Bulletin of Pure and Applied Sciences.

Vol. 38E (Math & Stat.), No.1, 2019. P.297-305 Print version ISSN 0970 6577 Online version ISSN 2320 3226 DOI: 10.5958/2320-3226.2019.00029.8

FUZZY GAMMA SEMI-PREOPEN AND FUZZY GAMMA SEMI-PRECLOSED SETS IN FUZZY BITOPOLOGICAL SPACES

A. Nagoor Gani^{1,*}, J. Rameeza Bhanu²

Authors Affiliation

¹P.G. & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620020, India.

²P.G. & Research Department of Mathematics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu 620017, India.

*Corresponding Author

A.Nagoor Gani, P.G. & Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu 620020, India.

E-mail: ganijmc@yahoo.co.in

Received on 29.02.2019 Revised on 22.05.2019 Accepted on 03.06.2019

Abstract:

This article proposes the concept of fuzzy gamma semi-preopen (respectively, fuzzy gamma semi-preclosed) sets in fuzzy bitopological spaces, which is weaker than the concept of fuzzy strongly semiopen (respectively, fuzzy strongly semiclosed) set, fuzzy semi-preopen (respectively, fuzzy semi-preclosed) set, fuzzy semiopen (respectively, fuzzy gamma open (respectively, fuzzy gamma closed) set, fuzzy gamma semiopen (respectively, fuzzy gamma semiclosed) set and fuzzy gamma preopen (respectively, fuzzy gamma semiclosed) set and fuzzy gamma preopen (respectively, fuzzy gamma semi-preopen (respectively, fuzzy gamma semi-preclosed) sets with examples and investigates the relationship between these concepts and relevant concepts in fuzzy bitopological spaces. This article introduces the definition of fuzzy gamma semi-pre neighbourhood and fuzzy gamma semi-pre q- neighbourhood. Further, it characterizes fuzzy gamma semi-preinterior and fuzzy gamma semi-preclosure and establishes their fundamental properties.

Keywords: Fuzzy bitopological spaces, (δ_i, δ_j) F- γ -open, (δ_i, δ_j) F- γ -semi-preopen, (δ_i, δ_j) F- γ -semi-preopen, (δ_i, δ_j) F- γ -semi-pre neighbourhood, (δ_i, δ_j) F- γ -semi-preclosure.

2010 Mathematics Subject Classification: 54A40, 03E72.

1.INTRODUCTION

The notion of semi-preopen sets in topological spaces was introduced by D. Andrijevic [1] in the year 1986. F.H. Khedr, S.M. Al-Areefi and T. Noiri [10] studied semi-preopen sets along with their properties in bitopological spaces. The concept of fuzzy semi-preopen sets was introduced by J.H. Park and B.Y. Lee [18]. They established that fuzzy semi-preopen sets are weaker than the concepts of fuzzy semiopen or fuzzy preopen sets. Fuzzy bitopological spaces (Fbts, in short) was introduced by A. Kandil and M.E. El-Shafee [9] in 1989, which is an extension of fuzzy topological spaces and generalization of bitopological spaces. The concept of fuzzy- γ -open sets and fuzzy- γ -continuity were introduced in fuzzy bitopological spaces, by F.S. Mahmoud, M.A. Fath Alla and M.M. Khalaf [15] and related properties were studied.

In this article, we extend the notion of semi-preopen sets to Fuzzy γ -open sets to obtain (δ_i, δ_j) Fuzzy γ -semi-preopen sets in fuzzy bitopological spaces. This assists to examine the nature of (δ_i, δ_j) Fuzzy γ -semi-preopen

sets in fuzzy bitopological spaces and to study their aspects and attributes. This is beneficial in developing Fuzzy γ -semi-preopen pairwise continuous functions and extending their applications.

In section 3, we introduce (δ_i, δ_j) Fuzzy γ -semi-preopen sets and establish their related characteristics along with examples and counter examples. The concept of (δ_i, δ_j) Fuzzy γ -semi-preopen sets are weaker than the concept of (δ_i, δ_j) fuzzy strongly semiopen(respectively, (δ_i, δ_j) fuzzy strongly semiclosed) set, (δ_i, δ_j) fuzzy semi-preopen (respectively, (δ_i, δ_j) fuzzy semi-preclosed) set, (δ_i, δ_j) fuzzy preopen (respectively, (δ_i, δ_j) fuzzy preclosed) set, (δ_i, δ_j) fuzzy preopen (respectively, (δ_i, δ_j) fuzzy γ -semiclosed) set, (δ_i, δ_j) fuzzy γ -semiclosed) set and (δ_i, δ_j) fuzzy γ -preopen (respectively, (δ_i, δ_j) fuzzy γ -preopen (respectively, (δ_i, δ_j) fuzzy γ -preclosed) set.

In section 4, we define (δ_i, δ_j) fuzzy- γ -semi-preinterior and (δ_i, δ_j) fuzzy- γ -semi-preclosure along with their properties. Throughout this paper (X, δ_i, δ_j) (or simply X), denote fuzzy bitopological spaces (Fbts, in short). For a fuzzy set A in a fuzzy bitopological space X, δ_i -cl(A) and δ_i -int(A) denote the closure and interior with respect to the topology δ_i respectively.

2. PRELIMINARIES

Definition 2.1: Let X be a nonempty set and I = [0, 1]. A fuzzy set (briefly F-set) A in X is a mapping from X to I. A fuzzy set A of X is contained in a fuzzy set B of X denoted by $A \le B$ if and only if $A(x) \le B(x)$ for each $x \in X$.

A fuzzy point [26] with singleton support $x \in X$ and the value $\alpha \in [0,1]$ is denoted by x_{α} . The complement A' of a fuzzy set X is 1–A defined by (1-A) (x)= 1–A(x) for each $x \in X$. A fuzzy point $x_{\beta} \in A$ if and only if $\beta \le A(x)$.

Definition 2.2: [20]A fuzzy set A is the union of all fuzzy points which belong to A. A fuzzy point x_{β} is said to be quasicoincident with the fuzzy set A denoted by $x_{\beta}qA$ if and only if $\beta + A(x) > 1$.

A fuzzy set A is said to be quasicoincident [20] with B denoted by AqB if and only if there exists $x \in X$ such that A(x) + B(x) > 1. $A \le B$ if and only if I(AqB').

Definition 2.3: Let λ be a fuzzy set of a fuzzy topological space (X, δ) . Then λ is called

- (a) a F semiopen (briefly FSO) set of X if $\lambda \le cl$ (int (λ)) [2];
- (b) a F preopen (briefly FPO) set of X if $\lambda \leq int (cl(\lambda))$ [14];
- (c) a F strongly semiopen (briefly FSSO) set of X if $\lambda \leq \text{int} (\text{cl (int } (\lambda)))$ [3];
- (d) a F semi-preopen (briefly FSPO) set of X if $\lambda \le cl$ (int $(cl(\lambda))$) [18];

The set of all F-so (resp. F-sc), F-po (resp. F-pc), F-sso (resp. F-ssc), F-spo (resp. F-spc) of a fuzzy topological space will be denoted by FSO(X) (resp. FSC(X)), FPO(X) (resp. FPC (X)), F-SSO(X) (resp. F-SSC(X)), F-SPO(X) (resp. F-SPC(X)).

