

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

Bull. Pure Appl. Sci. Sect. E Math. Stat. 38E(Special Issue)(2S), 92–98 (2019) e-ISSN:2320-3226, Print ISSN:0970-6577 DOI: 10.5958/2320-3226.2019.00085.7 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 387-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2019

Cordial labelings for comb related graph *

S. Bala¹, S. Sundarraj² and K. Thirusangu³

1,2,3. S.I.V.E.T. College, Gowrivakkam, Chennai-600073, Tamil Nadu, India.

1. E-mail: yesbala75@gmail.com , 2. E-mail: sjsundar89@gmail.com

3. E-mail: kthirusangu@gmail.com

Abstract In this paper we investigate the existence of homo-cordial, hetro-cordial and cup(V)-cordial labeling for the extended triplicate graph of a comb.

Key words Homo-cordial labeling, Hetro-cordial labeling, $\operatorname{Cup}(V)$ -cordial labeling, Extended Triplicate Graph of a Comb.

2010 Mathematics Subject Classification 05C78, 05C99.

1 Introduction

The beginnings of graph theory can be traced back to the first paper written by Leonhard Euler in 1736 about the solution of unsolved problem of his day known as the Konigsberg bridge problem. Graph theory has various applications in the fields of computer programming, maps, network models in operation research, social network, security of a system and so on. The concept of graph labeling was introduced by Rosa [7] in 1967. A graph labeling is an assignment of integers to the vertices (or) edges (or) both subject to certain conditions. If the domain of the mapping is the set of vertices (or edges), then the labeling is called a vertex labeling (or an edge labeling). The concept of cordial labeling was introduced by Cahit [2] in 1967. A function $\phi: V \to \{0,1\}$ is said to be a cordial labeling if each edge uv has the label $|\phi(u) - \phi(v)|$ such that the number of vertices labeled 0 and the number of vertices labeled 1 differ by at most one and the number of edges labeled 0 and the number of edges labeled 1 differ by at most one. A graph which admits cordial labeling is called cordial graph. In 2015 Nellai Murugan and Mathubala [5] discussed the concept of homo-cordial labeling. A homo-cordial labeling of a graph G with vertex set V is a bijection $\phi: V \to \{0,1\}$ such that the induced function $\phi*: E \to \{0,1\}$ given by

$$\phi*(uv) = \begin{cases} 1, & \text{if } \phi(u) = \phi(v), \\ 0, & \text{otherwise.} \end{cases}$$

with the condition that $|v_{\phi}(0) - v_{\phi}(1)| \le 1$ and $|e_{\phi}(0) - e_{\phi}(1)| \le 1$. The graph that the admits a homo-cordial labeling is called a homo-cordial graph. In the very same year Nellai Murugan and Selva Vidhya [6] introduced the concept of hetro-cordial labeling of graphs. A hetro-cordial labeling

Refereed Proceedings of the National Conference on Mathematics and Computer Applications held at the Department of Mathematics, Women's Christian College, Chennai, India from January 29, 2019 to January 30, 2019.

^{*} Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief). Received March 16, 2019 / Revised October 29, 2019 / Accepted December 04, 2019. Online First Published on June 03, 2020 at https://www.bpasjournals.com/. Corresponding author S. Bala, E-mail: yesbala75@gmail.com

of a graph G with vertex set V is a bijective function $\phi: V \to \{0,1\}$ such that the induced function $\phi * : E \to \{0,1\}$ given by

$$\phi*(uv) = \left\{ \begin{array}{l} 0, \text{ if } \phi\left(u\right) = \phi\left(v\right), \\ 1, \text{ if } \phi\left(u\right) \neq \phi\left(v\right). \end{array} \right.$$

with the condition that $|v_{\phi}(0) - v_{\phi}(1)| \leq 1$ and $|e_{\phi}(0) - e_{\phi}(1)| \leq 1$. The graph that the admits a hetro-cordial labeling is called a hetro-cordial graph. The concept of $\sup(V)$ -cordial labeling of a graph was also introduced earlier in the year 2011 by Nellai Murugan and Iyadurai Selvaraj [4]. A $\sup(V)$ -cordial labeling of a graph G with vertex set V is a bijective function $\phi: V \to \{0,1\}$ such that the induced function $\phi * : E \to \{0,1\}$ is defined by

$$\phi*\left(uv\right)=\left\{ \begin{array}{cc} 0, & \text{if } \phi\left(u\right)=\phi\left(v\right)=0,\\ 1, & \text{otherwise.} \end{array} \right.$$

with the condition that $|v_{\phi}(0) - v_{\phi}(1)| \leq 1$ and $|e_{\phi}(0) - e_{\phi}(1)| \leq 1$. The graph that the admits a $\sup(V)$ -cordial labeling is called a $\sup(V)$ -cordial graph. In this paper we aim to discuss the homocordial, the hetro-cordial and $\sup(V)$ -cordial labeling of the Extended Triplicate Graph of Comb.

