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ABSTRACT

Positive integers m1, m2, . . ., mk are studied in this work. If and merely if G can be articulated as the edge-
k

disjoint union of Subgraphs (SGs) F;, fulfilling x(Fi) < m;, any graph G possess x(G) < I—Imi . By appropriate
i=1

interpretations, the subsequent theorem is generalized to Hypergraphs (HGs) to infer propositions on the graph’s
coverings.
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1. INTRODUCTION

In an edge-disjoint factorization of G, the chromatic number x(G) number %(G) of a graph G to the chromatic
numbers x(F;) of the SGs F; occurs. This work has a double purpose. Firstly, Burr's theorem is generalized to
HGs Bl Then, to acquire outcomes on graph’s covering this generalization is employed by SGs having particular
properties.

1.1. Theorem: Consider G as a graph. The positive integers are my, m, . . ., M. Next, the edge-disjoint union is
k k
G ,G= U F., of SGs Fi with y(Fi) < m;, 1 <i <k, if and merely if 1@< J]m,.
i=1 i=1

Proof: A few terminologies of HGs are recalled M. A finite, non-empty group X of nodes along with a finite
group E of edges are encompassed in a finite HG H = (y, E), in which a subset of the power set of X is E. The
least number of colors required to color the H’s nodes is delineated as the chromatic number ©! (H) in order
that no edge with above ‘1’ element contains the entire of its nodes of similar colors. A partial HG of H is an
HG H' = (X', E") with X' = X together with E’ c E.

1.2. Theorem: Consider H as an HG. Let m1, my, . . . , mi be the positive integers. Next, the edge-disjoint union
k k
is H, where H = U H, of HGs H; with y(H)) <m;, 1 <i <k, if and only if wH < [Im,.
i=1 i=1

k
Proof: Consider Hy, Ha, . . ., Hi be partial HGs® enclosing the edges of H, x(Hi)) <m;. Put N= H m;. An
i=1

N-coloring of H = (X, E) has been delineated as given below. Take into account the group of k-tuples T = {(r1,
2, ..., n) | 1<ri<mi}, as well as allot to every node x € X a k-tuple (ri(x), . . . r(X)) in T by allowing ri(x) be
the color of x in an mi-coloring of Hi. It is exhibited that no edge E € E with | E | > 2 has the entire of its nodes
allocated a similar k-tuplel to reveal that this is an H’s N-coloring. Consider E e E to be random, as well as
examine that E is an edge of H, for a few i, 1 <i < k. So, no nodes xi, X, € E possess distinctive i" coordinates
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in their k-tuples. Especially, the k-tuples of x; together with x. is distinctive. Therefore, N-coloring of H is

k
possessed as preferred. Contemplate again the group T of k-tuples, where H = (X, E) with x(H)<[ [ m; .

i=1
Any N-coloring of it may be noticed as the k-tuple’s assignment in T to the nodes of H because | T | = N =

k

H m;, in order that no edge E € E, | E | > 2, has the entire of its nodes allocated to a similar k-tuple. The
i=1
partial HGs are built Hi, 1 <i <k, with yx(Hi) < m; as given below. Consider E € E, | E | > 2. Next, there prevails
a pair of nodes xi1, X, € E in such a manner that the k-tuples of x; as well as x, vary. The 1% coordinate be c(x1,
X2) where these k-tuples vary, along with provide E the color c(E), in which c(E) = min{ c(x1, X2) | X1, X2 € E}.
ForE e E,|E|=1, set ¢(E) = 1. The group of integers S = {c(E) |E € E} < {1, . . ., K}are regarded. At this
time, if and merely if c(E) = s, fulfils y(Hs) < ms the partial HG Hs = (Xs, Es) of H, with E € Esfor s € S. Let Hs
= (Xs, Es) withEs = ¢ for s ¢ S, 1 <s <k. Next, H’s edge cover with the needed property is formed by partial
HGs H1, Hz, Cey Hxg.

2. CONSEQUENCES FOR GRAPHS

An Edge Cut (EC) of H comprises erasing the entire edges in H, which encompass nodes in both of the ‘2’ sets
in a presented partition of X (So, S1 # ¢, So U S1= X, So n ¢) provided an HG H = (X, E). An H’s node cut
encompasses in 1st substituting every node x of H that is comprised in an edge [, by ‘2> nodes x°, x* then
substituting every edge E = {1, Xz, . . ., Xx} of H by either E° = {Xf, Ce X?n} or E! = {Xi ceey an}

together with lastly removing the entire nodes of the construct x° or x' which are not encompassed in an edge. In
this, the node cuts not possessing the entire edges with a similar upper index [5] are only regarded.
Figures 1 and 2 evince the notion of EC and node cut.

a. HG and point partition are given

So = {X1, X2, X3, X4, X5, X6}

1= {X7, Xs, Xo, X10, X11, X12}

E = {{X1, X2, X3, X4, X5, X6}, {X7, X8, X9, X10, X11, X12},
{Xa, Xa, Xg, X7}, {X2, X7, X9, X11}}

b. Subsequent to EC the resultant HG.