Definition 2.4: [8]. Let (X, δ) be a fuzzy topological space. Then ν is called a F - γ open $(F - \gamma \text{ closed})$ set of Xif $\nu \leq \text{int}$ (cl (ν)) \vee cl (int (ν)) ($\nu \geq \text{cl}$ (int (ν)) \wedge int (cl (ν))). The family of all F- γ open (respectively F- γ closed) sets of X is denoted by F- γ O(X) (resp. F- γ C(X)).

Lemma 2.5: [2]. For a family $\{\lambda_{\alpha}\}$ of fuzzy sets of a Fts X, \vee cl(λ_{α}) \leq cl($\vee\lambda_{\alpha}$) and \vee int(λ_{α}) \leq int($\vee\lambda_{\alpha}$)

Lemma 2.6: [2]. For a fuzzy set λ of a F-ts X, (i) (int (λ))' = cl (λ') and (ii) $(cl(\lambda))$ ' = int (λ') **Lemma 2.7:** [2]. For a fuzzy set λ of a F-ts X, (a) 1-int λ =cl $(1-\lambda)$ and (b) 1-cl λ =int $(1-\lambda)$.

Definition 2.8: [9]. A set X on which are defined two (arbitrary) F-topologies δ_l and δ_2 is called a F-bitopological space (briefly F-bts) and denoted by (X, δ_l, δ_2) . As to the notions, we shall write δ_i -int(λ) and δ_i -cl(λ) to mean respectively the interior and closure of a F-set λ with respect to the F-topology δ_i in F-bts (X, δ_i, δ_j) , with δ_i -F-o set and δ_i -F-c set, we mean respectively δ_i -F-open and δ_i -F-closed set. The indices i and j take values {1,2} throughout this paper and i \neq i, i=j gives the known results in F-ts.

```
Definition 2.9: [23]. Let \lambda be a fuzzy set of a F-bts (X, \delta_i, \delta_j). Then \lambda is called (a) a (\delta_i, \delta_j) F semiopen (briefly (\delta_i, \delta_j) F-so) set of X if \lambda \leq \delta_j-cl (\delta_i-int (\lambda)); (b) a (\delta_i, \delta_j) F semiclosed (briefly (\delta_i, \delta_j) F-sc) set of X if \lambda \geq \delta_j-int (\delta_i-cl (\lambda)); The set of all (\delta_i, \delta_j) F-so, (resp. (\delta_i, \delta_j) F-sc) sets of a F-bts X will be denoted by (\delta_i, \delta_j) FSO(X), (resp. (\delta_i, \delta_j) FSC(X)).
```

Definition 2.10: [22]. Let λ be a fuzzy set of a F-bts (X, δ_i, δ_i) . Then λ is called

(a) a (δ_i, δ_i) F strongly semiopen (briefly (δ_i, δ_i) F-sso) set of X if $\lambda \leq \delta_i$ -int $(\delta_i$ -cl $(\delta_i$ -int (λ)));

(b) a (δ_i, δ_i) F strongly semiclosed (briefly (δ_i, δ_i) F-ssc) set of X if $\lambda \geq \delta_i$ -cl $(\delta_i$ -int $(\delta_i$ cl $(\lambda))$);

(c) a (δ_i, δ_i) F preopen (briefly (δ_i, δ_i) F-po) set of X if $\lambda \leq \delta_i$ -int $(\delta_i$ -cl (λ));

(d) a (δ_i, δ_j) F preclosed (briefly (δ_i, δ_j) F-pc) set of X if $\lambda \ge \delta_i$ -cl $(\delta_r$ -int (λ));

The set of all (δ_i, δ_i) F-sso, (δ_i, δ_i) F-ssc, (δ_i, δ_i) F-po, (δ_i, δ_i) F-pc sets of a F-bts X will be denoted by (δ_i, δ_i) FSSO(X), (δ_i, δ_i) FSSC(X), (δ_i, δ_i) FPO(X) and (δ_i, δ_i) FPC(X) respectively.

Definition 2.11: [19]. Let λ be a fuzzy set of a Fbts (X, δ_i, δ_i) . Then λ is called

(a) a (δ_i, δ_i) F semi-preopen (briefly (δ_i, δ_i) F-spo) set of X if $\lambda \leq \delta_i$ -cl $(\delta_i$ -int $(\delta_i$ -cl (λ)));

(b) a (δ_i, δ_i) F semi-preclosed (briefly (δ_i, δ_i) F-spc) set of X if $\lambda \geq \delta_i$ -int $(\delta_i$ -cl $(\delta_i$ -int (λ)));

The set of all (δ_i, δ_i) F-spo, (respectively (δ_i, δ_i) F-spc) sets of a F-bts X will be denoted by (δ_i, δ_i) FSPO(X), (respectively (δ_i, δ_i) FSPC(X)).

Definition 2.12: [15]. Let λ be a fuzzy set of a F-bts (X, δ_i, δ_j) . Then λ is called a (δ_i, δ_j) F γ open (respectively, (δ_i, δ_j) F γ closed), briefly (δ_i, δ_j) F- γ 0 (respectively, (δ_i, δ_j) F- γ 0) if $\lambda \leq \delta_i$ -int $(\delta_i$ - cl $(\lambda)) \vee \delta_i$ -cl $(\delta_i$ -int $(\lambda))$, respectively $\lambda \geq \delta_i$ -cl $(\delta_i$ -int $(\lambda)) \wedge \delta_i$ -int $(\delta_i$ -cl (λ)). The family of all (δ_i, δ_i) F- γ o (respectively (δ_i, δ_i) F- γ c) sets of X is denoted by (δ_i, δ_i) F- γ O(X) and (respectively (δ_i, δ_i) F- γ C(X)).

Remark 2.13: [15] (i) The union of (δ_i, δ_j) F- γ o sets is a (δ_i, δ_j) F- γ o set.

(ii) The intersection of (δ_i, δ_i) F-yc sets is a (δ_i, δ_i) F-yc set.

Definition 2.14: [15]. Let λ be a fuzzy set of a F-bts (X, δ_i, δ_j) . Then the (δ_i, δ_j) γ -closure $((\delta_i, \delta_j), \gamma$ -cl for short) and (δ_i, δ_i) γ -interior $((\delta_i, \delta_i)$ γ -int for short) of λ are defined as (δ_b, δ_i) γ -cl $(\lambda) = \wedge \{v : v \text{ is } (\delta_b, \delta_i) \text{ F-} \gamma \text{ closed and } \lambda \leq v \}$ and (δ_b, δ_i) γ -int $(\lambda) = \vee \{v : v \text{ is } (\delta_b, \delta_i) \text{ F-} \gamma \text{ open and } v \leq \lambda \}$

Remark 2.15: (i) (δ_i, δ_i) γ -cl (λ) is the intersection of all (δ_i, δ_i) F- γ c sets of X containing λ .

(ii) (δ_i, δ_i) γ -int (λ) is the union of all (δ_i, δ_i) F- γ 0 sets of X contained in λ .

(iii) δ_{i} - γ cl (λ) is the intersection of all (δ_{i} , δ_{i}) F- γ c sets of X containing λ with respect to δ_{i} .

(iv) δ_i -yint (λ) is the union of all (δ_i , δ_i) F-yo sets of X contained in λ with respect to the δ_i .

