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Abstract:

In this paper, we introduce the new concept of angelic paracompact spaces and angelic on web
paracompact spaces and discuss some of their properties. Further we prove that every relatively countably
paracompact subset of C,(x) is relatively paracompact.
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1. INTRODUCTION

The first attempt to clarify the sequential behavior of the weakly compact subsets in a Banach Space was made
by Smulian [11] and Phillips[ 10]. Their results are based on an argument of metrizability of weakly compact
subsets (see Floret [5], pp.29-30). Smulian showed in [11] that a relatively compact subset is relatively
sequentially compact for the weak topology of a Banach Space. He also proved that the concepts of relatively
countably compact and relatively sequentially compact coincide if the weak -dual is separable. Grothendieck [6]
extended the spaces of continuous functions on compact spaces endowed with the pointwise convergence
topology. Bourgain et al.’s notation of angelic space [1] and some of its consequences provide us with the
necessary tools for providing those results in clear-cut way (see, Orihuela [9]).

In this paper all topological spaces are regular and Hausdorff. Following Bourgain et al. [1] we call a
space X angelic if for every relatively countably compact subset A of X the following hold :

(a) A is relatively compact.

(b) Ifx € A, then there is a sequence in A that converges to x.

The introduction of the angelic space was a step in the study of compactness.
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2. PRELIMINARIES

Definition 2.1: A relatively compact [9] subspace Y of a topological space X is a subset whose closure is
compact.

Definition 2.2: A subset M of a topological space X is said to be countably compact[9] (briefly, NK), or
relatively countably compact[9] (briefly,RNK), if every sequence in M has an adherent point in M , or in X
respectively.

Definition 2.3: A topological space X is paracompact [8], if every open cover has a locally finite open
refinement.

Definition 2.4: A topological space will be called a web-compact space[9] if there is a subset ¥ of NMand a
family {A, : a€ ).} of subsets of X such that, if we denote by Cy; o5 an =U{AgPE Y, , f=(by), b=a;, j=1,2..., n}
for every a=(a,,) in ), and n in N, The following two conditions are satisfied:

(6] U{da: a € Y}=X,

(i1) If a=(a,) €Y, and x,EC,j ... n=1,2... then the sequence (x,) has an adherent

point in X.

Definition 2.5: Let Z be a topological space, let X be a set and ACZ". If (f,) CA and (x,,) CX, it is said that (f;)
has the interchangeable double limit property [9] (in Z) with (x,,) if lim,lim,f(x,,) =lim,lim,f,(x,,) whenever all
the limits involved exist.

Definition 2.6: Angelic Lemma 5]: Let X and Y be topological spaces, let X be regular and let ¢: X—Y be
continuous and injective. If AcX is RNK and for all Bc¢ (A) the sequential closure of B is closed, that is, B
=(y€Y: there is (y,) in B with lim,y,=y}, then #(A) is closed in Y and the restriction of ¢ on A is a
homeomorphism.

3. ANGELIC PARACOMPACT SPACES

Definition 3.1: Relatively Paracompact
A relatively paracompact subspace Y of a topological space X is a subset whose closure is compact and every
open cover has a locally finite open refinement.

Definition 3.2: Relatively Countably Paracompact
A subset M of a topological space X is said to be relatively countably paracompact, if every sequence in M has
an adherent point in X and every open cover has a locally finite open refinement.

Definition 3.3: Angelic Paracompact Space
A Hausdorff topological space X is called Angelic paracompact space if
(6)) Every relatively countably paracompact subset A of X is relatively paracompact.
(i) For any point x in the closure of a relatively paracompact subset A of X, there exists
a sequence in A, converging to x.

Example 3.4: The space R" is angelic paracompact.

Let X=R". Let A be an open covering of X, Let By=¢ and for each positive integer m. Let B,, denote the open
ball of radius m centered at the origin.

Given m, let us choose finitely many elements of A cover B,, and intersect each one with open set X-B,.1, Let
this finite collection of open sets be denoted by C,. Then the collection C=U C,, is a refinement of A. It is
clearly locally finite, for the open set B,, intersects only finitely many elements of C, namely those elements
belonging to the collection C,U...U Cy,.Finally Ccovers X. For, given x, let m be the smallest integer such that
x€ B,,. Then x€C,, , by definition. Here every open set containing x contains at least one point of A. The point x
is an adherent point for A iff x is in the closure of A. Hence every relatively countably paracompact subset of ¥
is relatively paracompact. For any point x in the closure of a relatively paracompact subset A of X, there exists a
sequence in A, converging to x. Hence the space R" is an angelic paracompact.

