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1. INTRODUCTION 
 
Mathematical model have become important tools to study and analyze the spread and control of 
infectious diseases. Almost all mathematical models of diseases start from the same basic premise; that 
the population can be subdivided into a set of distinct classes, dependent upon their experience with 
respect to the diseases. In this discipline V.H. Badshah and Amit Kumar [3] gave a primary result  of 
mathematical modeling.  Most of the proposed mathematical models which describe the transmission 
of infectious disease have been derived from the classical susceptible infective recover SIR model, 
which was suggested originally by Kermack and Mc. Kendrick[ 9] and also gave the result on simple 
mass action [9]. In that model the susceptible individuals and then the infected individuals may recover 
and transfer to removal individuals at a specific rate. Numerous  mathematical models were developed 
to study and analyze the spread of infectious diseases in order to prevent or minimize their  
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Abstract 
The present mathematical model deals with the study of SIR’s epidemic model with immigration 
and non-monotonic function type. We start from formulation of model and analyze it. It also 
carries out a qualitative analysis of a SIR model with immigration and non-monotone incidence 
rate and studies the existence and stability of the disease free and endemic equilibrium.  
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transmission through quarantine and other measures. The incidence in an epidemiological model is the 
rate at which the susceptible become infectious. Cappaso and Serio [4] introduced a saturated incidence 
rate into epidemic model. Mena – Lorca and Hethcote [13] also analyzed a SIRS model with the same 
saturation incidence. Ruan and Wang [19] studied an epidemic model with a specific nonlinear incident 
rate. Liu et al. [11,12], Derrick and Ven den Driessche[5] Hethcote and Ven Den Driessche [7]  
proposed an epidemic model with non-monotonic incidence rate. After that  Xiao and Raun [2001] 
discussed non-monotonic incidence rate. Several different incidence rates have been proposed by many 
researchers, see for instance, Anderson and May [1], Elteva and Matias [6], Hethcote and Driesech [7], 
Ruan and Wang [19], Liu et al.[11,12]  Derrick and Ven den Driessche [5] , Alexander and Moghadas 
[2] and Xiao and Raun [22]. Recently Porwal, et al. [15,16,17,18]] presented their work in this field . 
 
2. THE MATHEMATICAL MODEL 
 
2.1 Basic Model 
 
Dongmei Xiao, and Shigui Raun [22] have proposed an epidemic model with non- monotonic 
incidence which describe psychological effect of certain serious diseases on the community when the 
number of infective is getting larger. The governing differential equations are given by 
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Where, )(tS , )(tI , )(tR  represent the number of susceptible, infective and recovered individual 
respectively. Here b  is the recruitment rate of population, d is the natural death rate of the population, 
k  is the proportionality constant,   is the natural recovery rate of the infective individual,  is the 
rate at which recovered individuals loss immunity and return to susceptible class,  is the parameter 
measures of the psychological or inhibitory effect..

.
 

2.2 Model for Immigration 
 
The model with immigration is given by: 
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The section )2.2(  of the parameters have similar meanings as for as the model )1.2( . 

Part I: SIR Model with .0 0II    
In this case the system (4) to (6) reduce to  
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The system of equation (7) to (9) always has the DFE 




  0,0,0 d

bE  for any set of parameter 

values. 
To find the endemic equilibrium of (4) to (6), let 
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Unique positive equilibrium  **,*,* RISE   called the endemic equilibrium. 
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Now by equation  7  we get  
quadratic equation  
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where  
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3. MATHEMATICAL ANALYSIS 
Lemma 3.1: The plane   dbRIS  is an invariant manifold of system  1.2 , which is 
attracting in the first octant. 
Adding up the three equation in  1.2

 
   ,RISdb

dt
dR

dt
dI

dt
dS

 
 

  ,dNb
dt
dN

          (15) 

 ,NRIS 
 It is clear that     dbtN  is a solution of equation  15  and for any   00 tN , the general 

solution of equation  15  is. 
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which implies the conclusion it is clear that the limit section  1.2  is on the plane

  dbRIS   thus we focus on the reduced system. 
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Theorem 3.2: System  16  does not have nontrivial periodic orbits. 

Proof. Consider system  16  for 0I and 0R . Take Dulac function 
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The conclusion follows 
In order to study the properties of the DFE ,0E and the equilibrium ,*E we rescale  16
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We obtain  
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Note that the trivial equilibrium  0,0  of system  21  is the disease free equilibrium 0E of model 

 1.2  and the unique positive equilibrium  ** , yx  of system  21  is the endemic equilibrium *E of 
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If ,0mA then there exists a small neighborhood number of  0,0  such that the dynamics of 
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Hence we obtain the result. 
 
Theorem 3.3. The  0,0DFE  of system  18  is 
(i) a stable hyperbolic node if 0 Am   
(ii) a saddle node if ;0 Am  
(iii) a hyperbolic saddle if 0 Am   
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when ,0 Am we discuss the stability and topological type of the endemic equilibrium  *,* yx  

the Jacobian matrix of  21  at   *,* yx  is differentiate  21 model w.r.t. x and y . 
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It follows that 01 S  , hence,   0det 1 M and  **, yx  is a node or a focus or a centre. 

Furthermore, we have the following result on the stability of  **, yx . 
Theorem 3.4: Suppose ,0 Am  then there is a unique endemic equilibrium  **, yx  of model 

 21   which is a stable node. 

We know that the stability of  **, yx  is determined by  1Mtr  we have 
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Similarly we have 
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Assume that ,2 oS  since ,0 it follows that .03 S However, when ,0 Am we have 

.03 S  therefore, ,02 S for any positive value of the parameters ,, qp and ,A that is, 

  .01 Mt r thus ,0 Am implies that  ** yx  does not change stability. 
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  .051493.41 Mtr  
 (ii) ,2m  ,4A ,1p  1q , then 414214.0,* x  ,414214.0* y  
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We know that   01 Mtr  for .0 Am  
 
4. CONCLUSION 
 
In this paper we have carried out a result on SIR model with immigration and studied the existence and 

stability of disease- free and endemic equilibria  with the basic reproduction number 
 
 







dd
kbR0  . 

Our main result indicates that when ,10 R  the diseases-free equilibrium is stable and when ,10 R  
the endemic equilibrium exist and locally asymptotically stable. 
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