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1. INTRODUCTION   
 
The Concept of mixed quadrature was first coined by R.N Das and G.pradhan [6]. The method of 
mixing quadrature rules is based on forming a mixed quadrature rule of higher precision by taking 
linear/convex combination of two quadrature rules of lower precision. Though in literature we find 
precision enhancement through Richardson Extrapolation [4] and Kronord extension [4, 10, 11]  taking 
respectively trapezoidal rule and Gaussian quadrature as base rules, these methods are quite 
cumbersome. On the other hand, the precision enhancement through mixed quadrature method is very 
simple and easy to handle. Many authors [6, 12-20] have developed mixed quadrature rules for 
numerical evaluation of real definite integrals. Authors [5, 7-10] have also developed mixed quadrature 
rules for approximate evaluation of the integrals of analytic functions 
following F .Lether [3]. 
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Abstract 
 
A mixed quadrature rule of higher precision for approximate evaluation of real definite integrals 
has been constructed using an anti-Gaussian rule. The analytical convergence of the rule has been 
studied. The relative efficiency of  the  mixed quadrature rule has been shown with the help of 
suitable test integrals. The error bounds have been determined asymptotically. 
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 So far this is the first paper in which an anti-Gaussian four  point quadrature  rule has been used to 
construct a mixed quadrature rule. 
 
Dirk P. Laurie [1,2]   is first to coin the idea of anti-Gaussian quadrature formula . An anti-Gaussian 
quadrature formula is an (n+1) point formula of degree (2n-1) which integrates all polynominals of 
degree up to (2n+1) with an error equal in magnitude but opposite in sign to that of n-point Gaussian 
formula. 
 
If )()1( pH n   

 1
1
n

i i f ( i ) be (n+1) point anti-Gaussian formula and )()( pG n   be n  point 
Gaussian formula then by hypothesis, 

)( pI )()1( pH n  = - ( )( pI  )()( pG n ), 12  nPp   where p  is a polynominal of degree 

.12  n .  
 
In this paper we design a four point anti-Gaussian rule following LAURIE. We mix this anti-Gaussian 
four point rule with Lobatto four point rule. 
 
The relative efficiency of the mixed rule has been shown by numerically evaluating some test integrals. 
 
2. CONSTRUCTION OF ANTI-GAUSSIAN FOUR POINT RULE FROM GAUSS-LEGENDRE 
THREE POINT RULES 
 
We choose the Gauss-Legendre three point rule , 

 

 
and  develop a four point anti-Gaussian rule  fH w

4
 from three  point Gaussian rule  fGw

3 . 

Using the principle     fGpIfHpI n
w

n
w   )()( 1  as adopted in Laurie [1],   we get 

        
1

1

34 2 fGdxxffRH ww .
    ……… (2) 

=>            
1

1

3
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 Taking         )4..().........()( 44332211
4  fffffRH w   

In order to obtain the unknown weights and nodes, we assume that  
(i)The rule is exact for all polynomial of degree  4. 
(ii)The rule integrates all polynomials of degree up to six with an error equal in magnitude and opposite 
in sign to that of Gaussian rule. Thus we obtain a system of eight equations having eight unknowns  
using  

 i , i   ,  4,3,2,1i  

For 7,6,5,4,3,2,1,0,)(  ixxf i . 
Solving the systems of equation, we get 
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But the anti-Gaussian four point rule computed as 
      )5.......(....................)}........({}{)( 222111

4  fffffRH w   
 
Hence, by  taylors series expansion, we have 
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By  putting  the values of  21 ,   and  21 , in the above equation, we have 
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We have, 
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The error of the anti-Gaussian four point rule is computed as  
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3.  CONSTRUCTION OF MIXED QUADRATURE RULE BY USING ANTI-GAUSSIAN 
FOUR POINT RULE WITH LOBATTO FOUR POINT RULE 
 
We have the Lobatto four point rule, 
 

)7.(........................................)}].......
5
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 Hence, by Taylor’s series expansion, we have 
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The error associated with Lobatto four point rule is computed as  
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 The error associated with the anti-Gaussian four point rule  is   
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 Eliminating  )0(vif  from the equation (9) and (10), we have 
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 This is the desired mixed quadrature rule of precision seven. For the approximate evaluation 
of )( fI . The truncation error generated in this approximation is given by. 

 )](3)(4)( 4444 fELobfEHfLobEH wwww   ……………………………………(12).
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 The rule )(44 fLobRH ww  is called a mixed type rule of precision seven as it is constructed 

from two different types of the rules of the same precision (i.e. precision 5). 
 