2 The structure of the extended triplicate graph of comb

Let $P_m, m \geq 3$ be a path graph with m vertices and m-1 edges. Comb graph is defined as $P_m \odot mK_1$ with the vertex set and edge set as $V_1 = \{(v_i \bigcup u_i) | 1 \leq i \leq m\}$ and $E_1 = \{(v_i v_j \bigcup v_j v_i) | 1 \leq i \leq m\}$ respectively. It is denoted as $(\text{Comb})_m$. Clearly, a comb graph has 2m vertices and 2m-1 edges.

In 2018 Bala et al. [1] and others introduced the concept of Extended Triplicate Graph of Comb which is described by the algorithm below:

Algorithm 2.1. Input : Comb graph procedure (structure of TG $(Comb)_m$) for i = 1 to m

$$X \leftarrow \left\{v_i, v_i', v_i'', u_i, u_i', u_i''\right\}$$

end for for i = 1 to m - 1 do $E_1 \leftarrow \left\{u_i u_{i+1}^{'} \bigcup u_i^{'} u_{i+1}^{''}\right\}$

for i = 2 to m do

 $E_2 \leftarrow \left\{u_i'u_{i-1}'' \bigcup u_iu_{i-1}'\right\}$

end for

for i = 1 to m do

 $E_{3} \leftarrow \left\{u_{i}v_{i}^{'}\bigcup v_{i}u_{i}^{'}\bigcup v_{i}^{'}u_{i}^{''}\bigcup u_{i}^{'}v_{i}^{''}\right\}$

end

 $for Y \leftarrow E_1 \bigcup E_2 \bigcup E_3$

end procedure

Output: $TG(Comb)_m$

From the structure of $\mathrm{TG}(\mathrm{Comb})_m$, it is clear that the triplicate graph of a comb is disconnected with 6m vertices and 8m-4 edges. To make it as a connected graph, include a new edge v_1v_m to the edge set of $\mathrm{TG}(\mathrm{Comb})_m$ if $m\equiv 0\,(mod2)$ and if $m\equiv 1\,(mod2)$, include a new edge v_1u_m in the edge set of $\mathrm{TG}(\mathrm{Comb})_m$. This new graph is called the Extended Triplicate Graph of Comb and it is denoted by $\mathrm{ETG}(\mathrm{Comb})_m$. By the construction, the extended triplicate graph of comb has 6m vertices and 8m-3 edges.

Illustration 2.2. The structure of $ETG(Comb)_5$ is shown below in Fig.1.

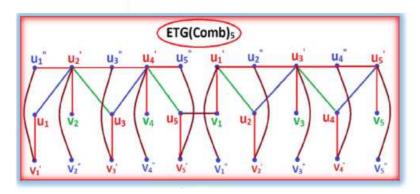


Fig. 1: The ETG(Comb)₅.

3 Homo-cordial labeling

In this section we prove the existence of Homo-cordial labeling for $\mathrm{ETG}(\mathrm{Comb})_m$ by presenting algorithms

 ${\bf Algorithm~3.1.}$ Input: Extended triplicate graph of Comb

Procedure: Homo-cordial labeling for E $\mathrm{TG}(\mathrm{Comb})_m$

for i = 1 to n do if $i \equiv 1 \pmod{2}$

 $v_{i}^{'} \leftarrow v_{i} \leftarrow u_{i}^{''} \leftarrow 1$ $u_{i}^{'} \leftarrow u_{i} \leftarrow v_{i}^{''} \leftarrow 0$

else

 $v_{i}^{'} \leftarrow v_{i} \leftarrow u_{i}^{''} \leftarrow 0$ $u_{i}^{'} \leftarrow u_{i} \leftarrow v_{i}^{''} \leftarrow 1$

end if end for

end procedure

Output: labeled vertices of $ETG(Comb)_m$

Theorem 3.2. The $ETG(Comb)_m$ admits the homo-cordial labeling.

