

Bulletin of Pure and Applied Sciences Section - E - Mathematics & Statistics

Website: https://www.bpasjournals.com/

Bull. Pure Appl. Sci. Sect. E Math. Stat. 38E(Special Issue)(2S), 105–111 (2019) e-ISSN:2320-3226, Print ISSN:0970-6577 DOI 10.5958/2320-3226.2019.00087.0 ©Dr. A.K. Sharma, BPAS PUBLICATIONS, 387-RPS-DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2019

Energy of central and middle graph of a regular graph *

R. Prabha¹ and Vadivukkarasi P.R.²

- Department of Mathematics, Ethiraj College for Women, 70, Ethiraj Salai,
 Affiliated to University of Madras, Chennai, India.
- 2. M. Phil. Scholar, Department of Mathematics, Ethiraj College for Women, 70, Ethiraj Salai, Affiliated to University of Madras, Chennai, India.
 - 1. E-mail: Prabha75@gmail.com , 2. E-mail: vadivukkarasipr@gmail.com

Abstract An eigenvalue of a graph G is the eigenvalue of its adjacency matrix. The energy E(G) of G is the sum of the absolute values of its eigenvalues. Two graphs having same energy and same number of vertices are called equienergetic graphs. If μ_1, \ldots, μ_n are the eigenvalues of the adjacency matrix of G and $\theta_1, \ldots, \theta_n$ are the eigenvalues of the adjacency matrix of all-one matrix (J_n) , then the energy of the Central graph of a simple, connected, r-regular graph E(C(G)) and the energy of a Middle graph of a simple, connected, 2-regular graph E(M(G)) is derived in terms of the eigenvalues of the original graph G by us in this paper.

Key words Central graph, Middle graph, adjacency matrix, incident matrix, eigenvalues, energy of graph.

2010 Mathematics Subject Classification 05C50.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. For standard terminology and notations related to graph theory, we follow Balakrishnan and Ranganathan [4], while, for algebra we follow Lang [10].

The adjacency matrix A(G) of a graph G with vertices v_1, \ldots, v_n is an $n \times n$ matrix $[a_{ij}]$ such that, $a_{ij} = 1$ if v_i is adjacent to v_j , and 0 otherwise. The incidence matrix R(G), is an $n \times m$ matrix $[r_{ij}]$ for which $r_{ij} = 1$ if v_i is incident with the edge e_j and 0 otherwise. The set of eigenvalues of the graph with their multiplicities is known as spectrum of the graph and it is denoted by Spec G. In 1978 Gutman [7] defined the energy of a graph G as the sum of absolute values of the eigenvalues of graph G and denoted it by E(G). Hence,

$$E(G) = \sum_{i=1}^{n} |\lambda_i(G)|$$

Corresponding author Vadivukkarasi P.R., E-mail: vadivukkarasipr@gmail.com

Refereed Proceedings of the National Conference on Mathematics and Computer Applications held at the Department of Mathematics, Women's Christian College, Chennai, India from January 29, 2019 to January 30, 2019.

^{*}Communicated, edited and typeset in Latex by Lalit Mohan Upadhyaya (Editor-in-Chief). Received March 16, 2019 / Revised October 28, 2019 / Accepted November 12, 2019. Online First Published on June 03, 2020 at https://www.bpasjournals.com/.

Here it is also mentioned that the energy of a totally disconnected graph K_n^c is zero while the energy of a complete graph K_n with maximum possible number of edges is 2(n-1).

In 2004, Bapat and Pati [5] proved that if the energy of a graph is rational then it must be an even integer, while Pirzada and Gutman [12] established that the energy of a graph is never the square root of an odd integer.

In 2011 Brouwer and Haemers [1] stated that if \overline{G} is the complement graph of G then the adjacency matrix $A(\overline{G}) = J - I - A(G)$ where J is all-1 matrix of order n and its spectrum is $n^1, 0^{n-1}$ (exponents are its multiplicities).

In theoretical chemistry, using Hückel theory, the π -electron energy of a conjugated carbon molecule was computed, which coincides with the energy as defined here. A brief account of graph energy is given in [3] as well as in the books [6,11]. The results on graph energy assume special significance. The present work is intended to relate the graph energy to larger graphs obtained from the given graph by means of some graph operations. Vaidya and Popat [14] showed that the energy of splitting graph and shadow graph can be obtained from energy of the given graph G. In this paper we have obtained the energy of central graph and middle graph of a regular graph from the eigenvalues of the given graph G.

Lemma 1.1. [15] Let P, Q, R, S denote four $n \times n$ matrices and suppose that P and R commute. Then the determinant $\det(M)$ of the $2n \times 2n$ matrix $M = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ is equal to the determinant of the matrix PS - RQ.