Definition 2.16: [16]. Let A be a fuzzy set of a F-bts (X, δ_i, δ_i) . Then A is called a

(a) (δ_i, δ_j) F- γ -semiopen (briefly (δ_i, δ_j) F- γ -so) set if $A \le \delta_i$ -cl $(\delta_i - \gamma int(A))$.

(b) (δ_i, δ_i) F- γ -semiclosed (briefly (δ_i, δ_i) F- γ -sc) set if $A \ge \delta_i$ int $(\delta_i - \gamma \operatorname{cl}(A))$.

The family of all (δ_i, δ_i) Fy so (respectively (δ_i, δ_i) F-y sc)sets of X is denoted by (δ_i, δ_i) F-y SO(X) and respectively (δ_i, δ_i) F- γ SC(X)).

Definition 2.17: [17]. Let A be a fuzzy set of a fuzzy bitopological space (X, δ_i, δ_i) . Then A is called a (a) (δ_i, δ_i) F- γ preopen (briefly (δ_i, δ_i) F- γ po) set if $A \le \delta_i$ int $(\delta_i \gamma cl(A))$.(b) (δ_i, δ_i) F- γ preclosed (briefly (δ_i, δ_i) F- γ pc set if $A \ge \delta_i$ cl ($\delta_i \gamma$ int(A)). The family of all (δ_i , δ_i) F- γ po (respectively (δ_i , δ_i) F- γ pc) sets of X is denoted by (δ_i, δ_i) F- γ PO(X) and (respectively (δ_i, δ_i) F- γ PC(X)).

3. MAIN RESULTS

(δ_i, δ_i) F- γ Semi preopen and (δ_i, δ_i) F- γ Semi preclosed set

Definition 3.1: Let A be a fuzzy set of a fuzzy bitopological space (X, δ_i, δ_i) . Then A is called a

- (a) (δ_i, δ_i) F- γ semi preopen (briefly (δ_i, δ_i) F- γ spo) set if $A \le \delta_i cl$ $(\delta_i \text{ int } (\delta_i \gamma cl(A)))$.
- (b) (δ_i, δ_i) F- γ semi preclosed (briefly (δ_i, δ_i) F- γ spc set if $A \ge \delta_i$ int $(\delta_i$ cl $(\delta_i \gamma int(A)))$.

The family of all (δ_i, δ_i) F- γ spo (respectively (δ_i, δ_i) F- γ spc) sets of X is denoted by (δ_i, δ_i) F- γ SPO(X) and (respectively (δ_i, δ_i) F- γ SPC(X)).

Example 3.2: Let (X, δ_1, δ_2) be a Fbts with $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$, $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ and fuzzy sets $A = \{a_{0.5}, b_{0.6}, c_{0.3}\}, B = \{a_{0.3}, b_{0.8}, c_{0.6}\}. \text{ Here } (\delta_{l}, \delta_{2}) \text{ F-} \gamma \text{ o sets} = \{\tilde{0}, \tilde{1}, A, B\}. \text{ The sets A and B (resp. A' and B')}$ are (δ_1, δ_2) F- γ -spo (resp. (δ_1, δ_2) F- γ -spc).

Theorem 3.3: Let A be a fuzzy subset of a Fbts (X, δ_i, δ_i) . Then the following are equivalent

- (a) A is (δ_i, δ_i) F- γ -semi preopen set.
- (b) A' is (δ_i, δ_i) F- γ -semi preclosed set.
- (c) There exists a (δ_i, δ_i) F- γ po set U in X, such that $U \le A \le \delta c l(U)$.

(d) There exists a (δ_i, δ_j) F- γ pc set V in X, such that δ_i int(V) $\leq A' \leq V$.

Proof: (a) \Leftrightarrow (b) Follows from Definition 3.1 and Lemma 2.6[2].

- (a) \Rightarrow (c) A is (δ_i, δ_j) F- γ -spo implies that $A \le \delta_j \text{cl }(\delta_i \text{ int } (\delta_j \chi \text{cl}(A)))$. Let $U = \delta_i \text{ int } (\delta_j \chi \text{cl}(A))$. Then U is a (δ_i, δ_j) F- γ po set. Then $A \le \delta_j \text{cl }(U)$ and by [17] (Theorem 3.6) there exists a δ_i F o set H in X such that $U \le H = A \le \delta_j \text{cl}(U)$.
- (c) \Rightarrow (a) Now suppose that there exists a (δ_i, δ_j) F- γ po set U in X, such that $U \le A \le \delta_j cl(U)$. Then $U \le \delta_i$ int $(\delta_j \gamma cl(U))$. As $U \le A$, $\delta_j \gamma cl(U) \le \delta_j \gamma cl(A)$. Then δ_i int $(\delta_j \gamma cl(U)) \le \delta_i$ int $(\delta_j \gamma cl(A))$. Consider $A \le \delta_j cl(U)$. Then $A \le \delta_j cl(\delta_i) = \delta$
- (b) \Rightarrow (d) A' is (δ_i, δ_j) F- γ -spc. By definition 3.1, A' $\geq \delta_j$ int $(\delta_i \text{ cl } (\delta_j \gamma \text{int}(A')))$. Let $V = \delta_i \text{cl}(\delta_j \gamma \text{int}(A'))$ and so V is a (δ_i, δ_j) F- γ pc set. Then A' $\geq \delta_j$ int(V) and by [17] (Theorem (3.7) there exists a δ_i F c set F = A' in X such that δ_j $\gamma \text{int}(V) \leq F = A' \leq V$.
- (d) \Rightarrow (b) Suppose that there exists a (δ_i, δ_j) F- γ pc set V in X, such that δ_j int(V) \leq A' \leq V. Then V \geq δ_i cl $(\delta_i \gamma int(V))$. As A' \geq $\delta_i int(V) \geq \delta_i$ int $(\delta_i cl (\delta_i \gamma int(V)))$. Thus A' is (δ_i, δ_j) F- γ -spc.
- **Remark 3.4:** The concepts of (δ_i, δ_j) F- γ -semi preopen (resp. (δ_i, δ_j) F- γ -semi preclosed) and (δ_j, δ_i) F- γ -semi preopen (resp. (δ_i, δ_i) F- γ -semi preclosed) set are independent. The following example illustrates this.
- **Example 3.5:** Let (X, δ_1 , δ_2) be a F-bts where X ={a, b, c}, δ_1 ={0, 1, A, E} and δ_2 = {0, 1, B, C} with fuzzy sets A={a_{0.5}, b_{0.7}, c_{0.4}}, E={a_{0.5}, b_{0.8}, c_{0.5}}, B={a_{0.6}, b_{0.7}, c_{0.4}}, C={a_{0.4}, b_{0.3}, c_{0.5}}. Here (δ_1 , δ_2) F-γ-o sets = {0,1, A, E, B} and (δ_1 , δ_2) F-γ-spo sets = {0,1, A, B, E}. Also (δ_2 , δ_1) F-γ-o sets = {0,1, A, E, B, C} and (δ_2 , δ_1) F-γ-spo sets = {0,1, A, E, B, C}.
- Let D = {a_{0.5}, b_{0.1}, c_{0.3}}. Consider δ_2 cl (δ_1 int ($\delta_2\gamma$ cl(D))) = δ_2 cl(A) = C'. Thus, D is (δ_1 , δ_2) F γ spo but δ_1 cl (δ_2 int ($\delta_1\gamma$ cl(D)))=0 and D >0 so D is not (δ_2 , δ_1) F γ spo.