Proof. From the construction of the extended triplicate graph of a comb, we know that $\mathrm{ETG}(\mathrm{Comb})_m$ has 6m vertices and 8m-3 edges. The vertices are labeled by defining a function $\phi:V\to\{0,1\}$ as given in Algorithm3.1. In order to obtain the labels for the edges, define the induced map $\phi*:E\to\{0,1\}$ such that for any $v_iv_j\in E, \phi*(v_iv_j)=\{\phi(v_i)+\phi(v_j)\}$ (mod2). Thus,

(i) For $1 \le i \le n - 1$

$$\phi * \left(u_i u'_{i+1}\right) \leftarrow 0$$

(ii) For $1 \le i \le n - 1$

$$\phi * \left(u_i' u_{i+1}''\right) \leftarrow 1$$

(iii) For $2 \le i \le n$

$$\phi * \left(u_i' u_{i-1}''\right) \leftarrow 1$$

(iv) For $2 \le i \le n$

$$\phi * \left(u_{i}u_{i-1}^{'}\right) \leftarrow 0$$

(v) For
$$1 \le i \le n$$

$$\phi * \left(u_{i}v_{i}^{'}\right) \leftarrow \phi * \left(v_{i}u_{i}^{'}\right) \leftarrow 0$$

(vi) For
$$1 \le i \le n$$

$$\phi * \left(u_i'v_i''\right) \leftarrow \phi * \left(v_i'u_i''\right) \leftarrow 1$$

$$u_n v_1 = 0$$
 if $n \equiv 1 \pmod{2}$
 $v_n v_1 = 0$ if $n \equiv 0 \pmod{2}$

Illustration 3.3. The $ETG(Comb)_5$ and its homo-cordial labeling.

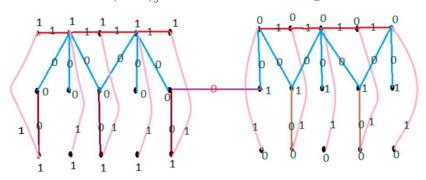


Fig. 2: The homo-cordial labeling of the ETG(Comb)₅.

4 Hetro-cordial labeling

In this section we prove the existence of hetro-cordial labeling for $\mathrm{ETG}(\mathrm{Comb})_m$ by presenting algorithms.

Algorithm 4.1. Input: Extended triplicate graph of Comb Procedure Hetro cordial labeling for $ETG(Comb)_m$

for i=1 to n do

if $i \equiv 1 \pmod{2}$

$$v_{i}^{'} \leftarrow v_{i} \leftarrow u_{i}^{''} \leftarrow 1$$
$$u_{i}^{'} \leftarrow u_{i} \leftarrow v_{i}^{''} \leftarrow 0$$

else

$$v_{i}^{'} \leftarrow v_{i} \leftarrow u_{i}^{''} \leftarrow 0$$
$$u_{i}^{'} \leftarrow u_{i} \leftarrow v_{i}^{''} \leftarrow 1$$

end if

end for

end procedure

Output: labeled vertices of $ETG(Comb)_m$

Theorem 4.2. The $ETG(Comb)_m$ admits hetro-cordial labeling.

Proof. From the construction of the extended triplicate graph of a comb, we know that $ETG(Comb)_m$ has 6m vertices and 8m-3 edges.

The vertices are labeled by defining a function $\phi: V \to \{0,1\}$ as given in the Algorithm4.1. In order to obtain the labels for the edges, define the induced map $\phi*: E \to \{0,1\}$ such that for any $v_iv_j \in E, \phi*(v_iv_j) = \{\phi(v_i) + \phi(v_j)\} \pmod{2}$. Thus,

(i) For
$$1 \le i \le n - 1$$

$$\phi * \left(u_i u'_{i+1}\right) \leftarrow 1$$

(ii) For
$$1 \le i \le n - 1$$

$$\phi * \left(u_i'u_{i+1}''\right) \leftarrow 0$$

(iii) For
$$2 \le i \le n$$

$$\phi * \left(u_i' u_{i-1}''\right) \leftarrow 0$$

(iv) For
$$2 \le i \le n$$

$$\phi * \left(u_{i}u_{i-1}^{'}\right) \leftarrow 1$$

(v) For
$$1 \le i \le n$$

$$\phi * \left(u_i v_i'\right) \leftarrow \phi * \left(v_i u_i'\right) \leftarrow 1$$

(vi) For
$$1 \le i \le n$$

$$\phi * \left(u_i^{'} v_i^{''}\right) \leftarrow \phi * \left(v_i^{'} u_i^{''}\right) \leftarrow 0$$

 $u_n v_1 = 1$ if $n \equiv 1 \pmod{2}$ $v_n v_1 = 1$ if $n \equiv 0 \pmod{2}$.

Illustration 4.3. The $ETG(Comb)_5$ and its hetro-cordial labeling.

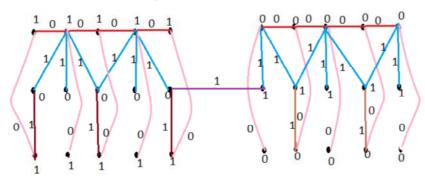


Fig. 3: The hetro-cordial labeling of the $ETG(Comb)_5$.

5 Cup(V)-cordial labeling

In this section we prove the existence of Cup-cordial labeling for $\mathrm{ETG}(Comb)_m$ by presenting algorithms.