4. ERROR ANALYSIS 
 
An asymptotic error estimate and an error bound of the rule (13) are given by. 
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Theorem - 4.1 
Let )(xf  be sufficiently differentiable function in the closed interval ]1,1[ . Then the error 

)(44 fLobEH ww  associated with the rule )(44 fLobRH ww   is given by 
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Proof: 
Theorem follows from equation (11) and (13)  
We  have )(3)(4)( 4444 fLobfRHfLobRH wwww   

 And the truncation error generated in this approximation is given by
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 Hence we have, 
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Theorem- 4.2 
The bound of the truncation error 
 
 )()()( 4444 fLobRHfIfLobEH wwww  is given by 
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 Putting the values of equation (14) and (15) in eq (16) , 
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which gives a theoretical error bound as 21,  are unknown points in  

]1,1[ . From this theorem it is clear that the error in approximation will be less if points  are 21 ,
closer to each other. 
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Corollary - 1 
 The error bound for the truncation error )(44 fLobEH ww is given by 

 

 
10575

4)(44


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Proof: 
The proof follows from theorem (4.2) and .221  . 
 
 
5.  NUMERICAL VERIFICATION BY TABLE AND GRAPHS 
 

Table 1: 
 
Sl 
No 

Integrals Exact Value  fGw
3 / 
|E1| 

)(4 fRH w / 
|E2| 

/)(4 fLobw  

|E3| 
/)(44 fLobRH ww          

| E4 | 

1 




1

1
1 dxeI x

 
2.350402387 2.350333692/ 

0.000068 
2.3504678/ 
0.000065 

 

2.3504899/ 
0.000087 

2.35040169/ 
0.00000069 

2 
  

1

0
2

2

dxeI x
 

0.746825 0.74681458/ 
0.0000104 

0.74683367/ 
0.0000086 

0.74683659/ 
0.000011 

0.746824901/ 
0.000000099 

3 

1

0
3

2

dxeI x
 

1.4627 1.4624097/ 
0.00029 

1.46289391/ 
0.00019 

1.46297858/ 
0.00027 

1.46263989/ 
0.0000601 

4 
 








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3

1

2

4
sin dx

x
xI  

0.7948251 0.79465267/ 
0.000172 

0.79499761/ 
0.000172 

0.79505264/ 
0.000227 

0,79483252/ 
0.0000074 

5 

1

0
5 dxxI  

0.666666 0.669174/ 
0.002508 

0.66429729/ 
0.002369 

0.6568258/ 
0.00984 

0.68671177/ 
0.0200457 

 
Where   )()( 3

1 fGfIE w ,    )()( 4
2 fRHfIE w ,    

)()( 4
3 fLobfIE w , )()( 44

4 fLobRHfIE ww   are errors of various rules. 

The graphical representation of these errors is given below in Figures: A, B, C, D. 
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Using the result of the table  and  the  notations  for the  errors  of different methods  given  above  the  
table , four  bar  graphs  for  the  errors  of  the  mixed quadrature rule and  its constituent rules have 

been constructed in figures  A,B,C  and  D   corresponding  to   



1

1
1 dxeI x   ,  

1

0
2

2

dxeI x  , 


1

0
3

2

dxeI x  and 
3

1

2

4 )sin( dx
x

xI  

respectively.
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In the above four graphs ,the error  names of the  mixed quadrature rule  and its constituent  rules  have 
been  embedded along  X-axis  and  the respective values of  the errors depicting  heights of the bars 
are given along Y-axis. The unit in Y-axis is taken as below: 

 
654321 10log6,10log5,10log4,10log3,10log2,10log1   . 

Thus from the graphs, we conclude that larger the height of the bar    the smaller is the error. Here we 
derived most significant result that our mixed rule is more accurate than its constituent rules. 
 
6. OBSERVATION  
 
From the table as well as from the graphs it is observed that the absolute error corresponding to mixed 
quadrature rule )(44 fLobRH ww  ,is lesser than those corresponding to its constituent rules )(3 fGw  , 

)(4 fRH w  and )(4 fLobw  are compared, when the test integrals are evaluated. 

 
7. CONCLUSION  
 
After observation one can smartly draw conclusion over the efficiency of the   rule formed in this paper 
as follows: 
The mixed rule )(44 fLobRH ww ) is more efficient than its constituent rules  )(3 fGw ,      )(4 fRH w  

and )(4 fLobw .  
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