∥2 = 0.

where xk and xm are Cauchy sequences in X, and k,m ∈ N, such that k,m /∈ span{x2, . . . , xn}. We
can verify that ∥·, . . . , ·∥1and ∥·, . . . , ·∥2 are E2 if and only if they are CE2.
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Proof. Suppose that ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 are E2 for every x2, . . . , xn ∈ X, there are constants
A > 0, B > 0 and A < B such that

A∥xk − xm, x2, . . . , xn∥1 ≤ ∥xk − xm, x2, . . . , xn∥2 ≤ B∥xk − xm, x2, . . . , xn∥1,

for every x2, . . . , xn ∈ X and k,m ∈ N, it follows that:
A lim

k,m→∞
∥xk − xm, x2, . . . , xn∥1

≤ lim
k,m→∞

∥xk − xm, x2, . . . , xn∥2 ≤ B lim
k,m→∞

∥xk − xm, x2, . . . , xn∥1,

that is
lim

k,m→∞
∥xk − xm, x2, . . . , xn∥1 = 0

if and only if
lim

k,m→∞
∥xk − xm, x2, . . . , xn∥2 = 0.

Hence, ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 are CE2.
For the converse part, suppose that the two n-norms are not CE2, then, we may assume the following
two cases:
Case (i): We cannot find A > 0, such that

A∥xk − xm, x2, . . . , xn∥1 ≤ ∥xk − xm, x2, . . . , xn∥2,

for every x2, . . . , xn ∈ X, and k,m ∈ span {x1} \ span{x2, . . . , xn} .
Case (ii): We cannot find B > 0, such that

∥xk − xm, x2, . . . , xn∥2 ≤ B∥xk − xm, x2, . . . , xn∥1,

for every x2, . . . , xn ∈ X, and k,m ∈ span {x1} \ span{x2, . . . , xn} .
In Case (i) Suppose that

1

k +m
∥xk − xm, x2, . . . , xn∥1 > ∥xk − xm, x2, . . . , xn∥2, (2.1)

For every x2, . . . , xn ∈ X define yk − ym = 1√
k+m

xk−xm

∥xk−xm,x2,...,xn∥2
, k,m ∈ N. Then we have

∥yk − ym, x2, . . . , xn∥2 = 1√
k+m

→ 0, as k,m → ∞. Using (2.1), as k,m → ∞, we find that

∥yk − ym, x2, . . . , xn∥1 =
1√

k +m

∥xk − xm, x2, . . . , xn∥1
∥xk − xm, x2, . . . , xn∥2

>
k +m√
k +m

=
√
k +m → ∞, (2.2)

Then, {yk} and {ym} are Cauchy sequences with respect to ∥·, . . . , ·∥2 but not with respect to ∥·, . . . , ·∥1.
And ∥·, . . . , ·∥2 is CE2, but ∥·, . . . , ·, ∥1 is not CE2.
Hence, ∥·, . . . , ·∥2 is E2, but ∥·, . . . , ·∥1 is not E2.
Similarly we can prove Case (ii).

Corollary 2.3. The following relationships exist between the four equivalence relations:
SE1 ⇔ E1
⇑ ⇑

CE2 ⇐⇒ E2.

3 Concluding remarks

In this work equivalence relation of two n-norms ∥·, . . . , ·∥1 and ∥·, . . . , ·∥2 on a linear n-Banach space X
is introduced. This study establishes the necessary and sufficient criteria for the complete equivalence
of n-norms on linear n-Banach spaces.
This study can be developed further to discuss the equivalence of (n-norms) under specific conditions
on generalized Banach spaces.
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