Theorem 3.5: Every angelic paracompact space is normal.
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Proof: Let X be an angelic paracompact space and let A,B be closed (disjoint) sets in X. Since X is regular, for
each point x of A, an open neighbourhood U, can be chosen such that U,C X — B. Similarly, for each point
YE X — A, an open neighbourhood V, can be chosen such that V)E X—Alet§g '=(UJ x€ A} U (Vi yeX —
A} be an open covering of X and X is paracompact. Hence G ' has a locally finite open refinement G (which is
also an open covering of X). Let G be denoted by {G,/a€ I}. Assume that G,NA#p. Since for y€ X — A,
Vyg X — A.That is VynAqu, G,ZV, for any y€ X — A. Hence, since G is a refinement of g‘, for some x€A,
G,CU,. Further, since U,E X — B, G,S X — B. Thus if G,NA#¢,G,C X —B. Now let C={ a€ I / G,NA+ ¢
}.Since G is a covering of X, G covers A. By definition of C, then Uy, G,2A. Since G is locally finite,
Ugec Go.S X — B. By the result, “ IfM is a locally finite system in a space S, then UM =UM”, Uyec Go =
Ugec Ggand consequently, X —Ugec G, is open. Since Ugec Go€ X — B, X —Ugec Go2 B.ThusU eI and
X —Ugec G, are disjoint open sets and so X is normal.

Theorem 3.6: Every closed subspace of an angelic paracompact space is angelic paracompact.

Proof :Let Y be a closed subspace of the angelic paracompact space X. Then the subspace topology of Y is
regular and Hausdorff. If A €Y is relatively countably paracompact in Y, then A is relatively countably
paracompact in X, so A, the closure of A in X is relatively paracompact. Now if x € A, then there is a sequence
{x,}%_, in A converging to x. But{x, }s; must have a limit point in ¥, since Yis closed. Thus A € Y, which is a
closure of A in Y. Hence A is relatively paracompact and any point of A is the limit of a sequence in A. Therefore
Y is angelic paracompact.

Theorem 3.7: Let (Z,d) be an Angelic paracompact metric space and let A be a set of functions from X into Z.
We suppose that for every a=(a,,) € Y, and every sequence (x,) in X, that is, eventually in every set Cy, 4, q, for
n=1,2... we have for every sequence in A the interchangeable double limit property with (x,) in Z. Then for
every fin the closure of A in the product space Z* there is a sequence (f,) in A such that (f;) converges pointwise
to fon X.

Proof : Step I:Given functions gi,25,...,g, in Z', € >0 and a subset C of X, there is a finite subset L of C such
that min, ¢, maxy<, {d(gu(x).g«(y))}< ¢ for every x€ C.Indeed, it is enough to consider the mapping G from C
into Z" defined by G(x)=(g;(x),g2(x),....,gn(x)) and to use the compactness of Z".

Step II: The interchangeable double limit property together with step I will now enable us to find a sequence of
functions (f,) in A that converges pointwise to f on X. The idea is to construct a countable subset L in X together
with a sequence of functions (f,,) in A satisfying lim,f,,(y)=f(y) for every y belonging to L. We shall do it in such
a way that for every x in X we shall have enough points of the countable set L ‘close to x’ such that we shall
obtain the convergence of the sequence (f;,) at the point x by iteration of limits.

Since S is countable there is a bijection y: N—S. For every positive integer n. Let D, be equal to C,, and let f|
be equal to f. By Step I there is a finite subset L} D such that min,,¢ %! {d(fi(x).fi(y))}< 1 for every x€D,. But f

is in the closure of A, so there is f,EA such that max,, ;1 {di(0).f)} < 172.

Proceeding by recurrence, for every positive integer n, we find finite subsets L, €D; for i<n and functions f;,
i=1,2,..., n+1 such that
minyELg1 max, <, {d{fi(x)./i(»))}< 1/n for every x€D; and

max {d(f,. () f)):yEU{LL:i<j<n} } < U(n+1).

Step: III The sequence {f,:n=1,2,....} selected above clearly satisfies lim,f,(y)=fy) for every y€
U{Li:igj=1.2,...}.