Lemma 1.2. [13] Let G be an r-regular graph with an adjacency matrix A(G) and an incident matrix R(G). Then $RR^T = rI + A$.

Definition 1.3. [2] Central Graph: Let G be a simple, connected, r-regular and undirected graph and let its vertex set and edge set be denoted by V(G) and E(G) respectively. The Central graph of G, denoted by C(G) is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G in C(G).

Definition 1.4. [2] Middle Graph: The Middle graph M(G) is a graph which is obtained by subdividing each edge of G exactly once and join all the newly added middle vertices of the adjacent edges of G.

2 Energy of central graph

In this section we obtain the energy of Central graph of a simple, connected, r-regular graph G.

Theorem 2.1. If G is a simple, connected, r-regular and undirected graph with eigenvalues μ_1, \ldots, μ_n and $E(G) = \sum_{i=1}^n |\mu_i|$, then

$$E(C(G)) = \sum_{i=1}^{n} \left| \frac{(\theta_i - 1 - \mu_i) \pm \sqrt{(1 - \theta_i + \mu_i)^2 + 4(\mu_i + r)}}{2} \right| + 0^{m-n},$$

where, $\theta_1, \ldots, \theta_n$ are the eigenvalues of the adjacency matrix of J_n .

Proof. Let v_1, \ldots, v_n and e_1, \ldots, e_m be the vertices and edges of G. Its adjacency matrix A(G) and incident matrix R(G) are given by,

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n \\ v_1 & v_2 & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{bmatrix}$$

$$R(G) = \begin{bmatrix} v_1 & e_2 & e_3 & \cdots & e_m \\ v_1 & v_2 & b_{11} & b_{12} & b_{13} & \cdots & b_{1m} \\ b_{21} & b_{22} & b_{23} & \cdots & b_{2m} \\ b_{31} & b_{32} & b_{33} & \cdots & b_{3m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \cdots & b_{nm} \end{bmatrix}$$

Now consider C(G). Let c_1, \ldots, c_m be the subdivided vertices of G. By joining the non-adjacent vertices v_1, \ldots, v_n we obtain the Central graph of G. Then the adjacency matrix A(C(G)) can be written as a block matrix as shown in the Fig 1.

Fig. 1: Block Matrix of the adjacency matrix A(C(G)).

The edge set of G and \overline{G} together form the edge set of the complete graph K_n . We observe that the adjacency matrix of the complete graph is $J_n - I_n$ (where J_n is the all-one matrix). Hence

$$A(G) + A(\overline{G}) = J_n - I_n$$

$$\Rightarrow A(\overline{G}) = \begin{bmatrix} 0 & 1 - a_{12} & 1 - a_{13} & \cdots & 1 - a_{1n} \\ 1 - a_{21} & 0 & 1 - a_{23} & \cdots & 1 - a_{2n} \\ 1 - a_{31} & 1 - a_{32} & 1 - a_{33} & \cdots & 1 - a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 - a_{n1} & 1 - a_{n2} & 1 - a_{n3} & \cdots & 0 \end{bmatrix}$$

Hence the above block matrix shown in the Fig. 1 can be written as

$$A(C(G)) = \begin{bmatrix} A(\overline{G}) & R(G) \\ R^{T}(G) & 0 \end{bmatrix}$$

Then, $\det [A(C(G)) - \lambda I_n] = \det [A(G) - \mu I_n]$ where $\mu = \frac{(-\lambda^2 + r - \lambda + \lambda J_n)}{(\lambda - 1)}$ (using the Lemmas 1.1 and 1.2). Hence corresponding to each eigenvalue μ_i of G,

$$\mu_i = \frac{(-\lambda_i^2 + r - \lambda_i + \lambda_i \theta_i)}{(\lambda_i - 1)}$$

where $\theta_1, \ldots, \theta_n$ are the eigenvalues of J_n . Then

$$\lambda_i^2 + (1 - \theta_i + \mu_i) \lambda_i - (\mu_i + r) = 0,$$
 $i = 1, ..., n$

which gives,

$$\lambda_i = \frac{(\theta_i - 1 - \mu_i) \pm \sqrt{(1 - \theta_i + \mu_i)^2 + 4(\mu_i + r)}}{2}, \ 0^{m-n}$$

thus, $E(C(G)) = \sum_{i=1}^{n} |\lambda_i|$, where λ_i is computed from the above relation.

Corollary 2.2. If C_n is a cycle with eigenvalues μ_1, \ldots, μ_n and $E(C_n) = \sum_{i=1}^n |\mu_i|$, then

$$E(C(C_n)) = \sum_{i=1}^{n} \left| \frac{(\theta_i - 1 - \mu_i) \pm \sqrt{(1 - \theta_i + \mu_i)^2 + 4(\mu_i + 2)}}{2} \right|$$

where, $\theta_1, \ldots, \theta_n$ are the eigenvalues of the adjacency matrix of J_n .