Now δ_I cl $(\delta_2$ int $(\delta_1 \gamma \text{cl}(C))) = A'$ and $C \le A'$ but δ_2 cl $(\delta_I$ int $(\delta_2 \gamma \text{cl}(C))) = 0$. Thus, C is not (δ_I, δ_2) F γ spo and C is (δ_2, δ_I) F γ spo.

Theorem 3.6: In a F-bts (X, δ_i, δ_j) , if a fuzzy set A is (δ_i, δ_j) F- γ -spo $((\delta_i, \delta_j)$ F- γ -spc) and (δ_j, δ_i) F- γ -sc $((\delta_j, \delta_i)$ F- γ -sc), then A is (δ_i, δ_i) F- γ -so $((\delta_i, \delta_i)$ F- γ -sc).

Proof: Let A be a (δ_i, δ_j) F- γ -spo and (δ_j, δ_i) F- γ -sc set.A is (δ_j, δ_i) F- γ -sc implies that δ_i int $(\delta_j \gamma \operatorname{cl}(A)) \le A$. That is δ_i int $(\delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A))) \le \delta_i$ int $(\delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A))) \le \delta_i$ int $(\delta_j \gamma \operatorname{cl}(A))$ as $A \le \delta_j$ cl $(A) \le \delta_j \gamma \operatorname{cl}(A)$. Thus, δ_i int $(\delta_j \gamma \operatorname{cl}(A)) = \delta_i$ int (A).

Using this, in the definition of (δ_i, δ_j) F- γ -spo, we have $A \leq \delta_j cl(\delta_i int(\delta_j \gamma cl(A))) \leq \delta_j cl(\delta_i int(A))$. Hence A is (δ_i, δ_j) F- γ -so.

Theorem 3.7: In a F-bts (X, δ_i, δ_j) , if a fuzzy set A is (δ_i, δ_j) F- γ -spo $((\delta_i, \delta_j)$ F- γ -spc) and (δ_j, δ_i) F- γ c $((\delta_j, \delta_i)$ F- γ c o), then A is (δ_i, δ_j) F- γ c $((\delta_i, \delta_j)$ F- γ c).

Proof: Follows from Theorem 3.6 and from [16].

Theorem 3.8: In a F-bts (X, δ_i, δ_j) , a fuzzy set A of X is (δ_i, δ_j) F- γ -spo if and only if there exists a δ_j F- γ -c H set such that $A \le \delta_i cl$ $(\delta_i \text{ int}(H))$.

Proof: Suppose A is (δ_i, δ_j) F- γ -spo, then $A \le \delta_j cl$ $(\delta_i \text{ int } (\delta_j \gamma cl(A))$. Take $H = \delta_j \gamma cl(A)$. Thus, we have H is a δ_j F- γ -c set and $A \le \delta_j cl$ $(\delta_i \text{ int}(H))$.

Conversely suppose there exists a δ_j F- γ -c set H such that $A \le \delta_j$ cl (δ_i int(H)). Put $H = \delta_j \gamma$ cl(A). Then A is (δ_i , δ_j) F- γ -spo.

Theorem 3.9: In a F-bts (X, δ_i, δ_j) , a fuzzy set B of X is (δ_i, δ_j) F- γ -spc if and only if there exists a δ_j F- γ -o set G such that δ_j int $(\delta_i \text{ cl}(G)) \leq B$.

Proof:Follows from Definition 3.1.

Proposition 3.10: The union of two (δ_i, δ_i) F- γ spo sets is a (δ_i, δ_i) F- γ spo set in a F-bts (X, δ_i, δ_i) .

Theorem 3.11: An arbitrary union of (δ_i, δ_j) Fy spo sets is a (δ_i, δ_j) Fy spo set in a F-bts (X, δ_i, δ_j) .

Proof: Let $\{A_{\alpha}\}_{\alpha \in A}$ be a collection of (δ_i, δ_j) F- γ spo sets in a F-bts (X, δ_i, δ_j) . Then for each $\alpha \in A$, A_{α} is (δ_i, δ_j) F- γ spo. Then $\bigvee_{\alpha \in \Delta} A_{\alpha} \leq \bigvee_{\alpha \in \Delta} \delta_j \operatorname{cl}(\delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A))) = \delta_j \operatorname{cl}[\bigvee_{\alpha \in \Delta} \delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A))] \leq \delta_j \operatorname{cl}(\delta_i \operatorname{int}(\bigvee_{\alpha \in \Delta} \delta_j \gamma \operatorname{cl}(A))) = \delta_j \operatorname{cl}(\delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A))) = \delta_j \operatorname{cl}(\delta_i \operatorname{int}(\delta_j \gamma \operatorname{cl}(A)))$. Thus, $\{\bigvee_{\alpha \in \Delta} A_{\alpha}\}$ is (δ_i, δ_j) F- γ po.

Remark 3.12: Intersection of two (δ_i, δ_j) F- γ spo sets need not be a (δ_i, δ_j) F- γ spo set. Also, the intersection of a (δ_i, δ_j) F γ spo set and a δ Fo set is not necessarily (δ_i, δ_j) F γ spo and the intersection of a (δ_i, δ_j) F γ spo and a (δ_i, δ_j) F γ spo is not necessarily (δ_i, δ_j) F γ spo which is shown in the following example. It should be noted that in ordinary topological setting the intersection of a semi-preopen set and an open set is semi-preopen [1].

Example 3.13: Let (X, δ_1, δ_2) be a F-bts with $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ and $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ where $A = \{a_{0.7}, b_{0.5}, c_{0.4}\}$ and $B = \{a_{0.8}, b_{0.3}, c_{0.2}\}$. Here (δ_l, δ_2) F γ spo sets = $\{\tilde{0}, \tilde{1}, A, B\}$. Let $C = \{a_{0.2}, b_{0.8}, c_{0.5}\}$ then $A \land C = \{a_{0.2}, b_{0.5}, c_{0.4}\}$. C is (δ_l, δ_2) F γ spo but $A \land C$ is not (δ_l, δ_2) F γ spo since δ_2 cl $(\delta_l$ int $(\delta_2 \gamma cl(A))) = 0$ and $A \land C \not\leq 0$.

The intersection of a (δ_i, δ_j) $F\gamma$ spo set and a δ_i Fo set is not necessarily (δ_i, δ_j) $F\gamma$ spo. Here A is δ_l Fo and C is (δ_l, δ_l) $F\gamma$ spo but $A \wedge C$ is not (δ_l, δ_l) $F\gamma$ spo.

Consider δ_I int $(\delta_2$ cl $(\delta_I$ int (A))) = 1 and $A \le 1$. Thus, A is (δ_I, δ_2) Fsso whereas δ_I int $(\delta_2$ cl $(\delta_I$ int $(A \land C))) = 0$ and so $A \land C$ is not (δ_I, δ_2) Fyspo.

The intersection of a (δ_i, δ_j) F- γ spo set and a (δ_i, δ_j) Fsso set is not necessarily (δ_i, δ_j) $F\gamma$ spo. Here A is (δ_i, δ_2) Fsso and C is (δ_i, δ_2) $F\gamma$ spo but $A \wedge C$ is not (δ_i, δ_2) Fsso.

Proposition 3.14: Intersection of two (δ_b, δ_l) F γ spc sets is a (δ_l, δ_l) F γ spc set in a F-bts (X, δ_b, δ_l) .

