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1. INTRODUCTION 

 

The first attempt to clarify the sequential behavior of the weakly compact subsets in a Banach Space was made 
by Smulian [11] and Phillips[ 10]. Their results are based on an argument of metrizability of weakly compact 

subsets (see Floret [5], pp.29-30). Smulian showed in [11] that a relatively compact subset is relatively 

sequentially compact for the weak topology of a Banach Space. He also proved that the concepts of relatively 

countably compact and relatively sequentially compact coincide if the weak
*
-dual is separable. Grothendieck [6] 

extended the spaces of continuous functions on compact spaces endowed with the pointwise convergence 

topology. Bourgain et al.’s notation of angelic space [1] and some of its consequences provide us with the 

necessary tools for providing those results in clear-cut way (see, Orihuela [9]). 

 

 In this paper all topological spaces are regular and Hausdorff. Following Bourgain et al. [1] we call a 

space X angelic if for every relatively countably compact subset A of X the following hold :  

(a) A is relatively compact. 

(b) If� ∈ �̅, then there is a sequence in A that converges to x. 
 

The introduction of the angelic space was a step in the study of compactness.   
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Abstract: 

In this paper, we introduce the new concept of angelic paracompact spaces and angelic on web 

paracompact spaces and discuss some of their properties. Further we prove that every relatively countably 

paracompact subset of Cp(x) is relatively paracompact. 
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2. PRELIMINARIES  

 

Definition 2.1: A relatively compact [9] subspace Y of a topological space X is a subset whose closure is 

compact. 

 

Definition 2.2: A subset M of a topological space X is said to be countably compact[9] (briefly, NK), or 

relatively countably compact[9] (briefly,RNK), if every sequence in M has an adherent point in M , or in X 

respectively. 

 

Definition 2.3: A topological space X is paracompact [8], if every open cover has a locally finite open 

refinement. 

 

Definition 2.4: A topological space will be called a web-compact space[9] if there is a subset ∑ of N
N
and a 

family {Aα : α∈ ∑} of subsets of X such that, if we denote by ���,�
,….�
 =∪{Aβ:β∈ ∑ , β=(bm), bj=aj, j=1,2…, n} 

for every α=(am) in ∑ and n in N, The following two conditions are satisfied: 

(i) �{��: � ∈ ∑}�����������������=X, 

(ii) If α=(an) ∈ ∑ and xn∈Cα1,α2,….αn, n=1,2… then the sequence (xn) has an adherent 

point in X. 

Definition 2.5: Let Z be a topological space, let X be a set and A⊂Zx. If (fn) ⊂A and (xm) ⊂X, it is said that (fn) 

has the interchangeable double limit property [9] (in Z) with (xm) if limnlimmf(xm) =limmlimnfn(xm) whenever all 

the limits involved exist. 

 

Definition 2.6: Angelic Lemma 5]: Let X and Y be topological spaces, let X be regular and let ϕ: X→Y be 

continuous and injective. If A⊂X is RNK and for all B⊂ϕ (A) the sequential closure of B is closed, that is, ��  

={y∈Y: there is (yn) in B with limnyn=y}, then ϕ(�̅) is closed in Y and the restriction of ϕ on �̅ is a 
homeomorphism. 

 

3. ANGELIC PARACOMPACT SPACES 

 

Definition 3.1:  Relatively Paracompact 

A relatively paracompact subspace Y of a topological space X is a subset whose closure is compact and every 

open cover has a locally finite open refinement. 

 

Definition 3.2:  Relatively Countably Paracompact 

A subset M of a topological space X is said to be relatively countably paracompact, if every sequence in M has 
an adherent point in X and every open cover has a locally finite open refinement. 

 

Definition 3.3:  Angelic Paracompact Space 

                          A Hausdorff topological space X is called Angelic paracompact space if 

(i) Every relatively countably paracompact subset A of X is relatively paracompact. 

(ii) For any point x in the closure of a relatively paracompact subset A of X, there exists 

a sequence in A, converging to x. 

 

Example 3.4: The space R
n
 is angelic paracompact. 

 

Let X=Rn. Let � be an open covering of X, Let B0=ϕ and for each positive integer m. Let Bm denote the open 

ball of radius m centered at the origin. 