Illustration 2.3. Consider the cycle C_4 and the Central graph of (C_4) as shown in the Fig. 2. The energy $E(C_4) = 4$ as Spec $(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.

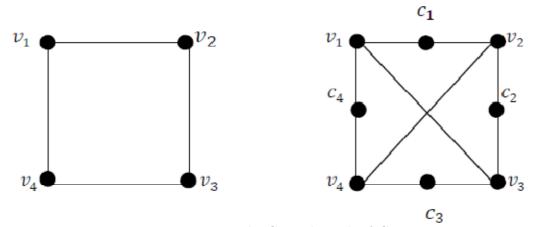


Fig. 2: The Central graph of C_4 .

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1+16}}{2} = \frac{1 \pm \sqrt{17}}{2}$$

$$= 2.5616, -1.5616.$$

When $\mu = -2$ and $\theta = 0$

$$\lambda_{3,4} = \frac{1 \pm \sqrt{1+0}}{2} \\
= 1. \ 0$$

and when $\mu = 0$ and $\theta = 0$

$$\lambda_{5,6,7,8} = \frac{-1 \pm \sqrt{1+8}}{2} = \frac{-1 \pm 3}{2}$$
$$= 1, -2$$

$$\therefore E(C(C_4)) = \sum_{i=1}^{n} |\lambda_i| = 2.5616 + 1.5616 + 1 + 0 + 1 + 2$$
$$= 11.1232$$

and

Spec
$$C(C_4) = \begin{pmatrix} 2.5616 & -1.5616 & 1 & 0 & -2 \\ 1 & 1 & 3 & 1 & 2 \end{pmatrix}$$
.

3 Energy of middle Graph

In this section we obtain the energy of finite, simple, connected, 2-regular and undirected graph G.

Theorem 3.1. If G is a simple, connected, 2-regular and undirected graph with eigenvalues μ_1, \ldots, μ_n and $E(G) = \sum_{i=1}^n |\mu_i|$, then

$$E(M(G)) = \sum_{i=1}^{n} \left| \frac{\mu_i \pm \sqrt{{\mu_i}^2 + 4(\mu_i + 2)}}{2} \right|.$$

Proof. Let v_1, \ldots, v_n and e_1, \ldots, e_n be the vertices and edges of G. Its adjacency matrix A(G) and incident matrix R(G) are given by,

$$A(G) = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n \\ v_2 & 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{bmatrix}$$

$$e_1 \quad e_2 \quad e_3 \quad \cdots \quad e_n$$

$$R(G) = \begin{bmatrix} v_1 & b_{12} & b_{13} & \cdots & b_{1n} \\ v_2 & b_{21} & b_{22} & b_{23} & \cdots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \cdots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \cdots & b_{nn} \end{bmatrix}$$

Now consider M(G). Let $c_1, c_2, c_3, c_4, \ldots c_n$ be the subdivided vertices of G. By joining all the newly added middle vertices of adjacent edges of G we obtain the middle graph of G, i.e. M(G). Then the adjacency matrix A(M(G)) can be written as a block matrix as shown in the Fig. 3.

$$A(M(G)) = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n & c_1 & c_2 & c_3 & \cdots & c_n \\ v_1 & v_2 & 0 & 0 & \cdots & 0 & b_{11} & b_{12} & b_{13} & \cdots & b_{1n} \\ 0 & 0 & 0 & \cdots & 0 & b_{21} & b_{22} & b_{23} & \cdots & b_{2n} \\ 0 & 0 & 0 & \cdots & 0 & b_{31} & b_{32} & b_{33} & \cdots & b_{3n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ddots & 0 & b_{n1} & b_{n2} & b_{n3} & \cdots & b_{nn} \\ b_{11} & b_{21} & b_{31} & \cdots & b_{n1} & 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ b_{12} & b_{22} & b_{32} & \cdots & b_{n2} & a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ b_{13} & b_{23} & b_{33} & \cdots & b_{n3} & \vdots & \vdots & \vdots & \vdots & \vdots \\ c_n & b_{1n} & b_{2n} & b_{3n} & \cdots & b_{nn} & a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

Fig. 3: Block Matrix of the adjacency matrix A(M(G)).