Theorem 3.15: Anyarbitrary intersection of (δ_i, δ_i) F- γ spc sets is a (δ_i, δ_i) F- γ spc set in a F-bts (X, δ_i, δ_i) .

Proof Consider $\{A_{\alpha}\}_{\alpha\in\Delta}$ as a collection of (δ_i, δ_j) F- γ -spc sets in (X, δ_i, δ_j) . For each $\alpha\in\Delta$, A_{α} is a (δ_i, δ_j) F- γ -spc. Then for each $\alpha\in\Delta$, A_{α}' is (δ_i, δ_j) F- γ -spo which implies $\vee_{\alpha\in\Delta}A_{\alpha}'$ is (δ_i, δ_j) F- γ -spo. By Theorem 3.3, $(\vee_{\alpha\in\Delta}A_{\alpha}')'$ is (δ_i, δ_j) F- γ -spc. $\wedge_{\alpha\in\Delta}(A_{\alpha}')'$ is (δ_i, δ_j) F- γ -spc. Thus, $\wedge_{\alpha\in\Delta}A_{\alpha}$ is (δ_i, δ_j) F- γ -spc.

Remark 3.16: The union of two (δ_i, δ_j) Fyspc sets need not be (δ_i, δ_j) Fyspc which is illustrated below.

Example 3.17: Let (X, δ_l, δ_2) be a F-bts with $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ and $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ where A and B are fuzzy sets defined in X as $A = \{a_{0.5}, b_{0.8}, c_{0.4}\}$ and $B = \{a_{0.8}, b_{0.1}, c_{0.6}\}$. (δ_l, δ_2) Fypc sets $= \{\tilde{0}, \tilde{1}, A', B'\}$. Let $C = \{a_{0.2}, b_{0.7}, c_{0.8}\}$ then $C' = \{a_{0.8}, b_{0.3}, c_{0.2}\}$ and $A' \vee C' = \{a_{0.8}, b_{0.3}, c_{0.6}\}$. Here $A' \vee C'$ is not (δ_l, δ_2) Fypc. Thus, union of two (δ_l, δ_l) Fypc sets need not be (δ_l, δ_l) Fypc.

Theorem 3.18: Every δ_i F o set is (δ_i, δ_j) F- γ spo and every δ_i F γ o is (δ_i, δ_j) F- γ spo in a F-bts (X, δ_i, δ_j) .

Proof: Let A be δ_i F o. Then δ_i int $(\delta_j \gamma cl(A)) = \delta_j \gamma cl(A) \ge A$ which implies $A \le \delta_i$ int $(\delta_j \gamma cl(A))$. Then δ_j cl (A) $\le \delta_j$ cl (δ_i int $(\delta_j \gamma cl(A))$). That is $A \le \delta_j$ cl (δ_i int $(\delta_j \gamma cl(A))$). Thus, A is (δ_i, δ_j) F- γ spo.

Now let A be $\delta_i F \gamma$ o. Then $\delta_i \gamma$ int (A) = δ_i int (A) = A. Then, as before A is (δ_i, δ_i) F- γ spo.

Theorem 3.19: Every (δ_i, δ_i) F- γ o set is (δ_i, δ_i) F- γ spo in a F-bts (X, δ_i, δ_i) .

Proof Let A be (δ_i, δ_j) F- γ o. By the definition 2.12, A $\leq \delta_i$ int $(\delta_j \operatorname{cl}(A)) \vee \delta_j \operatorname{cl}(\delta_i \operatorname{int}(A))$. That is A $\leq \delta_i \operatorname{int}(\delta_j \operatorname{cl}(A)) \vee \delta_j \operatorname{cl}(A)$. Then A $\leq \delta_i \operatorname{int}(\delta_i \operatorname{cl}(A))$ which implies that A $\leq \delta_i \operatorname{cl}(\delta_i \operatorname{int}(\delta_i \operatorname{\gamma cl}(A)))$. Thus A is (δ_i, δ_i) F- γ spo.

Theorem 3.20: Every (δ_i, δ_i) Fssoset is (δ_i, δ_i) F - γ spo in a F-bts (X, δ_i, δ_i) .

Proof Let A be (δ_i, δ_j) Fsso. Then $A \le \delta_i$ int $(\delta_j \text{ cl } (\delta_i \text{ int } (A)))$. That is $A \le \delta_j \text{ cl } (\delta_i \text{ int } (A))$ which gives that $A \le \delta_i \text{ cl } (\delta_i \text{ int } (\delta_j \text{ cl } (\delta_i \text{ cl } (\delta_i \text{ int } (\delta_j \text{ cl } (\delta_i \text{ cl }$

Theorem 3.21: Every (δ_i, δ_i) Fso set is (δ_i, δ_i) F- γ spo and every (δ_i, δ_i) F- γ sois (δ_i, δ_i) F- γ spo in a F-bts (X, δ_i, δ_i) .

Proof: Let A be (δ_i, δ_j) Fso. Then $A \le \delta_j$ cl $(\delta_i \text{ int } (A))$ which implies that $A \le \delta_j$ cl $(\delta_i \text{ int } (\delta_j \gamma \text{cl}(A)))$. Then A is (δ_i, δ_j) F- γ spo.

Similarly, if A isa (δ_i, δ_j) F- γ so, then A is (δ_i, δ_j) F- γ spo.

Theorem 3.22: Every (δ_i, δ_j) F po set is (δ_i, δ_j) F- γ spo in a F-bts (X, δ_i, δ_j) .

Proof: Follows from the Definition 2.10.

Remark 3.23: The converse of the above theorems need not be true which is illustrated below.

Example 3.24: Let (X, δ_1, δ_2) be a F-bts where $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ and $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ with fuzzy sets $A = \{a_{0.6}, b_{0.2}, c_{0.3}\}$ and $B = \{a_{0.4}, b_{0.4}, c_{0.5}\}$. Here (δ_1, δ_2) F γ oset $= \{\tilde{0}, \tilde{1}, A\}$.

We have δ_2 cl (δ_1 int (δ_2 γ cl(A))) = 1 = δ_2 cl (δ_1 int (δ_2 γ cl(B))), so (δ_1 , δ_2) F γ spo sets = { $\tilde{0}$, $\tilde{1}$, A, B}. Here B (resp. B') is (δ_1 , δ_2) F γ spo (resp. (δ_1 , δ_2) F γ spo but not δ_1 Fo (resp. δ_1 F c) as well as not δ_1 F γ o

(resp. $\delta_I F \gamma$ c). Also, B (resp. B') is not $(\delta_I, \delta_2) F \gamma$ o (resp. $(\delta_I, \delta_2) F \gamma$ c).

Consider δ_2 cl $(\delta_1$ int $\gamma(B)$) = 0 and B > 0. Thus, B (resp. B') is (δ_1, δ_2) F γ spo (resp. (δ_1, δ_2) F γ spc) but not (δ_1, δ_2) F γ so (resp. (δ_1, δ_2) F γ so) and not (δ_1, δ_2) Fso (resp. (δ_1, δ_2) Fso).

Now consider δ_l int(δ_2 cl (B))=A but B>A. Thus, B (resp. B') is not (δ_l , δ_2)Fpo(resp. (δ_l , δ_2) Fpc).