Given m, let us choose finitely many elements of � cover ��m and intersect each one with open set X-��m-1, Let 

this finite collection of open sets be denoted by �m. Then the collection �=∪ �m is a refinement of �. It is 

clearly locally finite, for the open set Bm intersects only finitely many elements of �, namely those elements 

belonging to the collection �1∪…∪ �m.Finally �covers X. For, given x, let m be the smallest integer such that 

x∈ ��m. Then x∈Cm , by definition. Here every open set containing x contains at least one point of A. The point x 
is an adherent point for A iff x is in the closure of A. Hence every relatively countably  paracompact subset of Y 

is relatively paracompact. For any point x in the closure of a relatively paracompact subset A of X, there exists a 

sequence in A, converging to x. Hence the space R
n
 is an angelic paracompact. 

 

Theorem 3.5: Every angelic paracompact space is normal. 
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Proof: Let X be an angelic paracompact space and let A,B be closed (disjoint) sets in X. Since X is regular, for 

each point x of A, an open neighbourhood Ux can be chosen such that U�x⊆ � − �. Similarly, for each point 

y∈ � − �, an open neighbourhood Vy can be chosen such that  �y⊆ � − �. Let ! 1
= {Ux/ x∈ �} ∪ {Vy/ y∈ � −

�} be an open covering of X and X is paracompact. Hence ! 1
 has a locally finite open refinement ! (which is 

also an open covering of X). Let ! be denoted by {Gα/α∈ "}. Assume that Gα∩A≠ϕ. Since for y∈ � − �, 

 �y⊆ � − �.That is V�y∩A=ϕ, Gα⊈Vy for any y∈ � − �. Hence, since ! is a refinement of !1
, for some x∈A, 

Gα⊆Ux. Further, since ��x⊆ � − �, &̅α⊆ � − �. Thus if Gα∩A≠ϕ,&̅α⊆ � − �. Now let C={ α∈ " / Gα∩A≠ ϕ 

}.Since ! is a covering of X, ! covers A. By definition of C, then ∪'∈( Gα⊇A. Since !  is locally finite, 

∪'∈( &̅α⊆ � − �. By the result, “ Ifℳ is a locally finite system in a space S, then ⋃ ℳ������ =⋃ ℳ� ”, ∪'∈( &̅α = 

⋃ &,,∈(
����������and consequently, � −∪'∈( &̅α is open. Since ∪'∈( &̅α⊆ � − �, � −∪'∈( &̅α⊇ �.Thus∪'∈(I and 

� −∪'∈( &̅α are disjoint open sets and so X is normal. 
 

Theorem 3.6:  Every closed subspace of an angelic paracompact space is angelic paracompact. 

 

Proof :Let Y be a closed subspace of the angelic paracompact space X. Then the subspace topology of Y is 

regular and Hausdorff. If � ⊆ - is relatively countably paracompact in Y, then A is relatively countably 

paracompact in X, so �̅, the closure of A in X is relatively paracompact. Now if � ∈ �̅, then there is a sequence 

{�.}./�
0  in A converging to x. But{�.}./�

0  must have a limit point in Y, since Y is closed. Thus �̅ ⊆ -, which is a 

closure of A in Y. Hence A is relatively paracompact and any point of �̅ is the limit of a sequence in A. Therefore 
Y is angelic paracompact. 

 

Theorem 3.7: Let (Z,d) be an Angelic paracompact metric space and let A be a set of functions from X into Z. 

We suppose that for every α=(am) ∈ ∑ and every sequence (xn) in X, that is, eventually in every set �12 ,13 ,…14
 for 

n=1,2… we have for every sequence in A the interchangeable double limit property with (xn) in Z. Then for 

every f in the closure of A in the product space Z
x
 there is a sequence (fn) in A such that (fn) converges pointwise 

to f on X. 

 

Proof : Step I:Given functions g1,g2,…,gn in Z
x
, 5 >0 and a subset C of X, there is a finite subset L of C such 

that 6789∈:6;�<=. {d(gk(x),gk(y))}≤  5 for every x∈ �.Indeed, it is enough to consider the mapping G from C 

into Z
n
 defined by G(x)=(g1(x),g2(x),….,gn(x)) and to use the compactness of Z

n
. 

 

Step II:  The interchangeable double limit property together with step I will now enable us to find a sequence of 

functions (fn) in A that converges pointwise to f on X. The idea is to construct a countable subset L in X together 

with a sequence of functions (fm) in A satisfying limmfm(y)=f(y) for every y belonging to L. We shall do it in such 

a way that for every x in X we shall have enough points of the countable set L ‘close to x’ such that we shall 

obtain the convergence of the sequence (fm) at the point x by iteration of limits. 