Figure 1: An edge cut applied to a hypergraph
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a. Given HG.
Xl X2
X6 > Xs [ ] X6
X, X,
b. The nodes are duplicated and the edges are replaced.
{2} = {x7, X3} {x1, xe} = {X], X;}
{x2, x3} = {x5, x3} {1, X3} = {X], X3}
{xa, xa} > {x3, x93} {xs, X6} = {X3, X2}
{xs, x6} = {Xs, Xg} {xa, xs} = {X5, X2}
1
. X1 0
X A 2 1
X,

Xs

1
X5 1

c. Removing nodes with upper index to obtain resultant HG.

\
/

Figure 2: A. node cut applied to a hypergraph

2.1. Theorem: Assume the graph as G. P is a graph property fulfilling,

(1) Hereditary on Induced SGs (IGSs) is P;

(2) The complete graph has the property P if every linked component of this property.
(3) Asingle node encompasses property P.

The least number of 1SGs possessing property P is X; (G) which enclose the nodes of G, CE (G) the least
number of ECs, which are needed in order that the resultant graph to contain property P. Afterward,
C:(G) ={log. X (G) }

Proof: Provided a graph G = (X, E) along with a property P. Assume H' = (X', E’) be the HG with X’ = X along
with E' = | E' | E' < X', as well as E’ induces the SG of G, which is minimum in not possessing property P.
Every minimum graph not possessing property P encompasses at least ‘2’ nodes by (3), and by (1), if and only if

it has no minimum ISG not possessing property P, an 1ISG of G has property P. Therefore, y(H') = X; (G). 1o

remove the entire edges of H’, assume c(H') as the least number of ECs essential. Next, c(H") = B(H’) is obtained
for the edges removed by an EC in H’ to induce a 2-colorable partial HG of H', together with for every 2-

colorable partial HG, there is an EC in H’ removing at least its edges. c(H') = {log. X; (G) ¥ is acquired. Then,
it suffices to exhibit C; (G) = c(H).
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Initially, it is noticed that a minimum graph Ga not possessing property P is linked regarding (2).

Therefore, provided a series of c(H') ECs in H', so that the entire edges are removed, the series of ECs in G
possessing the node set’s similar partitions generates a graph that has no SG not possessing property P. Thus,

c(H) > CE (G). Offered a series of CE (G) ECsin G, so that the resultant graph encompasses property P, the
series of ECs in H' possessing similar partitions of the node set removes the entire edges in H', so CE (G) >

c(H"). Therefore, preferred CE (G) = c(H) is obtained.

2.2. Theorem: Assume a graph as G, P’ a graph property fulfilling
(1) Hereditary on SGs is P’,

(2) The full graph has property P’ if every linked component has it,
(3) A single edge contains property P'.

The least number of SGs possessing property P’ is X; (G) that is essential to wrap the edges of G, and the least
number of nodes that are essential is C; (G) in order that the resultant graph possesses the property P’. After

that, C;(G) = {log. X (G) 3.

Proof: Presented a graph G = (X, E) along with property P’. Assume H' = (X', E’) be the HG with X' =E as
well as E' = {E’ | E' ¢ X/, together with the SG of G induced by the edges in E’ are minimum in not possessing

property P'}. c(H") = B(H") = {log: X; (G)} is exhibited as in the proof of Theorem 3. It can be noticed from

(2) that a minimum graph G, not possessing property P’ is linked, and from (3) that G, contains at least ‘2’
edges. Thus, every node cut in G, generates a graph whose elements are SGs of G, not equivalent to G,. So, this
graph contains property P’. By substituting E e E by E?®, there corresponds a node cut of G is delineated to every
EC in H’ with node set partition Sy, S1. Therefore, the series of the corresponding node cuts in G yields a graph
that has no SG not possessing property P’ to a provided series of ¢(H") ECs, in H' removing the entire edges in

H'. So, c(H") > Cg (G) To every node cut in G, there corresponds an EC in H’ delineated by the partition S,, Si,
with S = | E | E € E. An edge in the node cut’s ensuing graph, S; = X’ - S, is E°. Thus, presented a series of
Cg (G) node cuts in G, such that the ensuing graph contains property P’, the series of the corresponding ECs in

H’ removes the entire edges, in H'. Thus, C; (G) =c(H) is acquired. So, Cg (G) =c¢(H) as preferred.

3. CONCLUSION

Thus, it can be deduced that the aforesaid consequence for an HG H delineates (H) to be the least number of 2-
colorable partial HGs of H that enclose the H’s edges. The EC and node cut in the HG p and p? properties must
be understood.
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