Here δ_l int $(\delta_2$ cl $(\delta_l$ intB))=0 and B>0. Thus, B (resp. B') is not (δ_l, δ_2) Fsso(resp. (δ_l, δ_2) Fssc).

Theorem 3.25: Every (δ_i, δ_j) F γ po set is (δ_i, δ_j) F γ spo in a F-bts (X, δ_i, δ_j) .

Proof: Let A be (δ_i, δ_j) F- γ po. From the Definition 2.17 we have $A \leq \delta_i$ int $(\delta_j \gamma cl(A))$. That is $\delta_j cl(A) \leq \delta_j cl(\delta_i)$ int $(\delta_j \gamma cl(A))$ which implies $A \leq \delta_j cl(\delta_i)$ int $(\delta_j \gamma cl(A))$.

Remark 3.26: The converse of the above theorem is not true which is illustrated the following example.

Example 3.27: Let X={a, b, c}, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ and $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ then (X, δ_1, δ_2) is a F-bts with fuzzy sets $A = \{a_{0.4}, b_{0.3}, c_{0.2}\}$ and $B = \{a_{0.5}, b_{0.3}, c_{0.4}\}$. Here (δ_1, δ_2) F γ oset = $\{\tilde{0}, \tilde{1}, A, B\}$.

Here, δ_2 cl (δ_1 int ($\delta_2\gamma$ cl(A))) = B' = δ_2 cl (δ_1 int ($\delta_2\gamma$ cl(B))), A \leq B' and B \leq B', so (δ_1 , δ_2) F γ spo set= { $(\tilde{0}, \tilde{1}, A, B)$.

Consider δ_I int $(\delta_2 \varkappa l(B)) = A$ and B > A. Thus, B (resp. B) is $(\delta_I, \delta_2) F \gamma$ spo (resp. $(\delta_I, \delta_2) F \gamma$ spc) but not $(\delta_I, \delta_2) F \gamma$ (resp. $(\delta_I, \delta_2) F \gamma$).

Theorem 3.28: Every (δ_i, δ_j) Fspo set is (δ_i, δ_j) F γ spo in a F-bts (X, δ_i, δ_j) .

Proof: Follows from the Definition 2.11.

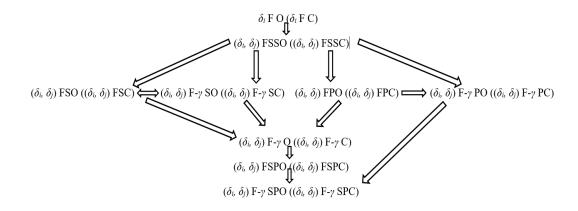
Remark 3.29: Converse of the above theorem does not hold as given in the following example.

Example 3.30: Let $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$ and $\delta_2 = \{\tilde{0}, \tilde{1}, B\}$ then (X, δ_1, δ_2) is a F-bts with fuzzy sets $A = \{a_{0.8}, b_{0.4}, c_{0.6}\}$ and $B = \{a_{0.3}, b_{0.2}, c_{0.4}\}$. Here (δ_1, δ_2) F γ oset = $\{\tilde{0}, \tilde{1}, A\}$.

Here, δ_2 cl (δ_1 int ($\delta_2 \gamma$ cl(A))) = 1 = δ_2 cl (δ_1 int ($\delta_2 \gamma$ cl(B))). Therefore (δ_1 , δ_2) F γ sposet = { $\tilde{0}$, $\tilde{1}$, A, B}.

Consider δ_2 cl (δ_1 int (δ_2 cl(B)))=0 and B > 0. Thus B (resp. B') is (δ_1 , δ_2) F γ spo (resp. (δ_1 , δ_2) F γ spc) but not (δ_1 , δ_2) Fspo (resp. (δ_1 , δ_2) Fspo).

Remark 3.31: Thus, we have that (δ_i, δ_j) F γ spo sets are weaker than the concepts of (δ_i, δ_j) Fsso, (δ_i, δ_j) Fso, (δ_i, δ_j) Fpo, (δ_i, δ_j) F γ o, (δ_i, δ_j) F γ so, (δ_i, δ_j) F γ po and (δ_i, δ_j) Fspo set. This is shown in the figure.



Theorem 3.32: Let (X, δ_i, δ_j) be a F-bts and A be a fuzzy set of X. Then A is (δ_i, δ_j) Fyspo if and only if for each fuzzy point $x_B \in A$ there exists a (δ_i, δ_j) Fyspo set H such that $x_B \in H \leq A$.

Proof : Suppose A is a (δ_i, δ_j) F γ spo set. By Theorem 3.3, there exists a (δ_i, δ_j) F γ po set H such that H \leq A. Now take H = A for every $x_B \in A$. Then H is (δ_i, δ_j) F γ spo.

Conversely, suppose for every fuzzy point $x_{\beta} \in A$, there exists a (δ_i, δ_j) F pspo set H_{β} such that $x_{\beta} \in H_{\beta} \le A$. Then $\{H_{\beta}\}$ is a collection of (δ_i, δ_j) F pspo sets such that, for every $x_{\beta} \in A$, $x_{\beta} \in H_{\beta i} \le A$, $\beta_i \in \Delta$ and further $\bigcup_{\beta i \in \Delta} H_{\beta i} = A$. Now, $H_{\beta i}$ is (δ_i, δ_j) F pspo which implies that $\bigcup_{\beta i \in \Delta} H_{\beta i} = A$ is (δ_i, δ_j) F pspo.

4. (δ_i, δ_j) FUZZY- γ -SEMI PREINTERIOR AND (δ_i, δ_j) FUZZY- γ -SEMI PRECLOSURE

Definition 4.1: Let A be a fuzzy set of a F-bts (X, δ_i, δ_j) . Then the (δ_i, δ_j) γ - semi preclosure $((\delta_i, \delta_j)\gamma$ -spcl, for short) and (δ_i, δ_j) γ -semi preinterior $((\delta_i, \delta_j)\gamma$ -spint, for short) of A are defined as (i) (δ_i, δ_j) γ - sp cl $(A) = A \setminus B : B$ is (δ_i, δ_j) F- γ -sp closed and $A \subseteq B \setminus B : B$ is (δ_i, δ_j) F- γ -sp open and $B \subseteq A \setminus B : B$ is (δ_i, δ_j) F- γ -sp open and (δ_i, δ_j) F- $(\delta_i, \delta_$

Proposition 4.2: Let A be a fuzzy set of a F-bts (X, δ_i, δ_i) . Then

- (a) (δ_i, δ_i) γ -sp cl $(A') = ((\delta_i, \delta_i) \gamma$ -sp int (A))'.
- (b) $(\delta_i, \delta_j) \gamma$ -sp int $(A') = ((\delta_i, \delta_j) \gamma$ -sp cl (A))'.

Proof: Follows from the Definition 4.1.

Definition 4.3: Let (X, δ_i, δ_j) be a fuzzy bitopological space and x_β is a fuzzy point of X. A fuzzy set A of X is called

- (a) (δ_i, δ_j) F- γ semi pre neighbourhood (briefly, (δ_i, δ_j) F- γ -semi pre nbhd) of x_β if there exists a (δ_i, δ_j) F- γ -spo set O such that $x_\beta \in O \le A$.
- (b) (δ_i, δ_j) F- γ semi preq neighbourhood (briefly, (δ_i, δ_j) F- γ -semi pre q nbhd) of x_β if there exists a (δ_i, δ_j) F- γ -spo set O such that x_β q O \leq A.