 

Since S is countable there is a bijection ѱ: N→S. For every positive integer n. Let Dn be equal to Cѱ(n) and let f1 

be equal to f. By Step I there is a finite subset ?�
� ⊂D1 such that min9∈:2

2 {d(f1(x),f1(y))}≤ 1 for every x∈D1. But f 

is in the closure of A, so there is f2∈A such that max9∈:2
2  {d(f2(y),f(y))} ≤ 1/2. 

 

Proceeding by recurrence, for every positive integer n, we find finite subsets ?.
E ⊂Di for i≤n and functions fi, 

i=1,2,…, n+1 such that  

min
9∈:4

F max<=. {d(fk(x),fk(y))}≤  1/8 for every x∈Di  and 

max {d(fn+1(y),f(y)):y∈∪{?I
E :i≤j≤n}}≤1/(n+1). 

 

Step: III    The sequence {fn:n=1,2,….} selected above clearly satisfies limnfn(y)=f(y) for every  y∈

∪{?I
E :i≤j=1,2,…}. 

 

We are now going to see that limnfn(x)=f(x) whatever x in X we take. Indeed, let us take x∈X and � ∈ ∑,�=(am), 

such that x∈Aα. We set P= ѱ
-1

 ({(;�, ;
 , … ;.):n=1,2….}),which is an infinite subset of positive integers 

because ѱ is a bijection. The point x clearly belongs to every Dp for p∈P and so, given p∈P and n≥p, by step II 

there is yn,p∈ ?.
K

 such that max<=. {d(fk(x),fk(yn,p))}≤1/n. we put yp=yp,p and we have       

max<=K{d(fk(x),fk(yp))}≤1/p. (1) 
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Since yp=yp,p∈ ?K
K

⊂Dpfor every p∈P, the sequence {yp:p∈P} is eventually in every �12 ,13 ,…14
for 

n=1,2….Indeed, let m be a positive integer and Pj be equal to ѱ
 -1

((;�, ;
 , … ;I)) for j=1,2…,m. If p∈P and p≠pj 

,j=1,2…,m, we have yp∈ Dp= �12,13 ,…1MN
 with m0>m and the conclusion follows when we bear in mind that 

�12 ,13 ,…1MN
⊂ �12 ,13 ,…1M

 

We shall now use the permutability of limits to conclude that limn fn(x)=f(x). It will be enough to prove that f(x) 

is the only adherent point of the sequence (fn(x)) in Z, since Z is Angelic paracompact. Let y be an adherent point 

of (fn(x)) and (nk) be a strictly increasing sequence of positive integers such that limkO.P
(x)=y. Since P is infinite, 

it is a confinal subset in N and there is a strictly increasing sequence (Pj) in P. Property (1) ensures that 

limjfk(QKR
) = fk(x) for k=1,2…. Thus we have y= limkO.P

 (x)= limklimjO.P
 (QKR

) = limjlimkO.P
 (QKR

) 

                                                      = limjf(QKR
) = limjf1(QKF

) = f1(x)=f(x). 

 

4. ANGELIC ON WEB – PARACOMPACT SPACES 
 

Definition 4.1: An angelic space will be called a Web-paracompact space if there is a subset ∑ of N
N
 and a 

family {Aα : α∈ ∑ } of subsets of X such that, if we denote by �12,13 ,…14
 =∪{Aβ:β∈ ∑ , β=(bm), bj=aj, j=1,2…,n} 

for every α=(am) in ∑ and n in N, The following  conditions are satisfied: 

(i) �{�,: � ∈ ∑}�����������������=X 

(ii) If α=(an) ∈ ∑ and  xn∈ �12,13 ,…14
, n=1,2… then the sequence (xn) has a limit 

point in X. 

(iii) every open cover has a locally finite open refinement. 

 

Theorem  4.2: Let X be a Web-paracompact space. The space Cp(X) is angelic. 

