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Abstract Gnanajothi (Gnanajothi, R.B. (1991). Topics in Graph Theory, Ph.D.
Thesis, Madurai Kamaraj University, Tamil Nadu, India) defined a graph G with q edges
to be odd graceful if there is an one-one function f from V (G) to {0, 1, 2, . . . , (2q − 1)}
such that, when each edge xy is assigned the label |f (x) − f (y)|, the resulting edge labels
are {1, 3, . . . , (2q − 1)}. A graph which reveals an odd graceful labeling is called an odd
graceful graph. In this paper, we prove that the graphs of chain of Trim kite and Star
graph are odd graceful.
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1 Introduction

The first graph labeling method is the graceful labeling introduced by Rosa [9] in 1967. A graph
G with q edges is said to be odd graceful if there is an one-one function f from its vertex set V (G)
to the set {0, 1, 2, . . . , (2q − 1)} such that resulting edge labels are {1, 3, . . . , (2q − 1)}according to
the definition of Gnanajothi [4]. In fact, an odd-graceful labeling is an injection f from V (G) to
{0, 1, 2, . . . , (2q − 1)}such that, when each edge xy is assigned the label |f (x) − f (y)|, the resulting
edge labels are {1, 3, . . . , (2q − 1)}. A variety of graphs are proved to be odd graceful by Gnanajothi [4].
Other authors who have contributed to the odd gracefulness of different classes of graphs are Eldergill
[2], Jeba Jesintha et al. [6], Barrientos [1]. A dragon is formed by joining the end point of a path to a
cycle (Koh et al. [10] call these tadpoles); Kim and Park [8] call them kites. For an exhaustive survey
on odd graceful labeling refer to the dynamic survey by Gallian [2]. Other relevant references are [3,7].
In this paper we define a new graph called the trim kite which is obtained from the Kite graph and we
prove the odd graceful labeling of chain of trim kites and star graph.

Definition 1.1. A Kite graph is a graph which has 5-vertices as shown in Fig. 1.
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Fig. 1: The Kite Graph.

Definition 1.2. The Trim kite is obtained by subdividing the chord in the kite graph and it is a
6-vertex graph as shown in Fig. 2.
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Fig. 2: The Trim Kite Graph.

Definition 1.3. The star graph Sn of order n, is a special type of graph in which n − 1 vertices have
degree 1 and a single vertex is of degree n − 1 as shown in Fig. 3.

 

Fig. 3: The Star Graph.

2 Main result

In this section, we prove that the graph which is obtained by attaching the chain of Trim kite and Star
graphis odd graceful.

Theorem 2.1. The graph obtained by attaching the chain of Trim kite and isomorphic copies of Star

graph admits odd graceful labeling.

Proof. Let G be a chain of trim kite and isomorphic copies of star graph. We describe G as follows:
let |V (G)| = p, |E (G)| = q. The vertices of the first copy of star graph are denoted by u1

1, u
1

2, . . . , u
1

j

where, j = 1, 2, . . . , r. The vertices of the second copy of the star graph are denoted by u2

1, u
2

2, . . . , u
2

j

where, j = 1, 2, . . . , r. In general, the vertices of isomorphic copies of the star graph are denoted by
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ui
1, u

i
2, . . . , u

i
j where, i = 1, 2, . . . , n and j = 1, 2, . . . , r. The central vertices of star graph are denoted

by vi
1 where i = 1, 2, . . . , n. The vertices of the trim kite attached to the central vertex of the star

graph are denoted by xi
1 and xi

2 where, i = 1, 2, . . . , n. The tail of the trim kite is denoted by zi
1 where,

i = 1, 2, . . . , n. The other vertices of the trim kite are denoted by yi
1, y

i
2, y

i
3 where, i = 1, 2, . . . , n. The

description of G is shown in Fig. 4.
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Fig. 4: Chain of star graph and trim kite.

The vertex labeling of the star graph is defined as follows:

f
(

v
k
1

)

= (2q − 1) − 8 (k − 1) for 1 ≤ k ≤ n

f
(

u
k
i

)

= (2i − 2) + (k − 1) (2r + 8) for 1 ≤ i ≤ r, 1 ≤ k ≤ n

The vertex labeling of the trim kite graph is defined as follows.

f
(

x
k
1

)

= 2r + (k − 1) (2r + 8) for 1 ≤ k ≤ n

f
(

x
k
2

)

= (2r + 6) + (k − 1) (2r + 8) for 1 ≤ k ≤ n

f
(

y
k
i

)

= 2q − (2i + 1) − 8 (k − 1) for 1 ≤ i ≤ r, 1 ≤ k ≤ n

f
(

z
k
1

)

= (2q − 5) − 6 (k − 1) for 1 ≤ k ≤ n

From these equations we see that the vertex labels are distinct. Now we compute the edge labels for
the graph G.
The vertex labeling of the trim kite graph is defined as follows:

f
(

x
k
1

)

= 2r + (k − 1) (2r + 8) for 1 ≤ k ≤ n

f
(

x
k
2

)

= (2r + 6) + (k − 1) (2r + 8) for 1 ≤ k ≤ n

f
(

y
k
i

)

= 2q − (2i + 1) − 8 (k − 1) for 1 ≤ i ≤ r, 1 ≤ k ≤ n

f
(

z
k
1

)

= (2q − 5) − 6 (k − 1) for 1 ≤ k ≤ n

From these equations we see that the vertex labels are distinct. Now we compute the edge labels for
the graph G.

We illustrate the proof of the above theorem as follows:

Illustration 2.2. Let r = 8, q = 42, p = 39.
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Fig. 5: Chain of star graph and trim kite.

3 Conclusion

In this paper we proved the odd gracefulness of a chain of isomorphic copies of star graph and trim
kite. In a future work we intend to prove that the non isomorphic copies of star graph and trim kite is
also odd graceful.
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