A. Properties of (δ_b, δ_j) F- γ -Semi preinterior and (δ_b, δ_j) F- γ -Semi preclosure Operators

Theorem 4.4: Let (X, δ_i, δ_i) be a F-bts. Then for any fuzzy sets A and B of X,

- (a) $(\delta_i, \delta_j) \gamma$ -sp int $(\tilde{0}) = \tilde{0}$ and $(\delta_i, \delta_j) \gamma$ -sp int $(\tilde{1}) = \tilde{1}$.
- (b) $\delta_i \operatorname{int}(A) \leq (\delta_i, \delta_i) \gamma$ -sp $\operatorname{int}(A) \leq A$.
- (c) A is (δ_i, δ_j) F- γ spo if and only if A = (δ_i, δ_j) γ -sp int(A).
- (d) $(\delta_i, \delta_j)\gamma$ -sp int(A) is $(\delta_i, \delta_j)F$ - γ -spo set and $(\delta_i, \delta_j)\gamma$ -sp int $((\delta_i, \delta_j)\gamma$ -sp int(A)) = $(\delta_i, \delta_j)\gamma$ -sp int(A).
- (e) If $A \le B$, then (δ_i, δ_j) γ -sp int $(A) \le (\delta_i, \delta_j)$ γ -sp int (B).

Proof: (a), (b) and (c) follow from the Definition 4.1.(d) From Definition 4.1 it follows that (δ_i, δ_j) γ -sp int (A) is (δ_i, δ_j) F- γ -spo. From (c) other result holds.

(e) Let $A \le B$. From (b) we have, (δ_i, δ_j) γ -sp int $(A) \le A \le B$. By (d), (δ_i, δ_j) γ -sp int $(A) \le (\delta_i, \delta_j)$ γ -sp int (B).

Proposition 4.5: Let (X, δ_i, δ_i) be a F-bts and A and B be any two fuzzy sets of X. Then

- (a) $(\delta_i, \delta_j)\gamma$ -sp int $(A \land B) = (\delta_i, \delta_j)\gamma$ -sp int $(A) \land (\delta_i, \delta_j)\gamma$ -sp int (B).
- (b) $(\delta_i, \delta_j) \gamma$ -sp int $(A \vee B) \ge (\delta_i, \delta_j) \gamma$ -sp int $(A) \vee (\delta_i, \delta_j) \gamma$ -sp int (B).

Proof: (a) By Theorem 4.4, (δ_i, δ_j) γ -sp int $(A \wedge B) \leq (\delta_i, \delta_j)$ γ -sp int (A), (δ_i, δ_j) γ -sp int $(A \wedge B) \leq (\delta_i, \delta_j)$ γ -sp int (B). Then, (δ_i, δ_j) γ -sp int $(A \wedge B) \leq (\delta_i, \delta_j)$ γ -sp int $(A \wedge B) \leq (\delta_i, \delta_j)$ γ -sp int $(A \wedge B) \leq (\delta_i, \delta_j)$ γ -sp int (B).

Let $C \in [(\delta_i, \delta_i)\gamma\text{-sp int }(A) \land (\delta_i, \delta_i)\gamma\text{-sp int }(B)]$. Then C is a (δ_i, δ_i) F- γ spo set and $C \le A \land B$.

Then $C \le (\delta_i, \delta_j) \gamma$ -sp int $(A \land B)$. Thus, $[(\delta_i, \delta_j) \gamma$ -sp int $(A) \land (\delta_i, \delta_j) \gamma$ -sp int $(B)] \le (\delta_i, \delta_j) \gamma$ -sp int $(A \land B)$. Hence, $(\delta_i, \delta_j) \gamma$ -sp int $(A \land B) = (\delta_i, \delta_j) \gamma$ -sp int $(A) \land (\delta_i, \delta_j) \gamma$ -sp int (B).

(b) By Theorem 4.4, (δ_i, δ_j) γ -sp int $(A \lor B) \ge (\delta_i, \delta_j)$ γ -sp int $(A) \lor (\delta_i, \delta_j)$ γ -sp int (B).

Remark 4.6: Equality does not hold in Proposition 4.5, which is shown by the example below.

Example 4.7: Let (X, δ_1, δ_2) be a F-bts with $X=\{a, b, c\}$, $\delta_1=\{\widetilde{0}, \widetilde{1}, A\}$, $\delta_2=\{\widetilde{0}, \widetilde{1}, B, C\}$ and fuzzy sets $A=\{a_{0.5}, b_{0.7}, c_{0.4}\}$, $B=\{a_{0.4}, b_{0.2}, c_{0.5}\}$, $C=\{a_{0.4}, b_{0.3}, c_{0.5}\}$. Then (δ_1, δ_2) Fyo set $=\{\widetilde{0}, \widetilde{1}, A, B\}$ and (δ_1, δ_2) F- γ -spo set $=\{\widetilde{0}, \widetilde{1}, A, B, C\}$. Let $D=\{a_{0.5}, b_{0.8}, c_{0.3}\}$ then $C \vee D=\{a_{0.5}, b_{0.8}, c_{0.5}\}$. Here D and $C \vee D$ are not (δ_1, δ_2) F- γ -spo.

Now (δ_I, δ_2) γ -sp int $(C \lor D) = A \lor B \lor C = \{a_{0.5}, b_{0.7}, c_{0.5}\}$, (δ_I, δ_2) γ -sp int(C) = C and (δ_I, δ_2) γ -sp int(D) = 0. Thus, (δ_I, δ_2) γ -sp int $(C) \lor (\delta_I, \delta_2)$ γ -sp int (D) = C. Hence (δ_I, δ_2) γ -sp int $(C \lor D) \ge (\delta_I, \delta_2)$ γ -sp int $(C) \lor (\delta_I, \delta_2)$ γ -sp int(D).

Theorem 4.8: Let (X, δ_i, δ_i) be a F-bts. Then for fuzzy sets A and B of X, the following holds:

- (a) $(\delta_i, \delta_i) \gamma$ -sp $cl(\tilde{0}) = \tilde{0}$ and $(\delta_i, \delta_i) \gamma$ -sp $cl(\tilde{1}) = \tilde{1}$.
- (b) $A \le (\delta_i, \delta_i) \gamma$ -sp $cl(A) \le \delta_i cl(A)$.
- (c) A is (δ_i, δ_i) F- γ spc if and only if A = (δ_i, δ_i) γ -sp cl(A).
- (d) (δ_i, δ_i) γ -sp cl(A) is (δ_i, δ_i) F- γ -spc set and (δ_i, δ_i) γ -sp cl((δ_i, δ_i) γ -sp cl(A)) = (δ_i, δ_i) γ -sp cl(A).
- (e) If $A \le B$, then $(\delta_i, \delta_j) \gamma$ -sp $cl(A) \le (\delta_i, \delta_j) \gamma$ -sp cl(B)

Proof: Follows from the Definition 4.1.

Proposition 4.9: Let (X, δ_i, δ_i) be a F-bts and A and B be any two fuzzy sets of X. Then

- (a) $(\delta_i, \delta_i) \gamma$ -sp cl(A \vee B) = $(\delta_i, \delta_i) \gamma$ -sp cl(A) $\vee (\delta_i, \delta_i) \gamma$ -sp cl(B).
- (b) $(\delta_i, \delta_j) \gamma$ -sp cl(A \wedge B) \leq $(\delta_i, \delta_j) \gamma$ -sp cl(A) \wedge $(\delta_i, \delta_j) \gamma$ -sp cl(B).