Algorithm 5.1. Input: Extended triplicate graph of Comb Procedure Cup (V)-cordial labeling for $\mathrm{ETG}(Comb)_m$ for i=1 to n do

if $i \equiv 1 \text{ to } n \text{ do}$

$$u_{i}^{"} \leftarrow u_{i} \leftarrow v_{i}^{'} \leftarrow 1$$
$$u_{i}^{'} \leftarrow v_{i} \leftarrow v_{i}^{"} \leftarrow 0$$

else

$$u_{i}^{"} \leftarrow u_{i} \leftarrow v_{i}^{'} \leftarrow 0$$
$$u_{i}^{'} \leftarrow v_{i} \leftarrow v_{i}^{"} \leftarrow 1$$

end if

end for

end procedure

Output: labeled vertices of $ETG(Comb)_m$.

Theorem 5.2. The $ETG(Comb)_m$ admits Cup(V)-cordial labeling.

Proof. From the construction of the extended triplicate graph of a comb, we know that $\mathrm{ETG}(\mathrm{Comb})_m$ has 6m vertices and 8m-3 edges. The vertices are labeled by defining a function $\phi: V \to \{0,1\}$ as given in the Algorithm 5.1. In order to obtain the labels for the edges, define the induced map $\phi*: E \to \{0,1\}$ such that for any $v_iv_j \in E$, $\phi*(v_iv_j) = \{\phi(v_i) + \phi(v_j)\} \pmod{2}$. Thus,

(i) For $1 \le i \le n - 1$

$$\phi * \left(u_i u'_{i+1}\right) = \begin{cases} 0, \text{ odd} \\ 1, \text{ otherwise} \end{cases}$$

(ii) For $1 \le i \le n-1$

$$\phi*\left(u_{i}^{'}u_{i+1}^{''}\right)=\left\{\begin{array}{c}1,\text{ odd}\\0,\text{ otherwise}\end{array}\right.$$

(iii) For $2 \le i \le n$

$$\phi*\left(u_{i}^{'}u_{i-1}^{''}\right)=\left\{\begin{array}{c}1,\text{ odd}\\0,\text{ otherwise}\end{array}\right.$$

(iv) For $2 \le i \le n$

$$\phi * (u_i u'_{i-1}) = \begin{cases} 0, \text{ odd} \\ 1, \text{ otherwise} \end{cases}$$

(v) For $1 \le i \le n$

$$\phi*\left(u_{i}v_{i}^{'}\right)=\phi*\left(v_{i}^{'}u_{i}^{''}\right)=\left\{\begin{array}{c}0,\text{ odd}\\1,\text{ otherwise}\end{array}\right.$$

(vi) For $1 \le i \le n$

$$\phi*\left(u_{i}^{'}v_{i}^{''}\right)=\phi*\left(v_{i}u_{i}^{'}\right)=\left\{\begin{array}{c}1,\text{ odd}\\0,\text{ otherwise}\end{array}\right.$$

 $u_n v_1 = 0$ if $n \equiv 1 \pmod{2}$ $v_n v_1 = 0$ if $n \equiv 0 \pmod{2}$.

Illustration 5.3. The $ETG(Comb)_5$ and its Cup(V)-cordial labeling.

6 Conclusion

In this paper, we proved existence of homo-cordial labeling, hetro-cordial labeling and $\sup(V)$ -cordial labeling for the extended triplicate graph of comb.

References

- [1] Bala, S., Thirusangu, K. and Suresh, D. (2018). Some graph labelings in the framework of triplication, *International Journal of Mathematical Archive*, 9(2), 23–28.
- [2] Cahit, I. (1987). Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combin.*, 23, 201–207.
- [3] Gallian, J.A. (2018). A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, 18, #DS6.
- [4] Nellai Murugan, A. and Iyadurai Selvaraj, P. (2011). Path Related Cup Cordial Graphs, *Indian Journal of Applied Research*, 4(8), 433–436.

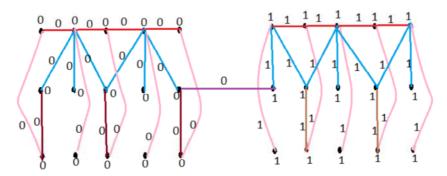


Fig. 4: The Cup(V)-labeling of the $ETG(Comb)_5$.

- [5] Nellai Murugan, A. and Mathubala, A. (2015). Cycle-Related Homo-Cordial Graphs, *International Journal of Multidisciplinary Research and Development*, 2(10), 84–88.
- [6] Nellai Murugan, A. and Selva Vidhya, V. (2015). Path related hetro-cordial graphs, International Journal of Emerging Technologies in Engineering Research, 2(3), 9–14.
- [7] Rosa, A. (1967). On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome, July 1996), Gordon and Breach, New York and Dunod Paris, 349–355.