 

Proof : Let ℝ�  be the compactification of  R with the two points +∞ and -∞. The inclusion mapping from Cp(X, 

ℝ�) into Cp(X, R) is continuous and injective.The angelic lemma ensures that it is sufficient to prove the theorem 

for the space Cp(X,Z), where Z is a compact metric space. Let {Aα : α∈ ∑ } the family of subsets of X giving it a 

Web-paracompact structure. Let Y be equal to the union of the sets of the family {Aα : α∈ ∑ }.We consider the 

mapping U:Cp(X,Z)→Zy[Tp]defined by restriction on Y,  U(f):= fY, that is continuous and injective because of the 

density of Y in X. Let A be a relatively countably paracompact  subset of Cp(X,Z). Every sequence in A has the 

interchangeable double limit property with every sequence in X having limit point in X. Therefore U(A) is a set 

of functions that satisfies the conditions of  the Theorem 3.7 in Z
y
. Thus for any B contained in U(A) we have 

thatB�={ f∈Z
y
: there is a sequence (fn) in B with limnfn = f in Tp}. 

 

By Angelic lemma, U(�̅) is closed in Z
y
 and so paracompact and that the restriction of U on �̅ is a 

homeomorphism. Thus the closure of A in Cp(X,Z) is paracompact .That is A is relatively paracompact and every 

point in �̅ has a convergent sequence in A. Hence Cp(X) is angelic. 
 

Corollary 4.3: If X is a web paracompact space and Z is a metric space, the space Cp(X,Z) of continuous 

functions from X into Z endowed with the pointwise convergence topology is an angelic space. 

 

Proof: This follows from the Theorem 4.2. 

 

Definition 4.4: Let X be an arbitrary topological space and let {Xi :i∈ "} be the family of all the subspaces of X 

which are web-paracompact. We shall say that X is a WK -space, if any function from X into R is continuous if 

and only if its restriction on every Xi is continuous.  

 

Theorem 4.5: Let X be a WK-space. Then every relatively countably paracompact subset of Cp(X) is relatively 

paracompact.   

 

Proof: Let A be a relatively countably paracompact subset of Cp(X).Then the closure B of A in R
X
 is 

paracompact and from Theorem 3.7, together with the fact of Xbeing a WK-space, ensures that B is contained in 

Cp(X), and so A is relatively countably paracompact in Cp(X). 
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5. CONCLUSION 

 

Our main result includes Angelic paracompactness in topological spaces and we  also deduced the property of 

angelic in web-paracompact spaces. 

 

REFERENCES 

 

[1]. Bourgain, J,Fermlin, D.H. and Talagrand, M. (1978). Pointwise compact sets of Baire-measurable 

functions, Amer.J.Math., 100, 845-886. 

[2]. Cascales, B. and Orihuela,J. (1987). On compactness in Locally convex spaces, Mathematische 

Zeitschrift @ Springer-Verlag, 195, 365-381. 

[3]. Chasco, M.J,  Martin-Peinador,E. and Tarieladze,V. (2007). A Class of angelic sequential non-Frechet- 

Urysohn topological groups, Topology and its Applications, 154, 741-748. 

[4]. Eberlein, W.F. (1947). Weak compactness in Banach spaces I, Proc. Nat. Acad. Sci. USA, 33 51-53. 

[5]. Floret, K. (1980). Weakly compact sets, Lecture Notes in Mathematics 80, Springer, Berlin. 

[6]. Grothendieck, A. (1952).Criteres de compacitedans les espacesfontionnelsgeneraux, Amer.J.Math., 74, 

168-186.  

[7]. Konig, Heinz and Kuhn,Norbert (1987). Angelic Spaces and the double limit relation, J. London Math. 

Soc., 35(2), 454-470. 

[8]. Munkres ,James R. (2002). Topology, Second Edition, Pearson Education Pte. Ltd., Singapore. 

[9]. Orihuela, Jose (1987). Pointwise Compactness in Spaces of continuous functions, J. London Math. 

Soc., 36(2), 143-152. 

[10]. Philips, R.S. (1943).On weakly compact subsets of a Banach space, Am. J. Math., 65, 108-136. 

[11]. Smulian,V.L. (1940). Uber linearetopologischeRaume, Math. Sb. N.S., 7(49), 425-448. 

[12]. Khurana, Surjit Singh (1978). Vector- Valued Continuous Functions with Strict topologies and Angelic 

topological spaces, Proceedings of the American Mathematical Society, Volume 69,  Number  1, 34-

36.April 1978.  

[13]. Young, N.J. (1973). Compactness in Function Spaces, Another proof of a theorem of J.D. Pryce, J. 

London Math .Soc., 6 (2) , 739-740. 
 

 

 

 

 

 