Proof: Follows by taking the complement from the relations of Proposition 4.5.

Remark 4.10: Equality need not hold in Proposition 4.9 which is illustrated as follows.

Example 4.11: Let (X, δ_1, δ_2) be a F-bts with $X = \{a, b, c\}$, $\delta_1 = \{\tilde{0}, \tilde{1}, A\}$, $\delta_2 = \{\tilde{0}, \tilde{1}, B, C\}$ with fuzzy sets $A = \{a_{0.4}, b_{0.6}, c_{0.3}\}$, $B = \{a_{0.3}, b_{0.4}, c_{0.2}\}$, $C = \{a_{0.4}, b_{0.4}, c_{0.5}\}$. Here (δ_1, δ_2) F- γ spc sets $= \{\tilde{0}, \tilde{1}, A', B', C'\}$.

Let $D = \{a_{0.7}, b_{0.6}, c_{0.2}\}$ and so $C' \wedge D' = \{a_{0.3}, b_{0.4}, c_{0.5}\}$. Then (δ_l, δ_2) γ -sp cl $(C' \wedge D') = A' \wedge C' = \{a_{0.6}, b_{0.4}, c_{0.5}\}$, (δ_l, δ_2) γ -sp cl(C') = C', (δ_l, δ_2) γ -sp cl(D') = B' and $C' \wedge B' = C'$. Thus, (δ_l, δ_l) γ -sp cl $(C' \wedge D') \leq (\delta_l, \delta_l)$ γ -sp cl $(C') \wedge (\delta_l, \delta_l)$ γ -sp cl(D').

5. CONCLUSION

In this paper, the notions of (δ_i, δ_j) F- γ -semi-preopen and (δ_i, δ_j) F- γ -semi-preclosed sets in fuzzy bitopological spaces are introduced and their properties are discussed along with examples and counter examples and also their relationship with other sets are studied.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their valuable suggestions and comments to improve the presentation and quality of the paper.

REFERENCES

- [1] Andrijevic, D. (1986). Semi preopen sets, *Mat. Vesnik*, 38, 24-32.
- [2] Azad, A.K. (1981). On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, *Journal of Mathematical Analysis and Applications*, 82, 14–32.
- [3] Zong, Bai Shi (1992). Fuzzy strongly semiopen sets and fuzzy strongly semicontinuity, *Fuzzy Sets Syst.*, 52, 345–351.
- [4] Chandrasekhara Rao, K. and Nagoor Gani, A. (2003). Pairwise preconnected spaces, *Bulletin of Pure and Applied Sciences*, Vol. 22E, No. 1, 159-163.
- [5] Chandrasekhara Rao, K. and Nagoor Gani, A. (2003). Second \$\mathfrak{I}_{2}\$- semiopen sets, Bulletin of Pure and Applied Sciences, Vol. 22E, No. 1, 245-250.
- [6] Chandrasekhara Rao, K. and Nagoor Gani, A. (2004). On $\mathfrak{I}_1\mathfrak{I}_{2^-}$ semi pre open sets and $\mathfrak{I}_1\mathfrak{I}_{2^-}$ -quasi open sets, *National Academy of Science Letters*, Vol.27, No.7&8, 279-283.
- [7] Chang, C.L. (1968). Fuzzy topological spaces, *Journal of Mathematical Analysis and Applications*, 24, 182–190.
- [8] Hanafy, I.M. (1999). Fuzzy γ-open sets and fuzzy γ-continuity, J. Fuzzy Math., 7 (2), 419-430.
- [9] Kandil, A. and El-Shafee, M.E. (1989). Biproximities and fuzzy bitopological spaces, *Simon Stevin*, 63 (1), 45–66.
- [10] Khedr, F.H., Al-Areefi, S.M. and Noiri, T. (1992). Precontinuity and semi-precontinuity in bitopological spaces, *Indian Journal of Pure and Applied Mathematics*, 23, 625–633.
- [11] Maki, H., Umehara, J. and Noiri, T. (1996). Every topological space is pre T_{1/2}, *Mem Fac. Sci. Kochi Univ. Ser. A. Math.*, 17, 33-42.

- [12] Maki, H., Rao, K.C. and Nagoor Gani, A. (1999). On generalizing semi-open and preopen sets, *Pure Appl. Math. Sci.*, Vol. XLIX, No.1-2, 17-29.
- [13] Mashour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. (1982). On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53, 47-53.
- [14] Mashour, A.S., Ghanim, M.H. and Fath Alla, M.A. (1986). On fuzzy non-continuous mappings, *Bull Calcutta Math. Soc.*, 78, 57–69.
- [15] Mahmoud, F.S., Fath Alla, M.A. and Khalaf, M.M. (2004). Fuzzy-γ-open sets and fuzzy-γ-continuity in fuzzy bitopological spaces, *Applied Mathematics and Computation*, 153, 117–126.
- [16] Nagoorgani, A., Rameeza Bhanu, J. (2017). (δ_i, δ_i) F- γ -semiopen and (δ_i, δ_i) F- γ -semiclosed sets in fuzzy bitopological spaces, *Annals of Pure and Applied Mathematics*, Vol. 15, No. 2, 173-184.
- [17] Nagoorgani, A. and Rameeza Bhanu, J. (2019). Fuzzy gamma preopen and Fuzzy gamma preclosed sets in fuzzy bitopological spaces, *American International Journal of Science, Technology, Engineering and Mathematics*, Special issue of 2nd ICCSPAM (2019), 125 –130.
- [18] Park, J.H. and Lee, B.Y. (1994). Fuzzy semi-preopen sets and fuzzy semi-precontinuous mappings, *Fuzzy Sets Syst.*, 67, 359–364.
- [19] Park, J.H. (1998). On fuzzy pairwise semi-precontinuity, Fuzzy Sets Syst., 93, 375–379.
- [20] Pu, P.M. and Liu, Y.M. (1980). Fuzzy topology.I. Neighbourhood structure of a fuzzy point and Moore Smith convergence, *Journal of Mathematical Analysis and Applications*, 76, 571–599.
- [21] Sampath Kumar, S. (1997). On decomposition of pairwise continuity, *Bull. Cal. Math. Soc.*, 89, 441-446.
- [22] Sampath Kumar, S. (1994). On fuzzy pairwise α-continuity and fuzzy pre-continuity, *Fuzzy Sets Syst.*, 62, 231–238.
- [23] Sampath Kumar, S. (1994). Semi-open sets, semi-continuity and semi-open mapping in fuzzy bitopological spaces, *Fuzzy Sets Syst.*, 64, 421–426.
- [24] Singal, M.K. and Prakash, Niti (1991). Fuzzy preopen sets and fuzzy preseparation axioms, *Fuzzy Sets Syst.*, 44, 273–281.
- [25] Thakur, S.S. and Singh, Surendra (1998). On fuzzy semi-preopen sets and fuzzy semi-precontinuity, *Fuzzy Sets Syst.*, 98, 383-391.
- [26] Wong, C.K. (1974). Fuzzy point and local properties of fuzzy topology, *Journal of Mathematical Analysis and Applications*, 46, 328–361.
- [27] Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8, 338–353.