We are now going to see that lim,f,(x)=f(x) whatever x in X we take. Indeed, let us take x€X and a € Y ,a=(a,,),
such that x€A,. We set P= y' ({(a;,a,,...a,):n=1,2....}),which is an infinite subset of positive integers
because i is a bijection. The point x clearly belongs to every D, for pEP and so, given pEP and n=p, by step II
there is y,,€ LY such that max,., {dfi(x)fiyn,))}<l/n. we put y,=y,, and we have
maxyzp {0 fi(p) )< LUp. (1)
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Since y,=y,,€ L’; cD,for every p€P, the sequence ({y,:p€EP} is eventually in every C, for

1,42 ,..0y
n=1,2....Indeed, let m be a positive integer and P; be equal to l//'l((al, ay, .- a;)) for j=1,2...,m. If pEP and p#p;
J=1,2...,m, we have y,€ D,= Cy, q, g with my>m and the conclusion follows when we bear in mind that

Cal,az yelim c Cal,az yelim

We shall n(:)w use the permutability of limits to conclude that lim, f,(x)=f(x). It will be enough to prove that f(x)
is the only adherent point of the sequence (f,(x)) in Z, since Z is Angelic paracompact. Let y be an adherent point
of (f,(x)) and () be a strictly increasing sequence of positive integers such that lim,f;, (x)=y. Since P is infinite,
it is a confinal subset in N and there is a strictly increasing sequence (P;) in P. Property (1) ensures that
limfk(ypj) = fi(x) for k=1,2.... Thus we have y=lim;f, ()= limylim;fy, (ypj) = limlimyf,, (ypj)

= limf(y, ) = imfy(yp,) =f1(x)=Ax).
4. ANGELIC ON WEB - PARACOMPACT SPACES

Definition 4.1: An angelic space will be called a Web-paracompact space if there is a subset ), of NN and a
family {A, : a€ }; } of subsets of X such that, if we denote by C,,_ o, . =U{AgBE Y, f=(b,), b=a;, j=1,2....n}
for every a=(a,,) in ), and n in N, The following conditions are satisfied:

1) UfA:a € Y}=X

(ii) If a=(a,) €}, and x,€ Cy, 4, a,> "=1,2... then the sequence (x,) has a limit
point in X.
(iii) every open cover has a locally finite open refinement.

Theorem 4.2: Let X be a Web-paracompact space. The space C,(X) is angelic.

Proof : Let R be the compactification of R with the two points +co and -co. The inclusion mapping from Cy(X,
R) into C,(X, R) is continuous and injective. The angelic lemma ensures that it is sufficient to prove the theorem
for the space C,(X,Z), where Z is a compact metric space. Let {A, : a€ ), } the family of subsets of X giving it a
Web-paracompact structure. Let ¥ be equal to the union of the sets of the family {A, : a€ Y, }.We consider the
mapping ¢:C,(X,Z)—2Z’[T,]defined by restriction on Y, ¢(f):=fy, that is continuous and injective because of the
density of Yin X. Let A be a relatively countably paracompact subset of C,(X,Z). Every sequence in A has the
interchangeable double limit property with every sequence in X having limit point in X. Therefore ¢(A) is a set
of functions that satisfies the conditions of the Theorem 3.7 in Z. Thus for any B contained in ¢(A) we have
thatB={ f€Z’: there is a sequence (f,) in B with lim,f, = fin T,,}.

By Angelic lemma, ¢(A4) is closed in Z° and so paracompact and that the restriction of ¢ on A is a
homeomorphism. Thus the closure of A in C,(X,Z) is paracompact .That is A is relatively paracompact and every
point in A has a convergent sequence in A. Hence C,(X) is angelic.

Corollary 4.3: If X is a web paracompact space and Z is a metric space, the space C,(X,Z) of continuous
functions from X into Z endowed with the pointwise convergence topology is an angelic space.

Proof: This follows from the Theorem 4.2.

Definition 4.4: Let X be an arbitrary topological space and let {X; :i€ I} be the family of all the subspaces of X
which are web-paracompact. We shall say that X is a W), -space, if any function from X into R is continuous if
and only if its restriction on every X; is continuous.

Theorem 4.5: Let X be a W),-space. Then every relatively countably paracompact subset of C,(X) is relatively
paracompact.

Proof: Let A be a relatively countably paracompact subset of C,(X).Then the closure B of A in R* is
paracompact and from Theorem 3.7, together with the fact of Xbeing a W),-space, ensures that B is contained in
C,(X), and so A is relatively countably paracompact in C,(X).
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5.

CONCLUSION

Our main result includes Angelic paracompactness in topological spaces and we also deduced the property of
angelic in web-paracompact spaces.
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