Hence the above block matrix of the Fig. 3 can be written as,

$$A(M(G)) = \begin{bmatrix} 0 & R(G) \\ R^{T}(G) & A(G) \end{bmatrix}$$

Then, $\det \left[A\left(M\left(G\right) \right) - \lambda I_n \right] = \det \left[A(G) - \mu I_n \right]$ where $\mu = \frac{(\lambda^2 - 2)}{(\lambda + 1)}$ (using the Lemmas 1.1 and 1.2). Hence corresponding to each eigenvalue μ_i of G,

$$\mu_i = \frac{(\lambda_i^2 - 2)}{(\lambda_i + 1)},$$

which gives,

$$\lambda_i^2 - \mu_i \lambda_i - (\mu_i + 2) = 0, \quad i = 1, \dots, n,$$

hence,

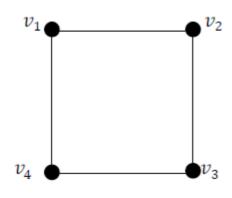
$$\lambda_i = \frac{\mu_i \pm \sqrt{\mu_i^2 + 4(\mu_i + 2)}}{2},$$

and

$$E(M(G)) = \sum_{i=1}^{n} |\lambda_i|,$$

where, λ_i is computed using the above relation.

Illustration 3.2. Consider the cycle C_4 and the Middle graph $M(C_4)$ of the Fig. 4. The energy $E(C_4) = 4$ as Spec $(C_4) = \begin{pmatrix} -2 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.



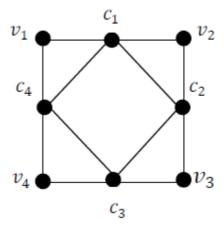


Fig. 4: The Middle graph of C_4 .

When $\mu = 2$

$$\lambda_{1,2} = \frac{2 \pm \sqrt{4 + 4(2 + 2)}}{2} = 1 \pm \sqrt{5}$$

= 3.23606, -1.23606.

When $\mu = -2$

$$\lambda_{3,4} = \frac{-2 \pm \sqrt{4 + 4(-2 + 2)}}{2} = -1 \pm 1$$

= 0 \tau -2.

When $\mu = 0$

$$\lambda_{5,6,7,8} = \frac{0 \pm \sqrt{0 \pm 4(0+2)}}{2} = \pm \sqrt{2}$$

$$= 1.41421 \; , \; -1.41421,$$

$$\therefore \; E\left(M(G)\right) = \sum_{i=1}^{n} |\lambda_i| = 3.2361 + 1.2361 + 0 + 2 + 1.414 + 1.414$$

$$= 9.65685,$$
 and Spec $M\left(C_4\right) = \left(\begin{array}{cccc} 3.23606 & -1.23606 & 0 & -2 & 1.41421 & 1.41421 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right).$

4 Conclusion

The energy of a graph is one of the emerging concepts in graph theory which serves as a frontier between chemistry and mathematics. In this paper we have obtained the energy of the Central graph and the Middle graph of a regular graph from the energy of the given graph G.

References

- [1] Brouwer, Andries E. and Haemers, Willem H. (2011). Spectra of Graph Monograph, Springer, Berlin.
- [2] Arockia, Aruldoss J. and Gurulakshmi, G. (2016). The Dominator Coloring of Central and Middle Graph of Some Special Graphs, *International Journal of Mathematics and its Applications*, 4(4(Special Issue)), 67–73.
- [3] Balakrishnan, R. (2004). The energy of a graph, Linear Algebra Appl., 387, 287–295.
- [4] Balakrishnan, R. and Ranganathan, K. (2000). A Textbook of Graph Theory, Springer, New York.
- [5] Bapat, R.B. and Pati, S. (2004). Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc., 1, 129–132.
- [6] Cvetkovic, D., Rowlison, P. and Simic, S. (2010). An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge.
- [7] Gutman, I. (1978). The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz., 10, 1–22.
- [8] Gutman, I., Hou, Y., Walikar, H.B., Ramane, H.S. and Hampiholi, P.R. (2000). No Hckel graph is hyperenergetic, Serb J. Chem. Soc., 65 (11), 799–801.
- [9] Horn, R.A. and Johnson, C.R. (1991). Topics in Matrix Analysis, Cambridge University Press, Cambridge.
- [10] Lang, S. (2002). Algebra, Springer, New York.
- [11] Li, X., Shi, Y., and Gutman, I. (2012). Graph Energy, Springer, New York.
- [12] Pirzada, S. and Gutman, I. (2008). Energy of a graph is never the square root of an odd integer, *Appl. Anal. Discr. Math.*, 2, 118–121.
- [13] Varghese, Renny P. and Rejikumar, K. (2016). Spectra of a new join of two graphs, Advances in Theoretical and Applied Mathematics, Volume 11, No. 4, 459–470.
- [14] Vaidya, Samir K. and Popat, Kalpesh M. (2017). Some new results on energy of graphs match, Commun. Math. Comput. Chem., 77, 589–594.
- [15] Zhang, Fuzhen (2005). The Schur Complement and its Applications Numerical methods and Algorithms, Springer, New York.